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The basic mechanism of electrospinning is the rapid whipping of charged liquid jets, undergoing a chaotic
‘‘whip” process, and eventually the formation of disordered reticular fibers is continuously deposited on
the receiving device. Firstly, the physical model of jet whipping is studied, which is to be established the
physical model of solvent evaporation on the surface of the jet. The Jeffreys model and the Voigt model
are used to describe the viscoelastic model of the unstable generating end and the end, and the unstable
dynamic model is constructed. Finally, the coupling control equation is obtained, which has certain the-
oretical guiding significance for the development of electrospinning process.
� 2020 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Under the action of the electric field force of the high voltage
electrostatic field, the polymer solution forms a ‘‘Taylor cone”
due to the interaction of electrostatic force and surface tension
(Taylor, 1964). As the applied voltage increases, the solution over-
comes the surface tension and viscous resistance from the tip of
the Taylor cone. With a charged jet, the polymer jet evaporates
and solidifies during the spraying process, and finally reaches the
receiving device to form ultrafine fibers, and the diameter is gener-
ally between 5 nm and 1000 nm (Teo and Ramakrishna, 2006; Fang
et al., 2010). As early as 1934, Formahals first described in detail
the use of high-voltage static electricity to prepare nanofiber
devices and applied for related patents. The research on jet is
divided into three parts: ‘‘Taylor cone”, jet stability section and
unstable section. The electrospinning process is complex and
involves subject knowledge such as rheology, electrostatics, elec-
trohydrodynamics and chemistry (Dacheng and du Zhongliang,
2003). The materials are widely used, from the initial filtration
and reinforced composite materials to biomedicine and energy
new areas such as high efficiency filtration, stent loading, battery
separators and tissue engineering. So far, most of the electrospin-
ning production has not yet reached the industrial production
standard, but only stays in the laboratory stage, which has great
application potential.

Environmental conditions (like relative humidity and tempera-
ture) are also important factors, which can affect the morphology
of nanofibers (Cui et al., 2020). Generally, low relative humidity
will accelerate the evaporation rate of solvent in the jet, which is
conducive to the formation of thinner fibers. Temperature has
two opposite effects on the average fiber diameter. An increase
in temperature will accelerate the evaporation rate of the solvent,
limiting further stretching of the jet. Low temperature reduces the
viscosity of the solution and facilitates the formation of thinner
fibers. Therefore, it is necessary to adjust the temperature and
humidity of the environment reasonably to achieve the optimal
electrospinning conditions.

Electrospinning technology is divided into solution electrospin-
ning and melts electrospinning. Although both methods can pre-
pare nanofibers, their respective technologies have shortcomings.
The key problem is the lack of research on basic theory, so it is very
difficult to guide the corresponding spinning process. Many models
have been developed to simulate the jetting behavior of electro-
spinning. Hohman et al. (2001), Hohman et al. (2001) developed
the ‘‘slim body” theory in the direct jet region and the curved
region to consider the effects of viscoelastic force, surface tension
and electric field force, but the effect of solvent volatilization on
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fiber formation was not considered. For the stable section of the jet,
Feng (2002) simplifies the elongated body model of Newtonian
fluid without considering the effects of solvent evaporation. For
the unstable section of the jet, Fridrikh et al. (2003) analyzed Hoh-
man’s whipping jet dynamics equation to obtain the scaling law,
but did not consider the viscous force in the fiber diameter scaling
law, ignoring the fluid’s non-Newtonian fluid properties and sol-
vent volatilization and elasticity. Yarin et al. (2001) proposed the
Maxwell model to describe the viscoelastic properties of the jet
in the unstable section, considering the effects of solvent evapora-
tion and solidification, but did not analyze how RH affects the
volatilization and stress state.

In addition, recent studies have been conducted by Topuz et al.
(2021) focusing on the electrospinning parameters from practical
and theoretical perspective. In this study, they explored the effect
of the electrospinning parameters — namely polymer concentra-
tion, voltage, tip-to-collector distance and flow rate — and salt
addition on the diameter, morphology, and spinnability of electro-
spun PI nanofibers. They also used molecular dynamic simulations
to investigate the macromolecular mechanism of improved
spinnability and fiber morphology in the presence of an ammo-
nium salt. Therefore, the study of the basic theory of electrospin-
ning is not only challenging, but also very necessary.

