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A B S T R A C T

This study introduces an innovative model, namely IBOA-AdaBoost-RVM, which leverages the Improved But-
terfly Optimization Algorithm (IBOA), Adaptive Boosting (AdaBoost), and Relevance Vector Machine (RVM).
This model is used to solve the problem of low precision of wind power prediction. Initially, normalization is
applied to reduce the influence of varying data dimensions. Subsequently, input variables are determined
through the Pearson correlation method. Lastly, the efficacy of the introduced model is assessed across four
distinct seasonal monthly data sets. The observed outcomes indicate that the proposed model outperforms other
models in terms of evaluation metrics, with the average R2, RMSE, MAE, and MAPE values across the four
datasets being 0.954, 10.403, 7.032, and 0.645, respectively, show that the proposed method has potential in the
field of wind power prediction.

1. Introduction

The surge in worldwide economic growth coupled with a steady
increase in population figures has led to a growing need for energy,
historically satisfied by the consumption of fossil fuels (He et al., 2024a).
However, the widespread utilization of conventional energy sources in
recent years has engendered increasingly severe issues such as envi-
ronmental degradation and climate change (Abou et al., 2023). Conse-
quently, promoting the development of clean energy has become a
global consensus. Clean energy refers to forms of energy production and
utilization that generate minimal to no pollutants, with wind energy
being a notable example. Owing to its renewable nature, environmental
friendliness, and abundant availability, the advancement of wind power
has garnered significant attention worldwide (Tan et al., 2024).

Numerous researchers have explored various methodologies to
strengthen the exactness of short-term wind power prediction, including
physical, statistical, and artificial intelligence methods (Carpinone et al.,
2015). While physical prediction methods necessitate solving complex
partial differential equations, rendering them computationally intensive
(Ye et al., 2017), statistical methods entail simpler modeling through

statistical regression fitting of historical data but exhibit significant
prediction errors when confronted with nonlinear and non-stationary
wind power series (Sopeña et al., 2023). Artificial intelligence, partic-
ularly deep learning methods rooted in machine learning, has arisen as a
promising avenue [Sait et al., 2024a]. Techniques like Convolutional
Neural Networks (CNN) [Sait et al., 2024b; Ma et al., 2024] and
Recurrent Neural Networks (RNN) [Mehta et al., 2024; Yuan et al.,
2024a] within deep learning have gained extensive usage in the field of
short-term wind energy forecasting.

In the field of machine learning, bias-variance tradeoff is a significant
concept to explain the generalization effectiveness of an algorithm
(Doroudi and Rastegar, 2023). The emergence of ensemble learning
makes it possible to guarantee good generalization performance on
complex monitoring data of wind power. As one of the popular ensemble
learning algorithms, the AdaBoost algorithm stands out for its capacity
to mitigate bias and variance by combining multiple weak learners,
thereby improving the model’s capacity for generalization. The ada-
Boost method has been commonly applied in various fields and has
shown excellent capabilities in classification and regression problems
(Zounemat-Kermani et al., 2021). An et al. (2021) introduced a wind
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power forecasting model (AdaBoost-PSO-ELM), and verified it through
the data of wind turbines in Turkey. The findings from the experiment
indicate that AdaBoost-PSO-ELM achieves a superior accuracy rate. Ren
et al. (2022) introduced an improved genetic algorithm-assisted Ada-
Boost double-layer learner (GA-ADA-RF) for predicting the oil temper-
ature of tunnel boring machines, and the experiment revealed that the
GA-ADA-RF has better predictive capability.

While the aforementioned evidence highlights the efficacy of the
AdaBoost algorithm, it also underscores its inherent limitations, notably
susceptibility to overfitting and its constrained capability to address
nonlinear challenges (Vincent and Duraipandian, 2024). Hence, this
study introduces the Relevance Vector Machine (RVM) as a solution to
mitigate these drawbacks. RVM, a variant of SVM, exhibits inherent
sparsity, thereby mitigating overfitting during training (Qiu et al.,
2024). Furthermore, RVM’s utilization of kernel functions enables
effective handling of nonlinear problems, thereby compensating for
AdaBoost’s deficiencies.

