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In this article, we use the tool of monotone nonlinearity to present the approximate controllability
discussion for fractional semilinear system with nonlocal conditions. Monotonicity is an important char-
acteristic in many communications applications in which digital-to-analog converter circuits are used.
Such applications can function in the presence of nonlinearity, but not in the presence of non-
monotonicity. Therefore, it becomes quite interesting to study a problem assuming monotonicity of
the nonlinear function. Also, nonlocal conditions are additional specifications for the physical measure-
ments than classical ones and impart a finer effect on the solution. We formulate the control function
for the problem and establish the controllability results. At last, we proposed two applications for the
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1. Introduction

In the modern years, fractional calculus has been receiving
considerable observation from researchers because of its uses in
science and engineering areas, such as fractional biological neu-
rons, fractal theories, nonlinear oscillation of earthquake, neural
network modeling, fluid dynamics, population dynamics, etc. Frac-
tional Calculus is a very effective mechanism that has been
recently incorporated to model complex biological systems with
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non-linear behavior and long-term memory. It came into picture
with a simple question related to the derivation concept like if
the first order derivative represents the slope of a function, what
would a half order derivative of a function represent? Looking for
such type of questions gave birth to many new problems and inter-
esting results in the real world. For example, we cannot determine
the properties of a shape memory polymers model by making use
of differential frameworks of integer order because the shape var-
ies quickly as there is a small change in the temperature. Therefore,
the task of fractional calculus becomes essential here. Fractional
calculus has several uses in image processing, oil reservoirs, MRI,
gas transportation, damping, HIV/TB infections, etc. So, recently,
many researchers have done valuable performances in electromag-
netic, control theory, signal, porous media, viscoelasticity, biologi-
cal, engineering problems, image processing, fluid flow, diffusion,
theology, etc. For more specifics, see (Bajlekova et al., 2001;
Kilbas et al., 2006; Miller et al., 1993; Podlubny et al., 1999).

On the contrary, controllability problems have fascinated sev-
eral engineers, mathematicians, and physicists, and remarkable
support has been made to theories as well as their application sides
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also. The controllability of dynamical frameworks under the con-
trol of partial differential frameworks has evolved into a widely
researched topic in the last three decades. It investigates the prob-
ability of driving a system from any starting position to the
required terminal position employing some group of admissible
controls. Naito (Naito, 1987) obtained the approximate
controllability discussion for a semilinear framework governed
by linear part utilizing the fixed point technique. For second-
order differential systems (Shukla and Patel, 2021; Vijayakumar,
2018; Vijayakumar and Dineshkumar, 2021; Vijayakumar, 2019;
Vijayakumar et al., 2017; Vijayakumar et al., 2021; Vijayakumar
et al., 2021), and fractional order frameworks have been exten-
sively analyzed in the literature, see, for instance, (Arora, 2018;
Arora, 2019; Dineshkumar et al., 2021; Kavitha et al., 2022;
Kavitha et al., 2021; Raja et al,, 2022; Raja et al., 2021; Nisar and
Vijayakumar, 2021; Shukla et al., 2015; Shukla et al., 2014;
Shukla et al., 2022; Shukla et al., 2015; SSakthivel and Y.;thivel
and Y.; Mahmudov, 2011; Williams et al., 2020; Zhou et al,,
2017; Vijayakumar et al., 2013).

Moreover, there are several real world models which can be dis-
played more accurately as certain partial differential equation with
nonlocal conditions. In such problems nonlocal conditions are
imposed in place of classical description of the data. These condi-
tions, given by Byszewski (1991), provide excellent results in terms
of existence, uniqueness and controllability analysis. It appears
mainly when the measurements are considered at regular time
periods instead of historical time period. Thus, the investigation
may be presented more practically than utilizing the classical con-
dition p(0) = p, alone. The controllability problems with nonlocal
conditions can be found in Vijayakumar and Dineshkumar (2021).