The purpose of this article is to use the existing theories, put
them in the electrospinning jet and knead them together for anal-
ysis and research, and finally obtain the conversion control equa-
tion. The study mainly focuses on the research of the charged jet
in the small segment. The author first carried out mathematical
derivation, and then established the motion control equation of
the variable segment jet. The charged jet in the unstable section
is a relatively difficult part of theoretical research. The author com-
bined many other models in the research process, such as Maxwell
viscoelastic model, Voigt model and etc. The author’s theoretical
derivation will provide certain theoretical guidance for the devel-
opment of electrospinning technology.
2. Basic theory and assumptions

Firstly, only one commonly used solution is considered in the
research, and other cases are temporarily not considered. In elec-
trospinning, assuming that the liquid is weakly conductive, a
‘‘drain dielectric model” (Saville, 1997) is cited, the jet carries only
the charge on the surface, and any internal charge quickly enters
the surface. At the same time the fluid has sufficient dielectric to
maintain an electric field tangent to the surface of the jet, the vis-
coelastic behavior of the polymer solution is described by a linear
Maxwell rheological model, the electrospinning process begins
with the needle, only a single jet is analyzed, regardless of the
injection, which the flow splits into a secondary jet.
2.1. Mass conservation equation of jet

The mass conservation of the i-th cylinder in the unstable sec-
tion of the jet is as shown in Eq. (1).

DQi ¼ Q iþ1 � Qi ¼ � _mi
eva=q ð1Þ

where Qi is the volume flow of the i-th cylinder (m3=s), Qiþ1 is the
volume flow of the i-th cylinder and the volume flow of the i+1th

cylinder, DQi is the net volume flow of the i-th cylinder, _mi
evais

the evaporation rate of the i-th cylinder (g=s), q is the solution den-
sity (g=m3).

Ambient relative humidity (RH) is defined as the ratio of the
vapor pressure of water in air (P1) to the saturated vapor pressure
(Ps) of water at the same temperature and pressure. For a constant
2

temperature (T), the evaporation rate ( _meva) of the aqueous solu-
tion is proportional to (1 - RH) (Jayjock, 1994), as shown in Eq. (2).

_meva ¼ A � Ps � P1ð Þ � hw �Mw

R�T
ð2Þ

where _meva is the evaporation rate, A is the jet surface area, hw is the
mass transfer coefficient of the liquid volatilization (m=s), MW is the
relative molecular mass of the solution (g=mol), R� is the gas con-
stant (J= molKð Þ), T is the Kelvin unit temperature (K). Under con-
stant temperature conditions, the evaporation rate ( _meva) equation
is as shown in Eq. (3).

_meva ¼ Const:� hw � qA � 1� RHð Þ
RH ¼ P1

Ps

(
ð3Þ

hw can be described by an empirical relationship between dimen-
sionless (White and Corfield, 2006):

Sh ¼ dhw
Da

¼ f Re; Scð Þ
Sc ¼ va

Da

Re ¼ v � 2Rva

va ¼ ga
q

d ¼ 2R

8>>>>>>><
>>>>>>>:

ð4Þ

where: Da is the diffusion rate of water in air, d is the characteristic
length, Sh,Re, Scare Sherwood, Reynolds, Schmidt numbers respec-
tively, R is the cross-sectional radius of the jet, v is the axial jet
velocity, va is the air kinematic viscosity, ga is dynamic viscosity,
q is the solution density. For the surface of the electrospun jet, Yarin
et al. reported the following correlation of the Sherwood number,
and the Reynolds number is effective in the range of
1:0 6 Re 6 60:0 (Pr = 0.72). The Nusselt number for a cylinder mov-
ing parallel to the axis in air (Ziabicki, 1976) is as shown in Eq. (5).

Nu ¼ 0:42Re1=3 ð5Þ
The Nusselt number is a dimensionless heat transfer coefficient

that describes the rate of heat transfer. By setting the Prandtl num-
ber to, we derive the arbitrary value of the Prandtl number corre-
lation of Eq. (5) and obtain it as shown in Eq. (6).

Nu ¼ 0:495 � Re1
3Pr

1
2 ð6Þ

Similar to formula (6), the correlation of sherwood numbers is
used.