Given the AdaBoost algorithm’s capacity to diminish both variance
and bias while enhancing model generalization, coupled with the
intrinsic strengths of RVM that can compensate for AdaBoost’s limita-
tions, this research integrates RVM as a weak learner within the Ada-
Boost framework to advance model efficacy. Moreover, the selection of
hyperparameters holds paramount importance in influencing the per-
formance of machine learning algorithms, with an optimal combination
significantly enhancing model performance. Swarm intelligence opti-
mization algorithms, simulating population hunting behaviors in nature,
demonstrate remarkable prowess in optimizing hyperparameters and
are frequently employed for this purpose (El-Kenawy et al., 2024a; Yuan
et al., 2023a; Abdollahzadeh et al., 2024; Yuan et al., 2024b). However,
swarm intelligence algorithms frequently suffer from the drawbacks of a

skewed distribution in the initial population and a tendency to converge
to local optima rather than global solutions (El-Kenawy et al., 2024b;
Duzgun et al., 2024; Chu et al., 2024). Therefore, this study proposes an
improved butterfly optimization algorithm to determine the best com-
bination of hyperparameters for the prediction model.

2. Related algorithms

2.1. Adaptive boosting (AdaBoost)

AdaBoost is a renowned ensemble algorithm (Freund and Schapire,
1997). During each iteration, AdaBoost adjusts the weight of individual
samples, assigning higher weights to previously misclassified samples to
emphasize their importance in subsequent iterations. Consequently, the
new learner focuses more on these challenging instances. Ultimately,
AdaBoost combines these learners through weighted voting to yield
predicted sample values, thereby enhancing the overall learner’s
performance.

2.2. Relevance vector machine (RVM)

RVM, a machine learning algorithm rooted in Bayesian theory
(Tipping, 2001), serves as a sparse probability model utilized for both
classification and regression analyses. Notably, the sparsity of the RVM
algorithm is a key characteristic: during training, most weights tend
towards infinity, effectively nullifying the contribution of corresponding
features to the model. Consequently, RVM automatically identifies and
emphasizes the most crucial features for the prediction task while dis-
regarding irrelevant ones.

Fig. 1. IBOA frame diagram.
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2.3. Butterfly optimization algorithm (BOA)

Butterfly optimization algorithm (BOA) (Arora and Singh, 2019) is a
meta-heuristic algorithm for global optimization inspired by natural
heuristics, initially introduced by Arora and Singh in 2019. It emulates
the cooperative movement of butterflies towards a food source, a
behavior observed in nature. Butterflies navigate by receiving, sensing,
and analyzing odors in the air to locate potential food sources or mates.

3. The proposed algorithm (IBOA-AdaBoost-RVM)

3.1. Improved butterfly optimization algorithm (IBOA)

Chaotic mapping, characterized by attributes such as good ergo-
dicity, non-repeatability, unpredictability, and non-periodicity, is
leveraged to enrich population diversity and enhance algorithm per-
formance (Peng et al., 2023; Xing et al., 2024). In the original butterfly
optimization algorithm, butterfly diversity suffers due to random
initialization of the population. Therefore, this study introduces Tent
chaotic mapping to uniformly distribute the butterfly population and
broaden its search range. It is defined as:

Fig. 2. AdaBoost-RVM frame diagram.

Fig. 3. IBOA-AdaBoost-RVM prediction flow chart.
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xn+1 = f(xn) =
{

xn/a, xn ∈ [0, a)
(1 − xn)/(1 − a), xn ∈ [a,1) (1)

Where a ∈ (0,1).
The search step length of a single butterfly is not set in the original

BOA algorithm. During the operation of the algorithm, due to the high
degree of freedom of individuals, the search step length is not limited,
resulting in fast search speed in the early stage of the search, low search
accuracy in the late stage, and easy-to-fall into the local optimum or far
from the global optimum. To avoid the restriction of butterfly individual
search step size due to this situation, this study proposes a weight co-
efficient that adaptively adjusts according to individual fitness value,
and the formula is as follows:

ωi =
Fb − Fw
Fi − Fw

(2)

where, Fi is the current individual fitness value, Fb and Fw are the current
global optimal and worst fitness values, respectively.