In SSakthivel and Y.;thivel and Y.; Mahmudov (2011), Sakthivel
et al. analyzed the controllability outcomes for semilinear frac-
tional systems by applying theory related to fractional calculus
via fixed point approach. Liu and Sakthivel (2014) analyzed the
approximate controllability outcomes for semilinear fractional
inclusions by applying theory related to fractional calculus via a
fixed point approach for multi-valued maps. Zhou (2010) analyzed
the existence of fractional neutral differential systems utilizing
fixed point theorems and fractional powers of operators. The fun-
damental theories about the cosine and sine family (CF and SF)
for second-order abstract Cauchy problem were introduced by
Fattorini et al. (1985) and Travis (1978).

Several authors have focused the approximate controllability
discussion about semilinear fractional systems by applying Lips-
chitz continuity on the nonlinear term with the fixed point tech-
nique. Suppose the nonlinear part fulfills monotone condition,
then one may get finer conclusions as monotonicity is the main
feature of many communication problems. George et al. (1995)
and George et al. (1995) established the approximate controllabil-
ity results for non autonomous semi linear and nonlinear evolution
systems with the use of monotone and integral contractor condi-
tion on the nonlinear term. Arora (2019) discussed the controllabil-
ity outcomes for fractional frameworks of order r € (1,2) with
nonlinear term possess integral contractor. But no results are deal-
ing with the nonlocal fractional semi linear control system of order
1 < r < 2 using monotone condition on the nonlinear term.

Let H=L,[0,b;P] and V =1L, [07 b; HS] be the function spaces
defined on J =[0,b],0 < b < oo, where P and P are two Hilbert
spaces. Consider the following nonlocal fractional semi linear con-
trol system:

“Dyp(e) =Ap(Q) + Bu(e) + K(¢, p(e))fore € (0, b,

p(0) =po + h(p), (1.2)

P'(0) =p; + h1(p), (1.3)
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where

1. “Dj, is the Caputo fractional derivative of order r € (1,2).

. p(o) represents the state having values in Hilbert space P.

. Control function v is defined from [0,b] — P .

B: B — P is a bounded linear operator.

. The map « : [0,b] x P — P produces nonlinearity in the system.

. The operator A : dom(A) CP — P is linear, closed where dom(A)
is a dense subset of P.

7. h and h; are continuous functions from C(J,P) — P.

oUW N

The fractional linear system with nonlocal conditions associated
with (1.1)-(1.3) along with control u is presented as

‘D,q(0) =Aq(9) + Bu(g)for ¢ € (0, b], (1.4)
q(0) =p, + h(p), (1.5)
q'(0) =p; + i (p). (1.6)

We now concentrate on a summary of this article: Section 2 pre-
sents some basic results related to fractional calculus and control
theory. Section 3 provides controllability results for the proposed
system assuming monotone nonlinearity. Section 4 presents two
applications for drawing the concept of the primary outcomes.

2. Auxiliary results

We recollect known essential facts, lemmas, elementary defini-
tions, remarks, and outcomes related to fractional calculus, semi-
group theory of linear operators, and control theory.

We assume that C([0,b];P),C'([0,b]; P) stand for the space of
functions x : [0,b] — P that are continuous and 1-time continu-
ously differentiable. Here L(P) denotes the set of bounded linear
operators from the Hilbert space P to P.

Definition 2.1. (Kilbas et al, 2006) “Provided that
p(e) € L1([0,b]; ®), then the Riemann-Liouville (R-L) fractional
integral of order r > 0 is presented as

r 1 ¢ r—1 d

Jip(©@) =555 || (@57 pisyds

In the above, I'(r) = [;" e 20" 'dp.”

Definition 2.2. (Kilbas et al., 2006) “The R-L fractional derivative
for p(0) € L1([0,b]; P) of order r € (1,2) is presented as

2 o
Dip(@) = DL D0) = g5 gz | (@~ 9Pl

Definition 2.3. (Kilbas et al., 2006) “The Caputo fractional deriva-
tive of order r € (1,2) is presented as

Dyple) J: Dpl0) ~ 17— | (=9 {;—;Ms)} ds,
where p(g) € Li([0, b]; ) n C'([0, b; P).”