Sh ¼ 0:495 � Re1=3 � S1=2c ð7Þ
The mass transfer coefficient of the solution of the simultaneous

(4)–(7) solution is as shown in the formula (8).

hw ¼ 0:495Re1
3Sc

1
2Da

2R
¼ 0:31 D

1
2
av

1
3g

1
6
aR

�2
3q�1

6 ð8Þ

Lj is the length of a certain jet, in the micro-element state, Lc and Ljet
can forma right triangle, as shown in Fig. 2 (a), the air crossover speed
(vair) indicates the velocity of air passing through the surface of the
jet, and the physics of vair and v , the relationship is shown in Fig. 2
(b), in the unstable section of the jet the bending angle (h) represents
the half angle of the envelope cone of the unstable section. The helix
angle (a) shown in Fig. 2-1 is defined as the tangential direction of the
jet path and the direction of the horizontal axis. Angle s is the tangen-
tial direction of the jet path, s is the direction of the central axis of the
jet,Dz is the vertical distance of the jet, Lc is the approximate circum-
ference of the two segments of the jet, then the relationship between
Lc and H is obtained as shown in Eq. (9).

tana ¼ Dz
Lc

Lc ¼ 2pRb ¼ 2pHtanh

�
ð10Þ



Fig. 1. Single jet unstable section photo.

Fig. 2. (a) The triangular relationship between Lc , Dz, and Lj . (b) the relationship
between v and vair .

Fig. 3. (a) A rigid spring represents an elastic element; (b) a damper represents a
viscous element, (c) a Maxwell viscoelastic model.
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Based on Figs. 1–2b, the relationship between vair and v is as
shown in Eq. (11).

vair ¼ 1
2
v � sin2a ð11Þ

Substituting the formula (11) into the formula (8), the expres-
sion for obtaining the mass transfer coefficient of the solution is
as shown in the formulas (12) and (13).

hw ¼ 0:39D
1
2
av

1
3
airg

1
6
aR

�2
3q�1

6 � sin2að Þ�1
3 ð12Þ

hw ¼ Const:� v
1
3
airR

�2
3 � sin2að Þ - 1

3

Const: ¼ 0:39D
1
2
ag

1
6
aq�1

6

8<
: ð13Þ

The surface area of the i-th jet is as shown in Eq. (14).

Ai ¼ 2pRids ð14Þ
The expression of the volatilization rate substituted by (3) is as

shown in the formula (Yan, 2011).

_meva ¼ Const:� hw � R � 1� RHð Þds ð15Þ
Replace formula (13) with (15), that is,

_meva ¼ Const:� 1� RHð Þ
Z s

0
v

1
3
airR

1
3 sin2að Þ�1

3ds ð16Þ

If water is used as the solvent, the volatilization rate equation is
a function of relative humidity (RH), volume flow (Qi) of the i-th
segment, and jet cross-section radius (R), as shown in Eq. (17).
3

Qi ¼ pR2
i v

_meva ¼ Const:� 1� RHð Þ R s
0 Q

1
3
i R

1
3
i ds

(
ð17Þ

For solvents other than water, it is reasonable to assume that
the vapor pressure in the ambient air is zero due to ventilation
around the rotating device. Therefore, the volatilization rate
expression is as shown in the formula (18).

_meva ¼ Const:� Ps �
Z s

0
Q

1
3
i R

1
3ds ð18Þ

Equation (16) indicates that the volatilization of the jet surface
is inseparable from the air cross velocity, jet radius, length, and
helix angle, Eq. (17) shows that the volatilization of the solvent
and the relative humidity (RH) of the solution have a great influ-
ence on the fiber diameter, The solvent volatilization indicating
the surface of the whipped jet is a function of vapor pressure differ-
ential, jet flow, jet diameter and total jet length. The smaller the
radius, the higher the local jet velocity, and the higher the volu-
metric surface area, the higher the solvent evaporation rate is.

2.2. Viscoelastic behavior model and constitutive equation of jet

Electrospinning is a typical viscoelastic fluid jet process. The
viscoelastic force can significantly affect the stretching and deposi-
tion of the jet. The solution of the polymer solution has both vis-
cous and elastic properties in the initial stage of the stable and
unstable phases of the jet, in the deposition process, as the fiber
volatilizes and solidifies; it has the properties of an elastic solid.
Joseph describes the application of the Maxwell viscoelastic model
in viscoelastic fluids (Bird et al., 1987), which describes the
mechanical properties of viscoelastic bodies in a model formed
by different combinations of elastic and viscous elements. Springs
(elastic elements) are typically used to simulate elastic solids, and
dampers (viscous elements) mimic viscous liquids, i.e. the viscous
flow of macromolecular chains in fibrous materials.

For the elastic element as shown in Fig. 3 (a), the relationship
between stress and strain is as shown in Eq. (19).

r ¼ Ee ð19Þ
For the viscous element as shown in Fig. 3 (b), the relationship

between stress and strain is as shown in Eq. (20).

r ¼ g
de
dt

ð20Þ

where r is stress, E is spring stiffness coefficient, g is viscosity, e is
strain, de

dt is strain rate.