If the fitness value of the current individual is nearly equivalent to
the worst global fitness, the higher the weight coefficient assigned to
that individual, the greater the step size they will take in their move-
ment, aimed at avoiding entrapment in a local optimum. If the current
individual fitness value is much different from the global worst value,
that is, it is nearer to the global optimal value, then the weight coeffi-
cient of the individual is smaller, and the smaller moving step size en-
sures the high-precision search of the population in the later stage of the
algorithm, and avoids the individual skipping the global optimal value,
which reduces the performance of the algorithm.

Furthermore, following the “No free lunch” theorem (Rashki and
Faes, 2023; Yuan et al., 2023b), a single algorithm cannot be fully
applicable to all problems, so this work introduces a sine–cosine algo-
rithm to improve the search phase of butterfly optimization algorithm.
Combined with the adaptive weight coefficient, the formula of the
global search stage and the local search stage of butterfly optimization
algorithm can be updated as:

xt+1
i =

{
ωi×[xti + r1 × sin(r2)×|r3 × g* − xti |], r4 < 0.5
ωi×[xti + r1 × cos(r2)×|r3 × g* − xti |], r4 > 0.5

(3)

xt+1
i =

{
ωi×[xti + r1 × sin(r2)×|r3 × xtj − xtk|], r4 < 0.5
ωi×[xti + r1 × cos(r2)×|r3 × xtj − xtk|], r4 > 0.5

(4)

where r1 = a× (1 − t/tmax), a is a constant and the value is 2, t is the
current number of iterations, tmax is the maximum number of iterations,
r2 is the random number between 0 and 2 π, r3 is the random number
between 0 and 2, and r4 is the random number between 0 and 1. The
flow chart of IBOA is shown in Fig. 1.

3.2. Adaptive boosting based on relevance vector machine (AdaBoost-
RVM)

Traditional AdaBoost uses decision trees as weak learners (Zhan
et al., 2024). However, decision tree models are susceptible to over-
fitting, diminishing the model’s generalization capacity, and they have

Fig. 4. The correlation between various characteristics and actual power generation.

Table 1
Partial parameters and abbreviations in the heat map.

Abbreviations Parameters

ws10 (m/s) Wind tower 10 m wind speed (m/s)
ws30 (m/s) Wind tower 30 m wind speed (m/s)
ws50 (m/s) Wind tower 50 m wind speed (m/s)
ws70 (m/s) Wind tower 70 m wind speed (m/s)
wsH (m/s) Hub height Wind speed (m/s)
wd10 (◦) Wind tower 10 m Wind direction (◦)
wd30 (◦) Wind tower 30 m Wind direction (◦)
wd50 (◦) Wind tower 50 m Wind direction (◦)
wd70 (◦) Wind tower 70 m Wind direction (◦)
wdH (◦) Hub height Wind direction (◦)

Table 2
Evaluation indicators of the forecast results of different models in March.

Mdoel1 Model2 Model3 Model4 Model5 Model6

R2 0.971 0.953 0.944 0.918 0.950 0.960
RMSE 11.060 14.167 15.366 18.604 14.437 13.076
MAE 7.047 9.300 10.197 13.479 10.341 8.821
MAPE 0.418 0.505 0.426 0.897 0.920 0.525
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limited efficacy in addressing nonlinear problems (He et al., 2024b). The
inherent sparsity of the RVM model aids in enhancing the model’s
generalization ability and mitigating the risk of overfitting. Addition-
ally, RVM can be extended to handle nonlinear problems through kernel
techniques, enabling it to tackle more intricate datasets (Zhang et al.,
2023). Hence, this study capitalizes on the strengths of both RVM and
AdaBoost by utilizing RVM as a weak learner within the AdaBoost
framework. The model structure is shown in Fig. 2.