Assume that the subsequent fractional evolution system:
D,p(0) = Ap(0), p(0) =np'(0) =0,

where r € (1,2);A: D(A) CP — P is a densely defined and closed in
P. Apply R-L fractional integral of order r on (2.1), one can obtain

(2.1)

_ L ¢ _ey1
PO =1+ [ @9 Aplsias. 22)
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Definition 2.4. (Bajlekova et al., 2001) “Assume that r € (1,2). A
family {Y:(0)},-0 C L(P) is said to be a solution operator (or a
strongly continuous r-order fractional CF) for (2.1) provided that
the subsequent characteristics are fulfilled:

1. Y:(g) is strongly continuous for ¢ > 0 and Y,(0) = 1.

2. 3L = 1 such that || Y, (¢)|| <L

3. Yi(0)D(A) C D(A) and AY,(0)n = Y+(0)An,V n € D(A),¢ > 0.
4. Y,(g)n is a solution for (2.1), V 5 € D(A),t > 0.”

A s said to be infinitesimal generator of Y, (g). The strongly con-
tinuous r-order fractional CF is also said to be r-order CF.

Definition 2.5. The fractional SF ¥, :
with Y; is presented as

[0,00) — L(P) connected

¢
Yr(e) = | Yi(s)ds, ¢ >0

Definition 2.6. The fractional R-L family g, : [0,
nected with Y, is presented as

o0) — L(P) con-

%) =1y ' Yr(0).

Now, using the definition of R-L integral, we obtain for ¢ € [0, b],

Ix:(0)ll = WTYAN

2
= Hfo rr1 H(T)dT]|
Yo ( 2
<‘HNHLQ ) 2dr|
L -0
< i S 6
Lbr—]
< Ir'(r) -

Next, we describe the mild solution for (1.1)-(1.3) and its corre-
sponding linear system.

Definition 2.7. The mild solution of (1.1)-(1.3) is defined by
p(-) € P which satisfy the following integral equation.

p(@) = Yr(Q)(Po + h(p)) + ¥r(@)(P1 + h1(p))
+ Jo 2:(0 = D{Bu(1) + K(s,p(7))}dT, 0 € (0,b],
p(0) = po + h(p),
P'(0) = p; +hi(p),
and the mild solution for (1.4)-(1.6) is described by the following
integral equation

q(0) = Y(Q)(po+h( ))+‘P( )(p1 + hi(p))
+ Iy %:(¢ — ©)Bu(t)dr, @ € (0,b],

q(0) = po + h(p),

q'(0) = p; +hi(p).

Definition 2.8. (Curtain et al., 1995) “The system (1.1)-(1.3) is said
to be approximately controllable in [0, b], provided that for given
starting position and required final position p; and € > 0,3 a con-
trol function v € V such that the solution of (1.1)-(1.3) fulfills

[Ip(b) — pell < €,
where p(b) is the state value of (1.1)-(1.3) at time ¢ = b.”

Remark 2.1. Suppose p(b)
controllable.

= pr, then the system is called exactly
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Controllability can also be interpreted in terms of reachable set
which is defined in the following manner.

Definition 2.9. (Curtain et al., 1995) “Reachable set is the collec-
tion of all the possible final positions corresponding to the control
v € V. The set defined by

Rp(x) = {p(b) € P: p(p)is a mild solution of the

system corresponding to controlv € V},

is the reachable set for (1.1)-(1.3) and R, (0) is the reachable set for
(1.4)-(1.6).”

Definition 2.10. (Curtain et al, 1995) Definition of Approxi-
mate Controllability in terms of Reachable Set: “A control sys-
tem is said to be approximately controllable on an interval
[0, b], iff the corresponding reachable set is dense in P. There-
fore the given system (1.1)-(1.3) is approximately controllable
iff

‘JI,,(K) =P,

where %, (i) denotes the closure of R, (k).

Remark 2.2. If Ry (x) =
controllable.”

P, then the given system is said to exactly

3. Controllability results

Here we mainly focus on the controllability for the second
order fractional semilinear control system with nonlocal condi-
tions considering the monotone nonlinearity of the nonlinear
term.

The following conditions are taken into account to obtain the
approximate controllability results of (1.1)-(1.3):

(Ty) 3 a constant o > 0 such that
(Np.p)y > o|Npliy ¥ peH,
where N : H — H is the operator defined by

Q

(Np)(0) = A %(e — tp(v)dr.

(T,) Linear fractional system with nonlocal conditions (1.4)-(1.6)
is approximately controllable, that is, the corresponding
reachable set R,(0) is dense in P.