(1) The Maxwell model is a rheological model used to describe
viscoelastic fluids.



Fig. 4. Voigt model.

L. Zhiyong and L. Li Journal of King Saud University – Science 33 (2021) 101333
It is often used as a submodel to study multivariate combined
rheological models. The viscoelastic model is shown in Fig. 3 (c).
The model consists of a series of springs and dampers, where the
spring rate isE, the damper viscosity isg, the spring and damper
strains aree1, e2, the spring and damper stresses are r1, r2, respec-
tively. The relationship between stress and strain of the spring and
the damper in the case of series is as shown in Eq. (21).

r1 ¼ r2 ¼ r
r1 ¼ Ee1
r2 ¼ g @e2

@t

e ¼ e1 þ e2

8>>><
>>>:

ð21Þ

The function expression of the strain rate of the Maxwell model
is shown in Eq. (22).

@e
@t

¼ @e1
@t

þ @e2
@t

¼ @r=@tð Þ
E

þ r
g

ð22Þ

Then the viscoelastic constitutive equation of the Maxwell
model is shown in Eq. (23).

k @r
@t þ r ¼ g @e

@t

k ¼ g
E

(
ð23Þ

where k is the relaxation time, the stress is calculated for its integral
as a function of time as shown in Eq. (24).

r tð Þ ¼ E
Z t

�1
exp

� t � t0ð Þ
k

� �
@e t0ð Þ
@t0

dt0 ð24Þ

Equation (23) is the differential equation of stress and strain,
that is, the constitutive equation of Maxwell。

The viscoelastic constitutive equation of the jet linearized one-
dimension model is shown in Eq. (25).

e ¼ @/ x;tð Þ
@x

@/
@t ¼ u

@e
@t ¼ @u x;tð Þ

@x

k @r
@t þ r ¼ g @u

@x

q @u
@t ¼ @r

@x

8>>>>>>><
>>>>>>>:

ð25Þ

The wave equation of the jet is shown in Eq. (26).

g
qk

@2u
@x2

¼ @2u
@t2

þ 1
k
@u
@t

ð26Þ

@2u
@t2

þ 1
k

@u
@t ¼ c2 @2u

@x2

E ¼ g
k

c ¼ ffiffiffiffiffiffiffiffiffi
E=q

p
8>><
>>: ð27Þ

when @u
@x is the shear strain, c is the shear wave velocity. For incom-

pressible fluids, shear waves is considered.

(2) The Voigt model consists of a parallel connection of springs
and dampers

As shown in Figs. 2–4 the Voigt model can better describe the
creep phenomenon and elastic aftereffect of the fiber during the
jet process, and can be applied to the end of the unstable segment
of the jet to describe the volatilization and solidification of the
fiber. In the model the force of the spring element isEe, the force
of the viscous unit is g2

@e
@t and the total stress is added in parallel,

so the viscoelastic physical model of the end of the unstable sec-
tion of the jet is shown in Eq. (28).

r ¼ Eeþ g2
@e
@t

ð28Þ
4

The strain e and strain rate @e
@tof the model spring and damper

are designed to occur simultaneously, which is characterized by
‘‘elastic solid”. Therefore, the model is applied to the end of the
jet, and the solvent volatilizes with the movement of the jet and
finally solidifies into nanofiber.

The strain eand strain rate @e
@t of the model spring and damper

are designed to occur simultaneously, which is characterized by
‘‘elastic solid”. Therefore, the model is applied to the end of the
jet, and the solvent volatilizes with the movement of the jet and
finally solidifies into nanofiber.

The end of the unstable segment of the jet belongs to the vis-
coelastic fluid and is therefore simulated by the Jeffreys model.

The damper and Voigt model are connected in series, as
shown in Fig. 5. The total strain in the Jeffreys model is the
strain of the damper and the Voigt model. The sum of the stres-
ses of the two components is equal. In the Voigt model, not only
the elastic deformation but also the viscous deformation of the
damper, the Jeffreys model has viscoelastic properties. e and r
are related to t partial differential equations such as (29) And
(30) are shown.

