
Journal of King Saud University – Science 34 (2022) 101714
Contents lists available at ScienceDirect

Journal of King Saud University – Science

journal homepage: www.sciencedirect .com
Original article
A new flexible extension of the Lindley distribution with applications
https://doi.org/10.1016/j.jksus.2021.101714
1018-3647/� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: drkayid@ksu.edu.sa (M. Kayid).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Adel Alrasheedi a, Abdulrahman Abouammoh a, Mohamed Kayid a,⇑
aDepartment of Statistics and Operations Research, College of Science, King Saud University, Riyadh, Saudi Arabia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 September 2021
Revised 9 November 2021
Accepted 10 November 2021
Available online 17 November 2021

Mathematics Subject Classification::
62N01
62N05

Keywords:
Mixture models
Gamma distribution
Failure rate
Mean residual life
Mean inactivity time
A new general family of distributions based on the Lindley model was introduced. Some properties of the
proposed model, including moments, quantiles, and order statistics are presented. In addition, some reli-
ability measures of this model were investigated. The parameters were estimated using the moments and
the maximum likelihood methods for complete and right-censored data. Then, the behavior of the max-
imum likelihood estimator was investigated in a simulation study. Finally, the model was applied to the
analysis of two data sets to demonstrate its usefulness.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, there have been many papers dealing with the
Lindley distribution and its applications; see Lindley (1958),
Ghitany et al. (2008), Bakouch et al. (2012), Al-Mutairi et al.
(2013) and Cakmakyapan and Kadilar (2017). Many authors have
introduced some generalizations and/or extensions to the Lindley
model by increasing either the number of underlying parameters
or the number of mixed density functions, see for example
(Ghitany et al., 2011, Al-Babtain et al., 2014, Abouammoh et al.,
2015, Cordeiro et al., 2018, Abouammohm et al., 2020). The main
objective of these works is to introduce more flexible probability
distributions to model different types of lifetime variables in real
applications. The Lindley model is defined by its probability den-
sity function (PDF) as
f xð Þ ¼ h2

1þ h
1þ xð Þe�hx; h > 0; x P 0;

which is a mixture of the gamma distribution with shape parameter
1 and scale parameter h;G 1; hð Þ, and G 2; hð Þwith weights p ¼ h

hþ1 and
1� p, respectively. The cumulative distribution function (CDF) of
the Lindley model is:

F xð Þ ¼ 1� 1þ hþ hx
1þ h

e�hx; h > 0; x P 0:

In connection with the generalization of the Lindley distribu-
tion, Shanker (2016a,b) introduced the Aradhana distribution with
the following PDF and CDF, respectively:

f xð Þ ¼ h3

h2 þ 2hþ 2
1þ xð Þ2e�hx; h > 0; x P 0;

and

F xð Þ ¼ 1� 2þ 2hþ 2hxþ h2 þ 2h2xþ h2x2

h2 þ 2hþ 2
e�hx; h > 0; x P 0:

This version of the Aradhana model was used to fit the lifetime
data of 20 patients receiving an analgesic reported in Gross and
Clark (1976) to relief times (in minutes) and a dataset representing
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aircraft window thickness cited in Fuller et al. (1994). In addition,
Welday and Shanker (2018) have provided a generalization of this
model to the two-parameter Aradhana distribution with the PDF:

f xð Þ ¼ h3

h2 þ 2ahþ 2a2
1þ axð Þ2e�hx; a P 0; h > 0; x P 0; ð1Þ

and the corresponding CDF

F xð Þ ¼ 1� 2a2 þ 2ahþ 2a2hxþ h2 þ 2ah2xþ a2h2x2

h2 þ 2ahþ 2a2
e�hx;

r a P 0; h > 0; x P 0:

Moreover, Shanker and Shukla (2018) introduced the power

Aradhana model whose PDF is given by the PDF of X
1
a, namely

f xð Þ ¼ ah3

h2 þ 2hþ 2
xa�1 1þ 2xa þ x2a

� �
e�hxa ; a P 0; h > 0; x P 0;

and the CDF

F xð Þ ¼ 1� 1þ hxa hxa þ 2hþ 2ð Þ
h2 þ 2hþ 2

� �
e�hxa ; a P 0; h > 0; x P 0:

They used this model to analyze the tensile strength measured
in GPA of 69 carbon fibers tested in tension at a length of 20 mm
(Bader and Priest, 1982).