(T3) Monotone condition is satisfied by the nonlinear function r,
that is, 3 constant y > 0 such that

(K(0,P1) — K(0.P2).P1 — Pa)p < —7IIP1 — Ps 2.

(T4) |IKplly < b1 + b2|plly, where by and b, are constants and
K : H— H is Nemytskii operator defined as

(Kp)(¢) = K(e,p(0))

(Ts) Range(K) C Range(B), that is, for any given €; > 0,3 a w in
L, [O,b; [F"} such that

peH.

IKq — Bw||, < €. (3.1)

(Te) There exist constants My and My, such that ||h(p)|| < My and

[h1(p)I| < My, ¥V p € dom(A).

Next, we prove a lemma before establishing the main result which
focuses on the controllability of the semilinear system.
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Lemma 1. The solution p(g) of the nonlocal fractional system
(1.1)-(1.3) connected with the control v =u—w fulfills the
subsequent

p@l- < (1Bt ) Llpal + 1pil+ Mo+ )

(100 Bl + )+ 2],

where [|Y:(0)]l < L, |'¥r(@)ll < L, |I7,(0)]| < %5 for each ¢ € [0,b].

Proof. Let p(g) be the mild solution of (1.1)-(1.3) associated with
the control v = u — w. Therefore, one can consider p(g) in the fol-
lowing way:

p(@) = Y:(0)(po + h(p)) + ¥r(@)(P1 + h1 (D

/ %@ df+/ %:(0

Taking norm on both sides, we get

Ip(@)lle < Lipoll +LiR(p) || +Lllpy | + LA (p)I
U [211B(u—w)(T) |pdT+ 20 [3 |1K(T,p(T))[pdT

,p(1))dt.

< LlIpoll+ LMy + Lilpy |+ LMy, +2v/B(|Bu, + Bl
+UL [2 by +ba|p(0)l)dT
< Llipy |+ LMy +L]p, || + LMy,
U (Bl + a4+ €1) + 22 2 2 (1) e
< Liipoll + LMy +Li|p; || +LMp,
U (|Bully+ by +ba g+ €1)
+h Ul 2 Ip(T) o dt
< Lllpoll -+ LMy -+ L]y || + LM, +1272
(1Bl + 1+ bo(Lpoll + Lt Lipy -+ L+ )+ )
0 W () do < Lol + LMy + Lilpy | + LMy,
(1 +“’r;;’z) IBully -+ by + bol[po
+boLMp + byL|py | +boLMp, + €1} +50+ 220 12 p(T)||dt
< (1+nh)L <Hpo|\+up1n)+L(1+bzﬁ’ar§)<Mn+Mh1)

1
2 Lb" 2b, "b Lb’ b
+Llll(r)z{<le r(i)z>HBuHH+b1+€1}+ Tt zfo Ilp(7)||-dz.

Applying Gronwall’s inequality, we attain
1Pl < |(1+ b2 ) Lol + Iyl -+ My M)

'3 Lb sz Wb, | o2

T (1t [Bully + b1 + €1 ¢ + Tt €T

Hence, the result is proved.

Theorem 3.1. Suppose that (T;)-(Ts) are fulfilled, then the frac-
tional semilinear control system with nonlocal conditions (1.1)-
(1.3) is approximately controllable on [0, b)].

Proof. Assume that q(g) be the mild solution of the fractional lin-
ear system with nonlocal conditions (1.4)-(1.6) associated with the

control u. Then we can write q(g) as
a(0) = Yu(@)po + h(p) + (@) Py + mp) + [ 7,00 - 7)
x (Bu)(t)dr. (2.2)
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Let p(g) be the mild solution of (1.1)-(1.3) associated with the con-
trol » = u — w. Then, we can express p(g) as

p(e) = Yr(@)(Po + h(p)) + ¥r(0)(P1 + h1(p))
+ Jg %r(@ = T)B(u — w)(r)dt (2.3)
+ [ x:(@ — DK(T, p(T))dT.

Using (2.2) and (2.3), one can obtain

0= [ 1o~ Bwde
- [ e - mxte.peenee (2.4)

Writing the above equation in operator theoretic form, we get
q—p= NBw-—NKp
= N(Bw —Kq) + (NKq — NKp).