@e
@t

¼ @e1
@t

þ @e2
@t

ð29Þ

r ¼ g1
@e1
@t

¼ Ee2 þ g2
@e2
@t

ð30Þ

The viscoelastic physical model of the end of the unstable seg-
ment of the jet obtained by the combination of Eqs. (29) and (30) is
shown in (31).

k1 @r
@t þ r ¼ g1

@e
@t þ k2 @2e

@t2

� �
k1 ¼ g1þg2

E

k2 ¼ g2
E

8>><
>>: ð31Þ

where k1 is the relaxation time and k2 is the delay time, i.e.

k1 @r
@t þ r ¼ g1

@u
@x þ k2 @2u

@x@t

h i
@e
@t ¼ @u

@x

8<
: ð32Þ
Fig. 5. Jeffreys model.
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3. Jet instability segment dynamics model

Based on the jet mass conservation equation and viscoelastic
model established in the previous section, the following is mainly
the force analysis of the unstable segment of the jet. The main
forces of the jet during the ‘‘whipping” process are viscous force,
applied electric field force, surface tension, air resistance and Grav-
ity, through theoretical calculations, analyzes the influence of each
force on the jet, and simplifies the force model. The electrospinning
jet motion model is shown in Figs. 1–6. The model unit is made up
of Maxwell model in series with each other, using spring to simu-
late elastic components, using a damper to represent the viscous
element, all the mass and charge of the unit are concentrated on
the sphere (approximate mass).

Use the subscript n to indicate the viscoelastic element section
(i,i + 1) and the subscript d to indicate the (i � 1,i) segment of the
viscoelastic element, as shown in Figs. 1–6. The distance between
adjacent viscoelastic elements is as shown in Eqs. (33) and (34)

lni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1 � xið Þ2 þ yiþ1 � yi

� 	2 þ ziþ1 � zið Þ2
q

ð33Þ
ldi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xi�1ð Þ2 þ yi � yi�1ð Þ2 þ zi � zi�1ð Þ2

q
ð34Þ

lni represents the distance between the calculation unit iand iþ 1, ldi
represents the distance between i� 1 and i. xi; yi; zið Þ represents the
position coordinate of the mass point i in the coordinate system.
The projection point perpendicularly projected on the deposition
plate directly below the needle is taken as the coordinate origin.
The distance between the needle and the deposition plate is h, the
coordinates of the needle are 0; 0;hð Þ, and the coordinates of the
particle on the deposition plate are xi; yi; 0ð Þ. The viscoelastic model
of the jet unit according to Eq. (23) is as shown in Eq. (35).

@rni
@t ¼ gni

kni

@lni
lni@t

� 1
kni
rni

@rdi
@t ¼ gdi

kdi

@ldi
ldi@t

� 1
kdi
rdi

kni ¼ gni
E

8>><
>>: ð35Þ

rni, gni and kni are the instantaneous normal stress, instanta-
neous dynamic viscosity and instantaneous relaxation time of the
i; iþ 1ð Þ-th segment of the jet unit respectively, rdi, gdi and kdi are
the instantaneous normal stress, instantaneous dynamic viscosity
Fig. 6. Viscoelastic model of jet instability section.

5

and instantaneous relaxation time of the i� 1; ið Þ-th segment.
The instantaneous mass fraction (cpni) of the i; iþ 1ð Þ-th segment,
the initial mass (Mp0) is shown in Eq. (36)

kni
k0

¼ cpni
cp0

gni ¼ 10Bcm � qni

cpni ¼ mp

mpþmsni

B � log10g0
cm
p0

Mp0 ¼ qf 0k0ds � cp0

8>>>>>>>><
>>>>>>>>:

ð36Þ

cpni represents the instantaneous mass fraction in the i; iþ 1ð Þ seg-
ment, cp0 represents the initial mass fraction, mp is the mass, m is
the exponent, k0 is the initial relaxation time, g0 is the initial
dynamic viscosity, B is the constant, Mp0 is the jet Initial quality
of the unit.

3.1. Viscoelastic force

Solvent volatilization is considered in the unstable section of
the jet

knif ni–k0f 0

f ni ¼ pR2
ni

8><
>: ð37Þ

where kni is the geometric stretch ratio,f ni is the cross-sectional
area. The local mass of the polymer in the jet is as shown in Eq. (38).

cpni ¼ cp0
k0f 0
knif ni

ð38Þ

Therefore, the volume relaxation factor (K) is the ratio of the
instantaneous volume of the jet to the initial volume, as shown
in Eq. (39).

Kni ¼ Vni

V0
;Kdi ¼ Vdi

V0
ð39Þ

Then, in the i� 1; ið Þsegment and the i; iþ 1ð Þ segment of the jet
unit, the instantaneous radii Rni and Rdi are as shown in Eq. (40)

R2
ni ¼ R2

0K0
l0
lni

R2
di ¼ R2

0K0
l0
ldi

8<
: ð40Þ

where R0,l0 are the initial radius and initial length of the jet respec-
tively, lni, ldi are the length of the i� 1; ið Þ segment and the i; iþ 1ð Þ
segment respectively, then the viscoelastic force applied to the par-
ticle i� 1 at the particle i and the viscoelastic force applied to the
particle iþ 1by the particle i As shown in Eq. (41).