Most data sets are mixtures of multiple populations, and usu-
ally no information is available to determine the associated sub-
population of each data point. For example, the lifetime of a
device may be recorded without regard to manufacturer or date
of production, or some measurements of humans may be reported
without regard to geographic location or blood type. When the
measured characteristics depend on data that are not available
(manufacturer, production date, geographic location, or blood
type), the data are said to be mixed. It is not easy to find data sets
that are not mixed in some way, since in almost every case some
relative covariates are not observed. There are many applications
and statistical frameworks in which mixture models occur. For
detailed discussions, see Titterington et al. (1985), Lindsay (1995)
and Ord (1972).

The above models are mixtures of two or three gamma distribu-
tions with different shape parameters. However, in many situa-
tions, the data may come from more than two or three sub-
populations. For example, a device may be manufactured by more
than three factories in a company, etc. Therefore, it is better to use
a mixture model with an adjustable number of underlying sub-
models. The aim of this paper is to investigate such a flexible
model, which also generalizes the previous models.

In this paper, we present in Section 2 a new generalized model
that incorporates the above and many other models. Section 3 pre-
sents the main statistical and reliability properties of this new
model. Parameter estimation for complete and right-censored data
is discussed in Section 4. In Section 5, a simulation study was con-
ducted to investigate the behavior of the MLE. Finally, the proposed
model and some competing models were fitted to two datasets to
show their usefulness.
2. The Abouammoh-Alrasheedi model

One can include most of the previously mentioned models in a
general family from which many more special cases can be derived
and studied. Statistical and reliability properties, estimation of the
underlying parameters, and fitting the derived model to real data
will make the models available in the literature even richer with
more flexible manipulations. We now give the following definition.
2

Definition 1. The random variable X is said to have Abouammoh-
Alrasheedi distribution with parameters m;a; hð Þ, denoted by
AA m;a; hð Þ if its PDF be of the form

f xð Þ ¼ hmXm
i¼1

C mð Þ
C ið Þ am�ihi�1

1þ hxð Þm�1e�hx; m > 0; a > 0;

h > 0; x P 0: ð2Þ
One can, without difficulty, verify that this is a PDF, i.e.,R1

0 f xð Þdx ¼ 1. For integer m, it can be written as a mixture of
gamma distributions, so by Theorem 3 of Atienza et al. (2006), it
is identifiable. More precisely

f xð Þ ¼
Xm
i¼1

wif i xð Þ; x P 0;

where

wi ¼
1

C ið Þ
h
a

� �i
Xm
j¼1

1
C jð Þ

h
a

� �j ; ð3Þ

and

f i xð Þ ¼ hm�iþ1

C m� iþ 1ð Þ x
m�ie�hx; x > 0;

is the PDF of the gamma distribution G m� iþ 1; hð Þ.

Lemma 1. The constant coefficient of the PDF (2) can be written as
the following form:

c ¼ hmXm
i¼1

C mð Þ
C ið Þ am�ihi�1

¼ e�
h
ahm

am�1C h
a ;m
� � :
Proof. Since f xð Þ is a PDF, we have

Z 1

0
1þ axð Þm�1e�hxdx ¼ 1

c
:

On the other hand, by straightforward algebra we haveZ 1

0
1þ axð Þm�1e�hxdx ¼ e

h
a

hm
am�1C

h
a
;m

� �
;

which shows the result immediately. h

Some of special cases of the AA m;a; hð Þ are listed in the
following.

� For m ¼ 1 and a ¼ 1, it reduces to the exponential distribution.
� For m ¼ 2 and a ¼ 1 it gives the Lindley distribution.
� For m ¼ 3 and a ¼ 1;AA m;a; hð Þ reduces to Aradhana distribu-
tion which is a mixture of G 1; hð Þ;G 2; hð Þ and G 3; hð Þ with

weights h2

h2þ2hþ2
; 2h
h2þ2hþ2

and 2
h2þ2hþ2

, see Shanker (2016a,b).

� For a ¼ 1, and m P 3;AA m;a; hð Þ becomes a generalized Arad-
hana distribution and is also a generalization of the Lindley
distribution.