Applying the inner product on both sides with Kq
obtain

(q—p,Kq — Kp), = (N(Bw — Kq) +
= (N(Bw — Kq),Kq — Kp)y +

— Kp, one can

(NKq — NKp),Kq — Kp),
((NKq — NKp),Kq — Kp),,. (2.5)

Using condition (T3), we get that the left hand side of the Eq. (2.5) is
—7llg - pll* and the second term of the R.H.S is nonnegative from
assumption (Ty).

If we can show that (N(Bw — Kq),Kq — Kp), is negligbly small,
then it will indicate that ||q — p|| is also arbitrary small from the
Eq. (2.5).

Therefore, we show that (N(Bw —
small.

Using Cauchy Schwartz Inequality, we have

|(N(Bw — Kq),Kq — Kp)y| < [IN(Bw — Kq)|s|Kq — Kp],

Lbr 1
G Kqll{11Kqlly + [IXplls }

Lbr61

Kq),Kq — Kp)y is arbitrarily

b|[Bw —

{b1 +ballglly + by + baplly }- (2.6)

Using Lemma 1, we get

chr€1
NG

[(N(Bw — Kq), Kq — Kp)y| < (2.7)
where

1
G 2by+ba Llpol + LMy + Ly | + LM+ 1Bul |
b [{ (14 b ) Lpal + 1y l+ L0 LM, )

,,1 Lb'b
+9% {(1 L L “’2> [[Bully + by + 61} +i2h b]}eﬁ}.

It indicates that
— Kp)y, is arbitrary small as € is arbitrarily small.
(2.6)condition (T4), we get that

Therefore, G is finite for given u and e€;.

(N(Bw — Kq),Kq
Now, using Eqgs. (2.5),

lg — p|l < €, for some €, > 0.
Next, we determine that ||q(0)
Consider,

qa(e) —p(e)

— p(0)||p is arbitrary small.

NBw(@) — N(Kp)(0)
N{Bw(o) - (Kq)(0)} + N{(Kq)(¢) —

Kp)(@)). >¥

Taking norm on both sides, we get
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llg(e) — p(2)lle = IN{Bw(@) — (Kq)(0)} + N{(Kq)(¢) — (Kp)()} Il
< [[N{Bw(@) — (Kq)(2)}p
+IN{(Kq)(@) — (Kp)(2)}lp-
Now,
IN{Bw(¢) — (Kq)()}|l» = Hfé’xr - 1){Bw(1) — (Kq)(7)}d1|;
< U [ I{Bw(T) — (Kg)(0)}||sdt
< Y- vb|Bw - Kqll,
< %617
and
IN{(Kg)(2) — (Kp)(@)}le = Il [§ %:( = T){(Kq)(T)

19)(T)}dT||uw(2 9
1
<% Vb|Kg—Kp]y.

Since K is continuous on H and ||q — p|| < €, therefore, the right
hand side of the above defined equation can be made arbitrarily
small.

Thus, we get

lace)

Thus, ||q(@) — p(0)|| may be formed arbitrarily small by selecting
appropriate w.

= RMy(x)(reachable set for the fractional semilinear control
system with nonlocal conditions (1.1)-(1.3) is dense in R,(0)(cor-
responding fractional linear system with nonlocal conditions (1.4)-
(1.6).

But R,(0) is dense in P due to the condition (T,) as the
corresponding fractional linear system with nonlocal conditions is
approximately controllable. Therefore, R, (k) is dense in P, which
implies that (1.1)-(1.3) is approximately controllable.

—p(0)|l < €V ¢ € [0,b]andforgivene > 0.

4. Applications
4.1. Abstract system

Assume the fractional differential system has the form:

‘Dyp(Q,Y) = Pyy(0,¥) +1(0,¥) + (0, P(2,¥));
0€[0,b,0<y<m, (4.1)
p(0,0) =p(9,m) =0; for ¢ >0, (4.2)
p0,y) + > oip(ti,y) = Po(¥), (4.3)
i=1
k
pg(ovy)+zbip(si7y) :p](y)7 (44)

i=1
where r € (1,2) and let P = L,[0, 7] and define A : dom(A) — P by
Al = (n; (e dom(A),

where dom(A) = {{(.) €
eigen values —n?,n = 1,2,3,

{(0) ={(m)=0}. A has spectrum of
- with the corresponding eigen func-

tions ¢,(s) = (2/m)"%sin(ns) n=1,2,3,---. The operator represen-
tation of A is
(= (1)), (€ dom(A).

n=1

The cosine function {Y(¢)} and the associated sine function {¥(g)}
are defined by
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0L = cos no(L, L), L P,

n=1
and

+oo]
v =Y —sinnt({,,)¢ P.
(o)t ;nsmn@,cn)gm Le
respectively.