F
!

vdi ¼ pR2
0l0

Kdigdi
ldi

r!i�1� r!i
ri�1�rij j

� �

F
!

vni ¼ pR2
0l0

Knigni
lni

r!iþ1� r!i

riþ1�rij j
� �

8>>><
>>>:

ð41Þ

r!i ¼ xi i
!þ yi j

!þ zi k
!

r!i�1 ¼ xi�1 i
!þ yi�1 j

!þ zi�1 k
!

r!iþ1 ¼ xiþ1 i
!þ yiþ1 j

!þ ziþ1 k
!

8>><
>>: ð42Þ

Then, for the mass pointi, only the viscoelastic force of the adja-
cent mass point iþ 1 and the mass point i� 1, the viscoelastic force
acting on the mass point iis as shown in the formula (43).

F
!

vi ¼ pR2
0l0

Kdigdi

ldi

r!i�1 � r!i

ri�1 � rij j þ Knigni

lni

r!iþ1 � r!i

riþ1 � rij j

 !
ð43Þ
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3.2. Surface tension

Surface tension is the resistance variable that the liquid itself
produces in order to maintain its own morphological deformation,
which hinders the change of the surface of the liquid. In the process
of electrospinning, surface tension is one of the main forces that
cause the jet to twist and rotate. Polymer liquid jet. The stretching
increases the surface area and increases the surface energy Wnið Þ.
For the particle i, the surface tensions i� 1; ið Þ and i; iþ 1ð Þ of the
F
!

sni and F
!

sdi segments are simultaneously applied, and the direc-
tion of the surface tension is the same as the axial direction of the
segment. Then the i; iþ 1ð Þ and i� 1; ið Þ segments are correlated.
The surface energy is as shown in Eq. (44).

Wni ¼ paRnilni
Wdi ¼ paRdildi

�
ð44Þ

Equation (40) is substituted into Eq. (44) to obtain the surface
energy expression as shown in (45).

Wni ¼ paR0l
1=2
0 K0lnið Þ1=2

Wdi ¼ paR0l
1=2
0 K0ldið Þ1=2

(
ð45Þ

Where a is the surface tension coefficient of the polymer solu-
tion. The surface tension is the derivative of the surface energy
Wnið Þ versus the length (lni). According to the expression of the
relationship between surface tension and surface energy the sur-

face tensions F
!

niand F
!

di are as shown in Eq. (46)

F
!

ni ¼ dWni
dlni

r!iþ1� r!i

riþ1�rij j ¼ paR0 l
1
2
0

2
Kni
lni

� �1
2 � r!iþ1� r!i

riþ1�rij j

F
!

di ¼ dWdi
dldi

r!i�1� r!i
ri�1�rij j ¼ paR0 l

1
2
0

2
Kdi
ldi

� �1
2 � r!i�1� r!i

ri�1�rij j

8>>><
>>>:

ð46Þ

In addition to the surface tension parallel to the cross section
and perpendicular to the contour, the additional surface tension
due to the bending of the charged liquid, and the line of action
points to the center of the circle along the radial direction of the
circle corresponding to the jet micro-element. Section i� 1; ið Þ
and i; iþ 1ð Þ The radius of curvature corresponding to the segments

is approximately equal, and the additional surface tension F
!

i is as
shown in Eq. (47).

F
!

i ¼ paR0l
1
2
0

2ai
Kdi

ldi

� �1
2

aisin
�1 ldi

2ai
þ Kni

lni

� �1
2

aisin
�1 lni

2ai

" #
rc � ri
rc � rij j ð47Þ

Where ai is the radius of curvature corresponding to
the i� 1; ið Þ,ði; iþ 1Þjet micro-element segment, Cis the center of
the curvature circle,rc is the vector radius of the center of the cir-

cle. Therefore, the surface tension F
!

siof the particle i is as shown
in Eq. (48).