3. Statistical and reliability properties

Now, we derive the main statistical and reliability properties of
the proposed distribution. The cumulative distribution function of
AA m;a; hð Þ is
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F xð Þ ¼ 1� C h
aþ hx;m
� �
C h

a ;m
� � ; ð4Þ

where C t; sð Þ ¼ R1
t ys�1e�ydy is the incomplete upper gamma

function.

Proposition 1. The kth moments of AA m;a; hð Þ model is

E Xk
� �

¼ 1
C h

a ;m
� �Xk

j¼0

1
h

� �j

�1
a

� �k�j k

j

� �
C

h
a
;mþ j

� �
: ð5Þ
Proof. The kth moments of a distribution with the reliability func-
tion R equals to

E Xk
� �

¼
Z 1

0
ktk�1R tð Þdt: ð6Þ

Thus, for AA m;a; hð Þ we have

E Xk
� �

¼ 1
C h

a ;m
� � Z 1

0
ktk�1C

h
a
þ ht;m

� �
dt: ð7Þ

Now, we haveR1
0 ktk�1C h

aþ ht;m
� �

dt ¼ R1
0

R1
h
aþht kt

k�1ym�1e�ydydt

¼ R1
h
a

R y
h�1

a
0 ktk�1ym�1e�ydtdy

¼ R1
h
a

ym�1e�y y
h � 1

a

� �kdy
¼
Xk
j¼0

1
h

� �j � 1
a

� �k�j k

j

� �
C h

a ;mþ j
� �

;

ð8Þ

and the result follows by (7) and (8). h

By the fact that AA m;a; hð Þ model can be written as a mixture of
the corresponding moments of the underlying gamma distribu-

tions, we have another representation of the kth moments

E Xk
� �

¼
Xm
i¼1

wi
C kþm� iþ 1ð Þ
hkC m� iþ 1ð Þ ; ð9Þ

where wi is defined in (3).
By straightforward algebra the moment generating function of

AA m;a; hð Þ can be simplified as the following form.

M tð Þ ¼ E etX
� � ¼ C h�t

a ;m
� �
C h

a ;m
� � h

h� t

� �m

e�
t
a: ð10Þ

The quantile function is of the form

q pð Þ ¼ 1
h

C�1 �pC
h
a
;m

� �
;m

� �
� h
a

� �
; 0 < p < 1; ð11Þ

where �p ¼ 1� p and C�1 a;mð Þ shows the inverse of the incomplete
upper gamma function at a.

The Lorenz curve provides a graphical representation of the
wealth distribution and is defined to be

L pð Þ ¼
R q pð Þ
0 xdF xð ÞR q 1ð Þ
0 xdF xð Þ

:

It can be checked easily that for AA m;a; hð Þ it can be simplified
as follows.

L pð Þ ¼
1
h C h

a;mþ1ð Þ�C h
aþhq pð Þ;mþ1ð Þð Þ�1

a C h
a;mð Þ�C h

aþhq pð Þ;mð Þð Þ
1
hC

h
a;mþ1ð Þ�1

aC
h
a;mð Þ

¼ p
a mC h

a;mð Þþ h
að Þme�

h
a�ume�u

� �
�hC h

a;mð Þ
a mC h

a;mð Þþ h
að Þme�

h
a

� �
�hC h

a;mð Þ ;

where u ¼ C�1 �pC h
a ;m
� �

;m
� �

.

3

Let X1;X2; . . . ;Xn represents a sample of AA m;a; hð Þ. The PDF of

kth order statistics, X kð Þ, is

f k:n xð Þ¼ k
n
k

� �
e�

h
ahm

am�1C h
a ;m
� � 1�C h

aþhx;m
� �
C h

a ;m
� �

 !k�1
C h

aþhx;m
� �
C h

a ;m
� �

 !n�k

1þhxð Þm�1e�hx:

Thus the PDF of series and parallel systems with such identical
components reduces to

f 1:n xð Þ ¼ n
e�

h
ahm

am�1C h
a ;m
� � C h

aþ hx;m
� �
C h

a ;m
� �

 !n�1

1þ hxð Þm�1e�hx;

and

f n:n xð Þ ¼ n
e�

h
ahm

am�1C h
a ;m
� � 1� C h

aþ hx;m
� �
C h

a ;m
� �

 !n�1

1þ hxð Þm�1e�hx:

respectively.