3.3. The IBOA-AdaBoost-RVM prediction model

To sum up, the flow of the IBOA-AdaBoost-RVMmodel introduced in
this work is shown in Fig. 3.

Step 1: Acquire the power production data of the wind farm, and
normalize the data to prepare for the subsequent research.

Step 2: Calculate the Pearson correlation coefficient of each input
and output variable, and select the appropriate input variable.

Step 3: Weather and power data are used for short-term wind power
prediction, and the improved butterfly optimization algorithm opti-
mizes the model’s hyperparameters.

Step 4: Output final model prediction results.

4. Experimental simulation and result discussion

4.1. Data description

The dataset comprises measurements taken at a frequency of 15 min.
The division between the training and test sets adheres to a ratio of 7:3.
The input variables encompass measurements of wind speed, wind di-
rection, temperature, air pressure, and humidity. The validity and reli-
ability of the model are verified by real wind power data. Moreover, to
alleviate the impact stemming from the differing scales of the data and
augment the precision of the prediction outcomes, this study imple-
ments normalization (Hu et al., 2018) as part of the data preprocessing
stage.

xʹ
i =

xi − xmin

xmax − xmin
(5)

where, xí represents the normalized data, xi represents the original data,
xmin and xmax represent the minimum and maximum values of the
original data, respectively.

4.2. Input feature selection

The Pearson method is a common way to measure the degree of
correlation between two variables (Zhao et al., 2024). From Fig. 4 (refer
to Table 1 for details), it is evident that characteristics highly correlated
with actual power generation primarily include wind speed and wind
direction attributes. Consequently, wind speed and direction charac-
teristics (excluding the 50-meter wind direction of the wind tower) are
chosen as input features for the model in this study.

Fig. 5. Prediction curves of different models in March.

Table 3
Evaluation indicators of the forecast results of different models in June.

Mdoel1 Model2 Model3 Model4 Model5 Model6

R2 0.962 0.943 0.902 0.900 0.940 0.948
RMSE 7.905 9.625 12.612 12.771 9.878 9.254
MAE 5.503 6.543 8.178 9.515 7.160 6.354
MAPE 0.776 0.884 1.768 1.668 1.006 0.906
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4.3. Evaluation indicators

This article selects the coefficient of determination (R2), root mean
square error (RMSE), mean absolute percentage error (MAPE), and mean
absolute percentage error (MAE) to evaluate the accuracy of the model’s
prediction results.

R2 = 1 −
∑n

i=1
(
yʹ
i − yi

)2

∑n
i=1(yi − y)2

(6)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yʹ
i − yi

)2

√

(7)

MAPE =
1
n
∑n

i=1
|
yʹ
i − yi
yi

| × 100% (8)

MAE =
1
n
∑n

i=1
|yʹ

i − yi| (9)

where, n is the total number of samples, ýi is the predicted wind power
value, yi is the actual wind power value, y is the average of the actual

wind power values.

4.4. Experimental comparison

4.4.1. Experimental comparison in March
Table 2 displays the results of the four evaluation indicators for the

introduced model and other comparative models using the spring March
dataset. Furthermore, Model1 to Model6 represent the performance of
the following models: IBOA-AdaBoost-RVM, BOA-AdaBoost-RVM,
AdaBoost-RF, AdaBoost-CNN, AdaBoost-BiLSTM, and AdaBoost-CNN-
BiLSTM, respectively.

Compared with BOA-AdaBoost-RVM, the IBOA-AdaBoost-RVM
model exhibits a 1.8 % increase in the R2 value, a 21.9 % decrease in
RMSE, a 24.2 % decrease in MAE, and a 17.2 % decrease in MAPE.
Furthermore, employing Random Forest (RF), Convolutional Neural
Network (CNN), Bidirectional Long Short-Term Memory Neural
Network (BiLSTM), etc., as weak learners for AdaBoost results in weaker
performance across all four-evaluation metrics compared to AdaBoost-
RVM. From Fig. 5, it is evident that all six models demonstrate satis-
factory fitting results for wind power data in March of spring. Never-
theless, upon closer inspection of the locally enlarged graph, it becomes
apparent that the IBOA-AdaBoost-RVM model exhibits the most favor-
able fitting effect, closely aligning with the actual wind power values.