F
!

si ¼ F
!

niþ F
!

diþ F
!

i

¼paR0l
1
2
0

2
Kni

lni

� �1
2

� r
!

iþ1� r!i

riþ1� rij j þ
(

Kdi

ldi

� �1
2

sin�1 ldi
2ai

þ Kni

lni

� �1
2

sin�1 lni
2ai

" #

� rc� ri
rc� rij jþ

Kdi

ldi

� �1
2

� r
!

i�1� r!i

ri�1� rij j

)

ð48Þ
3.3. Electric field force

The electric field force is the most important force for the for-
mation of electrospun fibers. According to the electrical principle,
the electric field force of charged particles in the electric field is
6

F ¼ Eq. In the electrospinning experiment, the electric field
strength satisfies the tip-plate electric field distribution model
(Coelho and Debeau, 1971). According to this model, the electric
field distribution between the needle and the deposition plate is
shown in Figs. 2–7. When the voltage applied between the needle
and the deposition plate isV , Coelho (Zeng et al., 2005) analyzed
the expression of the potential intensity as shown in Eq. (49)

V 1ð Þ ¼ Clntan
1
2
þ p

4

� �
ð49Þ

The corresponding electric field strength expression is shown in
Eq. (50).

E 1; dð Þ ¼ C

d0cos1 ch2d�sin21ð Þ1=2
C ¼ V

ln 2 h=d0ð Þ1=2½ �

8><
>: ð50Þ

The electric field strength at each point on the extension line of
the polymer needle tip can be simplified to

E zð Þ ¼ h � C
z 2h� zð Þ þ h� zð Þd0½ � ð51Þ

Where 1 is the equipotential elliptical polar angle of the equipo-
tential surface, d is the polar angle of the co-hyperbolic curve of the
equipotential surface, zis the distance between the polymer needle
and the calculated point, and h is the distance from the needle to
the deposition plate,r0 is the diameter of the needle. It can be seen
from Eqs. (49) and (50) that the electric field strength increases
with the increase of the applied voltage and decreases rapidly as
the distance between the needle and the deposition plate
increases.

At that time, the electric field strength at the position of the
deposition plate was 1 ¼ 0.

E ¼ V

d0ln½2ðh=d0Þ1=2�
ð52Þ

In the viscous unit, the mass of the mass point ise, and the elec-
tric field force that the particle receives in the electric field is

FEi ¼ �e
V

d0ln½2ðh=d0Þ1=2�
k
! ð53Þ

Where k
!

represents the unit vector along the z direction, the
direction is vertically upward along the deposition plate, similarly

i
!
, j
!

is the unit vector of x, y direction.
3.4 Coulomb force
Coulomb force is the interaction between two stationary point

charges in a vacuum as shown in Eq. (54)

F ¼ ke
q1 �q2
l2

ke ¼ 1
4pe0

e0 ¼ 8:854� 10�12F �m�1

8>><
>>: ð54Þ

where q1, q2 are the two-point charge, l is the distance between two
points, ke is the Coulomb force constant, and e0 is the vacuum per-
mittivity. Studying the Coulomb force repulsive force on the unsta-
ble jet surface, using Maxwell model, the mass point i is subject to
other the Coulomb force of each particle is combined, and the direc-
tion changes with position and time, so it is calculated by the vector
superposition method of Coulomb force.

F
!¼ 1

4pe0

q1 � q2 � r!1 � r!2

� �
r!1 � r!2



 

3 ð55Þ

Since the charge property on the surface of the jet is the same,
assuming that the mass of the mass i is qi, the particle i is simulta-
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neously subjected to the Coulomb force vector of all the particles
on the jet to the mass i as shown in Eq. (56).

F
!

Ci ¼ qi

4pe0er

Xn
j ¼ 1
j–i

qj

Rij
i
!xi � xj

Rij
þ j
!yi � yj

Rij
þ k
!zi � zj

Rij

� �
ð56Þ

Rij ¼ ½ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2�
1=2 ð57Þ

where i, j, k are theunit vectors of the x, y, and z axes, respectively, er is
the solution dielectric constant, where n represents the number of
elastic units contained in thepolymer jet. According to thedeposition
plate particle model assumption, in the polymer When each micro-
element on the solution jet is on the deposition plate, all the charges
disappear, so the deposited particles on the deposition plate have no
effect on the undeposited particles without Coulomb force.

3.4. 3.5 air resistance

The frictional resistance between the charged jet and the sur-
rounding gas is divided into frictional resistance and pressure
resistance. The mass mi of the mass point i is

mi ¼ qs

2
ldi þ lnið Þ ð58Þ

Where qs is the unit density of the fiber, and the resistance FDi

received by the mass point i is provided by the i� 1; ið Þ and i; iþ 1ð Þ
segments of the jet micro-element, as shown in Eq. (59).