3.1. Reliability measures

The failure rate function is an important measure in reliability
theory and survival analysis. Assuming that an event has not yet
occurred by time x, it represents the instantaneous risk of occur-
rence at time x. For AA m;a; hð Þ, the failure rate function is:

h xð Þ ¼ f xð Þ
R xð Þ ¼

e�
h
ahm 1þ axð Þm�1e�hx

am�1C h
aþ hx;m
� � ; ð12Þ

where R xð Þ ¼ 1� F xð Þ shows the reliability function. For a lifetime
random variable X, the mean residual life (MRL) function is defined
to be

m xð Þ ¼ E X � xjX P xð Þ ¼
R1
x R tð Þdt
R xð Þ ; ð13Þ

and measures the mean of the remaining lifetime given survival up
to time x.

Proposition 2. The MRL function of AA m;a; hð Þ distribution is of the
form

m xð Þ ¼ 1
h

mþ
h
aþ hx
� �me� h

aþhxð Þ
C h

aþ hx;m
� �

 !
� 1
a
� x; x P 0:
Proof. We can write

Z 1

x
R tð Þdt ¼ 1

C h
a ;m
� � Z 1

x
C

h
a
þ ht;m

� �
dt: ð14Þ

The integral in the right side of (14) can be simplified as the
following.R1

x C h
aþ ht;m
� �

dt ¼ R1
x

R1
h
aþht y

m�1e�ydydt ¼ R1
h
aþhx

R y
h�1

a
x ym�1e�ydtdy

¼ R1
h
aþhx

y
h � 1

a� x
� �

ym�1e�ydy

¼ 1
hC

h
aþ hx;mþ 1
� �� 1

aþ x
� �

C h
aþ hx;m
� �

:

ð15Þ
Applying ()()()(13)–(15) the result follows. h

The p-QRL function, denoted by qp xð Þ, is the conditional pth
quantile of the remaining life of an object provided that it is still
alive at x, precisely

qp xð Þ ¼ R�1 �pR xð Þð Þ � x ¼ F�1 1� �pR xð Þð Þ � x; x > 0;
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Fig. 1. The PDF of AA m;a; hð Þ for some values of parameters.
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Fig. 2. The failure rate function of AA m;a; hð Þ for some values of parameters.
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where �p ¼ 1� p. For AA m;a; hð Þ, by (11) we have

qp xð Þ ¼ 1
h
C�1 �pC

h
a
þ hx;m

� �
;m

� �
� 1
a
� x; x > 0:

Figs. 1–4 show the PDF, failure rate function, MRL function, and
median residual life function, respectively. The failure rate shows
an increasing shape and the MRL and median residual life func-
tions show a decreasing shape. The MRL shows larger values than
the median residual lifetime, indicating that the conditional resid-
ual lifetime is skewed to the right.

The mean inactivity time (MIT) at time x;m� xð Þ, represents the
mean of elapsed time at x given the event has been occurred before
x, mathematically,

m� xð Þ ¼ E x� XjX < xð Þ ¼ 1
F xð Þ

Z x

0
F zð Þdz; x P 0:

Proposition 3. The MIT function of AA m;a; hð Þ distribution is of the
form
4

m� xð Þ ¼ xþ 1
a
� 1

h

� �
� 1

h
e�

h
a

h
a

� �m � h
aþ hx
� �me�hx

C h
a ;m
� �� C h

aþ hx;m
� � ; x P 0:

ð16Þ
Proof. We have

R x
0 F zð Þdz ¼ 1

C h
a;mð Þ

R x
0 C

h
a ;m
� �� C h

aþ hz;m
� �

dz

¼ 1
C h

a;mð Þ xC h
a ;m
� �� R x

0 C
h
aþ hz;m
� �

dz
� �

:
ð17Þ

Now, we can simplify the integral in the last expression as
follows.R x

0 C
h
aþ hz;m
� �

dz ¼ R x
0

R1
h
aþhz t

m�1e�tdtdz

¼ R h
aþhx
h
a

R t
h�1

a
0 tm�1e�tdzdt þ R1

h
aþhx

R x
0 t

m�1e�tdzdt

¼ 1
h C h

a ;mþ 1
� �� C h

aþ hx;mþ 1
� �� �� 1

a C h
a ;m
� �� C h

aþ hx;m
� �� �

þxC h
aþ hx;m
� �

:

ð18Þ



0 20 40 60 80

10
15

20
25

x

M
ea

n 
re

si
du

al
 li

fe
 fu

nc
tio

n

m = 3, � = 0.02, � = 0.1
m = 3, � = 0.05, � = 0.1
m = 3, � = 0.3, � = 0.1
m = 3, � = 10, � = 0.1

0 20 40 60 80

15
20

25

x

M
ea

n 
re

si
du

al
 li

fe
 fu

nc
tio

n

m = 5, � = 0.02, � = 0.1
m = 5, � = 0.05, � = 0.1
m = 5, � = 0.3, � = 0.1
m = 5, � = 10, � = 0.1

Fig. 3. The mean residual life of AA m;a; hð Þ for some values of parameters.
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On the other hand

C h
a ;mþ 1
� ��C h

aþ hx;mþ1
� � ¼mC h

a ;m
� �þ h

a

� �me�h
a

�mC h
aþ hx;m
� �� h

aþ hx
� �me� h

aþhxð Þ:
ð19Þ

Then, the results follows by (17), (18) and (19). h

The quantile inactivity time is an alternative for MIT and repre-
sents, at time x, the quantile of the elapsed time given the event
occurred before x. For a distribution F, it is defined by:

q�
p xð Þ ¼ x� F�1 �pF xð Þð Þ; x P 0: ð20Þ

and for AA m;a; hð Þ can be written as

q�
p xð Þ ¼ x� 1

h
C�1 pC

h
a
;m

� �
þ �pC

h
a
þ hx;m

� �
;m

� �
þ 1
a
; x P 0:

ð21Þ
5

Fig. 5 shows the MIT and the median inactivity time (q�
0:5 xð Þ) of

AA m;a; hð Þ for some parameters and shows increasing and convex
forms. The greater values of the MIT indicate that the conditional
distribution of the elapsed time is skewed to right.
4. Estimation of the parameters

Let m be known. By the moments method and applying (9), we
can estimate a; hð Þ by minimizing the following expression.

D a; hð Þ ¼ X � E Xð Þ� �2 þ �X2 � E X2
� �� �2

:

So, the moments estimator is

â; ĥ
� �

¼ argmin
a;h

D a; hð Þ:
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Fig. 5. Left: The MIT of AA m;a; hð Þ for some values of the parameters. Right: The median inactivity time of this distribution for the selected values of the parameters.
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The moment estimates can be used as initial values for maxi-
mizing the log-likelihood function and finding the maximum like-
lihood estimator (MLE).

Let m be known and x1; x2; . . . ; xn represents a realization from
AA m;a; hð Þ, the log-likelihood function is

l a; h; xð Þ ¼ �n
h
a
þ nm ln h� n m� 1ð Þ lna� n lnC

h
a
;m

� �

þ
Xn
i¼1

m� 1ð Þ ln 1þ axið Þ � h
Xn
i¼1

xi:

Also, the likelihood equations are as follows:

@l
@a

¼ n
h
a2 � n

m� 1
a

� n
h
a

� �me�h
a

aC h
a ;m
� �þ m� 1ð Þ

Xn
i¼1

xi
1þ axi

¼ 0;

and

@l
@h

¼ � n
a
þ nm

h
þ n

h
a

� �m�1e�
h
a

aC h
a ;m
� � �Xn

i¼1

xi ¼ 0:

The MLE can be calculated by maximizing the log-likelihood
function or by solving the likelihood equations. If m is not known,
which is usually the case, we can estimate the parameters for a
range of m values and then choose the best model based on the
Kolmogorov–Smirnov (K-S) statistic or other criteria.

The Fisher information matrix for the AA m;a; hð Þ is of the form

K ¼
E � @2 l

@a2

� �
E � @2 l

@a@h

� �
E � @2 l

@h@a

� �
E � @2 l

@h2

� �
2
64

3
75:

where Let l ¼ ln f Xð Þ. Let Xi; i ¼ 1;2; . . . ;n stands for a sample from

AA m;a0; h0ð Þ. Then, the MLE, â; ĥ
� �

, converges in distribution to

bivariate normal N a0; h0ð Þ;n�1K�1
� �

in which K�1 is the inverse of

the information matrix.
Suppose that events are subject to random right censorship. A