Because A is the infinitesimal generator of a strongly continuous
CF Y(¢) for re(1,2). Now, using the subordinate theorem
(Bajlekova et al., 2001), which gives A is the infinitesimal generator
of a strongly continuous exponentially bounded fractional CF Y, ()
such that Y;(0) =1, also

0Py 12(s0™?), and

—>”
—=n!l(—on+1-0a)’

=M8

O<y<1

Let v: [0,b] — P be defined by
(v(@)(y) =n(e.y); y€[0,m],

where # : [0, b] x [0, ] — [0, 7] be a continuous control function.
Let k : [0,b] x P — P be defined by

K(Q,p)(y) = 6(Q,p(¥)); pe P,y c[0,7].

where ¢ : [0,b] x [0, t] — [0, 7t] is a nonlinear function.
We now define h, h; : C(J,P) — P in the following way:

n k
=Y ap(t;,y) and hi(p) =Y ip(siY)

i1 i=1
for 0 < t;,s; < b,y € [0, 7].

Here, the nonlinear function x can be considered satisfying the
conditions (T3)-(Ts). The nonlocal functions h(p) and h;(p) can be
taken satisfying the assumption (Ts).

The problem (4.1)-4.4 can be rewritten as

D,p(0) = Ap(@) + Bv(0) + K(0,p(0)); ¢ € [0,b],
p(0) = po + h(p),
p'(0) = p; + hi(p).

Therefore, by Theorem 3.1, the fractional differential system (4.1)-
(4.4) is approximately controllable.

4.2. Filter system

Digital filters (DFs) play an extremely important role in the field
of Digital Signal Processing (DSP). The execution of DFs is phenom-
enal; each of the critical factors that DSP has grown highly
regarded. Filters are commonly classified as having two main
applications: signal separation and signal restoration.

If a transmission is influenced by agitation, sound disturbance,
or other signals, the use of filters in signal separation is essential.
For instance, if one gadget is used to calculate the electrical oper-
ation of a baby’s heart (EKG) while still in the womb. Using a
mother’s breath and pulse as a coarse indicator could be humiliat-
ing. To separate these signals from the target, a filter might be
used.

We provide our filter system Fig. 1 as a response to the Filter
systems presented in Zahoor et al. (2017) and Chandra et al.
(2016). Fig. 1 depicts the block diagram’s rough layout, which aids
in improving the solution’s utility while using the smallest amount
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Fig. 1. Filter System.

of inputs possible. (i) Product modulator (PM)-1 accepts the input
x-(¢ — 7) and A gives an output of Ay, (¢ — 7). Likewise, (ii) PM-2
accepts p(t) and x produces x(t,p(t)), (iii) PM-3 accepts »(t)
and B gives Bv(t), (iv) PM-4 accepts p,,h;(p) and ¥,(¢) at time
¢ =0, produces ¥,(0)(p; + hi1(p)), (v) PM-5 accepts pgy, h(p) and
Y,(0) at time ¢ =0, produces Y,(0)(p, + h(p)), respectively. The
integrators execute the integral of y,.(¢ — 7)[Bv(7) + K(s,p(7)))],
over the period g.

Finally, we move the outputs from the integrators to the sum-
mer network. Therefore, the output of p(g) is attained, it is
bounded and approximately controllable.

5. Conclusion

In the present manuscript, we have established the approxi-
mate controllability results for nonlocal fractional semilinear sys-
tem with order r € (1,2). The results have been determined by
assuming the monotone condition on the nonlinear term.

The method discussed in the present article can be further uti-
lized to discuss the approximate controllability results for nonlocal
impulsive fractional system after suitable modifications.
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