FDi ¼ 1
2 FDdi þ FDnið Þ

FDdi ¼ Ffdi þ Fpdi

FDni ¼ Ffni þ Fpni

8><
>: ð59Þ

where FDi is the resistance of the mass i, FDdi is the resistance to the
i� 1; ið Þ segment, FDni is the resistance to the i; iþ 1ð Þ segment, Ff is
the frictional resistance,Fp is the pressure resistance. Calculate the
resistance of the fiber section, between the air and the fiber. The
local relative velocity is decomposed into two components, axial
and normal. Therefore, the frictional resistance Ff and the pressure
resistance Fp can be expressed as

Ffdi ¼ 1
2CfqairAtdiv2

ti

Fpdi ¼ 1
2CpqairAmdiv2

ni

Atdi ¼ 2pRdildi
Amdi ¼ 2Rdildi

8>>><
>>>:

ð60Þ

Where Cf is the frictional resistance coefficient, Cp is the pres-
sure resistance coefficient, Atdi is the surface area of the i� 1; ið Þ
segment, Amdi is the maximum cross-sectional area of the
i� 1; ið Þ segment, qair is the air density, vti is the axial relative
velocity of the particle, vni is the normal velocity. The relative
speed at i is as shown in equation (61).

v i ¼ vair � v
v i ¼ v ti þ vni

�
ð61Þ

where vair is the air velocity, v is the jet velocity, vi is the relative
velocity of the particle. Mott (Mott, 1990:645.) describes the drag
coefficient in detail, and the frictional drag coefficient is a function
of the Reynolds number Rel, starting from the relationship between
the pressure drag coefficient and the Reynolds number Rel, giving
the Reynolds number of the cylinder whose axis is perpendicular
to the direction of motion

Rel ¼ qairvti ldi
va

Red ¼ 2qairvniRdi
va

(
ð62Þ
7

where va is the aerodynamic viscosity, in laminar flow, the fric-
tional resistance coefficient and the pressure resistance coefficient
are Cf ¼ 24

Rel
andCp ¼ 24

Red
, respectively.

3.5. Gravity

The gravity received by the particle is shown in Eq. (63).

Gi ¼ mig ¼ qs

2
ldi þ lnið Þg ð63Þ
4. Control equation

According to Newton’s second law, the force equation of the
particle i can be obtained as follow

mi
d2 r!i
dt2

¼ mi
dv!i
dt ¼P F

d r!i
dt ¼ v!i

8><
>: ð64Þ

The main forces on the unstable section of the jet are: viscoelas-
tic force, surface tension, electric field force, Coulomb force, resis-
tance, gravity. Then the force received by the micro-body in the
i; iþ 1ð Þ segment is substituted (64) to obtain the viscoelastic ele-
ment, Grande equation

mi
d2 r!i

dt2
¼ F

!
vi þ F

!
si þ F

!
Ei þ F

!
Ci - F

!
Di þ G

!
i ð65Þ

The Euler equation for air is (Zeng et al., 2005)

@qair
@t þr � qairvairð Þ ¼ 0

@
@t qairvairð Þ þ r � qairvairvairð Þ ¼ �rpþr � sþ qair f

!�Pi F
!

Di

(

ð66Þ
where p is the pressure, qair is the air density, s is the shear stress

tensor, f
!

is the volume force per unit mass, the summationP
i F
!

Di represents the effect of the fiber on the air. The above mass
conservation equation (1), the solvent’s volatilization equation (17),
viscoelastic constitutive equation (25), equation of motion (63),
Lagrangian equation (65), Euler equation (66) constitute a coupled
governing equation.

5. Conclusion

The purpose of this article is to use the existing theories to
knead them together in the unstable jet of electrospinning, conduct
analysis and research, and finally obtain the coupled control equa-
tion. Several findings are listed below.

(1) In this paper the mass transfer coefficient equation of liquid
and the evaporation rate equation of jet under different solvents
are derived. The one-dimension model of jet viscoelastic lineariza-
tion is established.

(2) For the first time, the Jeffrey’s model is used to describe the
jet as both viscous and elastic at the end of the unstable section of
the jet. The Voigt model describes the creep phenomenon and the
elastic aftereffect of the unstable section of the jet, which will be
used to study the structural performance of the unstable section
of the jet.

(3) Stress analysis of the unstable section of the jet, theoretical
calculation of viscoelastic force, surface tension, Coulomb force,
electric field force, air resistance, and gravity based on the Maxwell
viscoelastic model to establish the coupling of the unstable seg-
ment of the jet. The governing equations combined with the con-
clusion (1) will be numerically simulated in the next step of jet
formation.
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