random event Xi is said to be right-censored if the only information
about the event is that it is greater than the random censoring vari-
able Ci, i.e. Xi > Ci. So, the observations of a right censored random
sample consist of Ti ¼ min Xi;Cið Þ and di, where di ¼ 1 if the event is
not censored, Xi 6 Ci, and di ¼ 0 if the event is censored, Xi > Ci. Let
we have one right censored sample ti; dið Þ; i ¼ 1;2; . . . ;n. Then, the
log-likelihood function is
6

l a; h; t;dð Þ ¼
Xn
i¼1

di ln f tið Þ þ
Xn
i¼1

1� dið Þ lnR tið Þ:

in which f and R are the PDF and the reliability functions of the
AA m;a; hð Þ respectively. It is easy to check that the log-likelihood
function simplifies to

l a; h; t;dð Þ ¼ n lnC h
a ;m
� �þXn

i¼1

di � h
aþm ln h� m� 1ð Þ lna�

þ m� 1ð Þ ln 1þ atið Þ � htiÞ

þ
Xn
i¼1

1� dið Þ lnC h
aþ hti;m
� �

:

5. Simulation

Given that AA m;a; hð Þ is a mixture of gamma distributions, we
can extract a random sample of size n from this model as described
in the following steps:

1. Simulate one random instance of multinomial distribution with
parameters n;w1;w2,. . ., wm, where wi is defined by (3). Let the
simulated instance be n1;n2; . . . ;nmð Þ which will satisfy
n1 þ n2 þ . . .þ nm ¼ n.

2. For every ni, simulate one random sample of the gamma distri-
bution G m� iþ 1; hð Þ of size ni. Then combine these samples to
provide one sample of size n from AA m;a; hð Þ.

3. Here, the degenerate random variable with mean t� has been
used as the random censorship variable Ci. Given the censorship
percentage p, we have t� ¼ q �pð Þ where qðÞ is defined in (11).

The simulation results have been abstracted in Table 1. We have
considered two values p ¼ 0 and 0:2 for censorship rate. Every cell
of the table shows the results for one run. In every run, we provide
r ¼ 1000 replicates of samples of size n ¼ 80;100. For every sample

the MLE, â; ĥ
� �

has been computed. Then the bias (B), absolute bias

(AB) and the mean squared error (MSE) for both a and h have been
computed. These measures are defined in the following relations
for a. They are defined similarly for h.

Ba ¼ 1
r

Xr
i¼1

âi � að Þ;



Table 1
Simulation results for MLE of the parameters of AA m;a; hð Þ. Every cell consists of triples Ba;ABa ;MSEa in the first line and Bh;ABh;MSEh in the second line.

p ¼ 0 p ¼ 0:2

n m a; h B AB MSE B AB MSE

80 3 0.02, 0.05 0.004988 0.013574 0.000373 0.006054 0.018217 0.000646
0.000600 0.008016 0.000104 -0.000659 0.011561 0.000194

0.3, 5 0.983335 1.212043 3.712165 1.175853 1.455283 5.641408
0.848339 1.278958 2.889727 0.980640 1.536448 4.373064

0.05, 2 0.461190 0.499459 0.682545 0.616871 0.658195 1.280510
0.470890 0.579849 0.623839 0.561123 0.705742 0.986987

5 0.02, 0.05 0.001707 0.006268 0.000066 0.001591 0.007357 0.000098
0.000680 0.005271 0.000043 -0.000078 0.006786 0.000075

0.3, 5 0.209712 0.543812 0.572916 0.493983 0.762481 1.184417
0.337317 1.417153 3.323895 0.958836 1.892733 5.972325

0.05, 2 0.206730 0.251102 0.156499 0.320155 0.356562 0.356936
0.501932 0.695099 0.956195 0.737981 0.904887 1.761379

100 3 0.02, 0.05 0.004989 0.012495 0.000293 0.004451 0.016137 0.000483
0.000897 0.007160 0.000081 -0.001198 0.010670 0.000173

0.3, 5 0.867955 1.100889 2.932451 1.059814 1.356333 4.983397
0.770588 1.216026 2.658104 0.877139 1.441000 3.933093

0.05, 2 0.431200 0.466580 0.531628 0.539306 0.582099 1.067997
0.456392 0.558029 0.568953 0.523228 0.652936 0.872355

5 0.02, 0.05 0.001778 0.005664 0.000055 0.001718 0.006716 0.000082
0.000839 0.004859 0.000038 0.000443 0.006135 0.000060

0.3, 5 0.218949 0.535202 0.552218 0.420245 0.700898 1.018933
0.349058 1.399999 3.103568 0.795703 1.808621 5.484757

0.05, 2 0.168868 0.215696 0.126635 0.265858 0.302138 0.246075
0.411721 0.617124 0.793489 0.645761 0.806164 1.394646
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ABa ¼ 1
r

Xr
i¼1

jâi � aj;

and

MSEa ¼ 1
r

Xr
i¼1

âi � að Þ2:

Some of the main observations from simulation results are
listed in the following.