4.4.2. Experimental comparison in June
Table 3 shows four evaluation indicators of different models on the

summer June data set. The four evaluation indicators of the introduced
method outperformed the comparative models, with the R2 values
increasing by 2.0 %, 6.7 %, 6.9 %, 2.3 %, and 1.5 %, respectively.
Additionally, the RMSE values decreased by 17.9 %, 37.3 %, 38.1 %,
19.9 %, and 14.6 %, while theMAE values decreased by 15.9 %, 32.7 %,

Fig. 6. Prediction curves of different models in June.

Table 4
Evaluation indicators of the forecast results of different models in September.

Mdoel1 Model2 Model3 Model4 Model5 Model6

R2 0.961 0.926 0.915 0.909 0.932 0.931
RMSE 8.069 11.141 11.972 12.370 10.680 10.749
MAE 4.722 5.974 6.616 7.452 6.413 6.877
MAPE 0.948 0.726 0.827 1.735 1.420 1.512
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42.2 %, 23.1 %, and 13.4 %, and theMAPE values decreased by 12.2 %,
56.1 %, 53.5 %, 22.9 %, and 14.3 %, respectively. Fig. 6 provides further
support for the proposed improvement strategy and demonstrates the
accuracy of the proposed model.

4.4.3. Experimental comparison in September
As depicted in Table 4, on the autumn September dataset, the R2,

RMSE, andMAE values of IBOA-AdaBoost-RVM outperform those of the
comparison model. Although the proposed method did not achieve
optimal results for all four-evaluation metrics, BOA-AdaBoost-RVM
obtained the optimal MAPE value. This outcome further substantiates
the feasibility of utilizing RVM as a weak learner for AdaBoost in this
study. Moreover, upon examining the image in Fig. 7, it was observed
that the introduced method can better capture the trend of changes in
true values.

4.4.4. Experimental comparison in December
As can be seen from Table5, among the six models, only the R2 values

of IBOA-AdaBoost-RVM and BOA-AdaBoost-RVM exceed 0.9, with BOA-
AdaBoost-RVM reaching 0.92. When compared to AdaBoost-RF, the
proposed method demonstrates a 21.5 % increase in R2 value, a 42.6 %
reduction in RMSE, a 36.7 % decrease inMAE, and a 45.9 % decrease in

MAPE. This further underscore the advanced nature of the method
proposed in this study. Fig. 8 provides additional evidence supporting
this conclusion.

5. Conclusions

In this study, an innovative model, named IBOA-AdaBoost-RVM, is
proposed. The performance of the IBOA-AdaBoost-RVM is verified by
four distinct seasonal monthly data sets. Results demonstrate that IBOA-
AdaBoost-RVM achieves high forecasting accuracy. The model’s pre-
diction results across four different seasons and months consistently
yield optimal outcomes, indicative of its robust generalization ability
and applicability.

In the future work, data from different geographic locations are
considered and compared with more advanced algorithms to further
validate the model’s excellence. In addition, future studies need to
consider applying the model to different forms of renewable energy,
such as solar energy, hydrogen energy, and so on.
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Fig. 7. Prediction curves of different models in September.

Table 5
Evaluation indicators of the forecast results of different models in December.

Mdoel1 Model2 Model3 Model4 Model5 Model6

R2 0.920 0.910 0.757 0.853 0.891 0.819
RMSE 14.576 15.383 25.410 19.763 16.988 21.897
MAE 10.854 11.371 17.140 14.976 12.811 16.259
MAPE 0.438 0.499 0.811 0.585 0.521 0.619
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