� The MLE of the parameters are consistent, i.e., AB and MSE
decrease with n.

� The AB and MSE have larger values for censored data (p ¼ 0:2)
rather than uncensored data.
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6. Applications

Shanker (2016a,b) analyzed a data set consisting of the number
of cycles to failure for 25 yarn samples. The data are: 15, 20, 38, 42,
61, 76, 86, 98, 121, 146, 149, 157, 175, 176, 180, 180, 198, 220, 224,
251, 264, 282, 321, 325, 653. The MLE of the parameters of
AA m;a; hð Þ was calculated from m ¼ 1;2; . . . ;20. For m ¼ 10, we
have the smallest value of the K-S statistic. Thus, the estimated
model is AA 10; 0:003368;0:022551ð Þ. The K-S statistic and corre-
sponding p-value are 0:105787 and 0:942375, respectively. The
AIC value, which corresponds to the MLE, is 306:2316. Fig. 6, left
panel, shows the empirical CDF and the CDF of the fitted model,
and graphically confirms that the model describes the data well.
Also, Fig. 8, left panel, draws the histogram of data and the esti-
mated PDFs.
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tion along with fitted AA m;a; hð Þ.
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Table 2
The results of fitting the Lindley distribution, the Aradhana distribution, the generalized Aradhana distribution and the AA m;a; hð Þ to data sets.

Data Model ĥ â K-S statistics K-S p-value AIC

The first data set Lindley 0.01115 0.127756 0.762682 307.019
Aradhana 0.016728 0.12346 0.7967 311.0772
Generalized Aradhana 0.013388 0.019097 0.11755 0.8407 308.864
AA 10;a; hð Þ 0.022551 0.003368 0.105787 0.942375 306.2316

The second data set Lindley 0.1866 0.067677 0.7495 640.0784
Aradhana 0.27655 0.080136 0.5419 642.343
Generalized Aradhana 0.2597 0.5556 0.060349 0.8596 641.5076
AA 2;a; hð Þ 0.202477 1545.077 0.042187 0.991498 638.6034
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Fig. 7. The empirical distribution function along with some fitted models for the first data set (left) and the second data set (right).
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The second data set consist of 100 waiting times (in minutes) of
customers to be served in a bank: 0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1,
2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4,
4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3,
6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8,
8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5,
11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4,
8

15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4,
21.9, 23.0, 27.0, 31.6, 33.1, 38.5, see Ghitany et al. (2008) and
Shanker (2015).

For m ¼ 1;2; . . . ;20, the MLEs of the parameters of AA m;a; hð Þ
were calculated. Based on the K-S statistics, the best model among
them is AA 2;1545:077;0:202477ð Þ. The corresponding AIC value is
638:6034, and the K-S statistics and p-value are 0:042187 and
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0:994198, respectively, indicating a good fit. Fig. 6, right panel,
shows the empirical and fitted CDFs and confirms a good fit.

In a comparative analysis, we fitted the Lindley distribution, the
Aradhana distribution, and the generalized Aradhana distribution
defined by (1) to these data sets. The MLEs of the parameters of
the models were estimated and the results, summarized in Table 2,
show that the proposed model AA m;a; hð Þ performs better than the
others in both examples. Figs. 7 and 8 show the fitted distributions
and PDFs respectively.

7. Conclusion

Because of its applicability and usefulness, the Lindley model
and its generalizations have been considered by many authors.
Here, a new generalization of the Lindley distribution has been
introduced to extend this collection. Some properties of this distri-
bution have been studied. Parameter estimation was discussed
using moments and maximum likelihood methods. Simulation
studies show that the MLE is efficient and consistent for both com-
plete and right-censored data. The results of fitting the presented
model to two real data sets show that it is useful in analyzing data.
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