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A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

�̃�𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 
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A B S T R A C T

Small chemicals that block a potassium ion channel result in a prolonged QT interval, which can have serious 
cardiotoxic effects and is a major factor in drug development failures. To develop the drug successfully, 
quantitative prediction of human-ether-a-go-go-related (hERG) blockers is essential for designing drug candidates 
without the risk of cardiotoxicity. We built a convolutional neural network (CNN)-based quantitative structure–
activity relationships (QSAR) model to predict cardiotoxicity. The statistical parameters of mean squared error 
(MSE) were 0.001, the mean absolute error (MAE) was 0.016, and the correlation coefficient (Q2) was 0.99 
for the training dataset. The MSE was 0.62, the MAE was 0.65, and the predicted correlation coefficient (R2) 
was 0.70 for the test dataset. Further, we explored principal component (PC) analysis, t-SNE, scaffold analysis, 
active cliff, fingerprint analysis and chemical analyses to identify molecular similarity. We discovered that 
adding an acidic oxygen/aliphatic oxygen (hydroxyl group) reduces hERG inhibition and increases lipophilicity. 
The fragments are furan, sulfonamide, methanesulfonamide, p-chlorophenyl, p-fluorophenyl, and ethyl(heptyl)
amino groups increased the hERG risk. Finally, we conclude that the QSAR model in combination with the 
convolutional neural network (CNN) offers a potentially novel approach for quantitatively predicting the 
cardiotoxicity of drug candidates.

1. Introduction

Cardiotoxicity brought on by drug-induced blockage of potassium 
ion channel, which plays a significant role in cardiac action potential, 
involves the gene that encodes Kv11.1 and is connected to the human 
ether-a-go-go (hERG) (Sanguinetti et al., 1995; Shan et al., 2022). Severe 
cardiotoxicity, including cardiac arrhythmia, will result from blocking 
this hERG potassium ion channel. This will lengthen the medical term 
(QT) interval, which causes cardiac arrhythmias and sudden death. 
Some drugs lead to cardiotoxicity, so medicines have been withdrawn 
from the market. In the process of developing new drugs, ensuring 
drug safety has grown more demanding and challenging. Recent years 
have seen a significant increase in the removal from the market due to 
the toxicity of several medications that were tested in clinical studies. 
Some of these drugs, including pimozide, terfenadine, grepafloxacin, 
cisapride, astemizole, and sertindole, exhibit cardiotoxicity (Meng et 
al., 2021). Experimental bioassays of hERG are available to evaluate the 
inhibitory activity of unknown molecules. Computationally predicting 
hERG inhibition in early drug development stages is a big challenge for 
us. Over the past decade, much research has reported such quantitative 
structure–activity relationships (QSAR) (Ekins et al., 2002). Many 
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researchers have applied machine learning (ML) algorithms to predict 
hERG activity. Siramshetty et al. applied neural networks, random 
forest, and support vector machine (SVM) (Siramshetty et al., 2018). 
Creanza et al. predict hERG-related cardiotoxicity using SVM and 
molecular docking (Creanza et al., 2021). Meng et al. employed five 
different features and ML algorithms on hERG potassium channel 
dataset for chemical cardiotoxicity prediction (Meng et al., 2021). Cai 
et al. employed a deep learning-based classification model on the hERG 
dataset (Cai et al., 2019). Shen et al. built a directed message-passing 
neural network to classify hERG channel blockers (Shan et al., 2022). 
Lanevskij et al., applied the XGBoost method to predict hERG inhibition 
(Lanevskij et al., 2022). Delre et al., built a ML model using a random 
forest, k-nearest neighbor, to classify hERG-related cardiotoxicity 
(Delre et al., 2022). Ryu et al. proposed a computational framework 
that classifies molecules as hERG blockers and non-blockers (Ryu et al., 
2020). Traditional methods for cardiotoxicity prediction are costly and 
time-consuming. Therefore, it is necessary to develop a new approach 
to predict cardiotoxicity in the early stage of drug development. Lee et 
al. developed a web server to predict drug candidates that do not cause 
cardiotoxicity (Lee et al., 2019). Hu et al. developed a novel molecular 
graph convolution neural network (CNN) model for cardiotoxicity 
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prediction. Sato et al. built an hERG regression model using support 
vector regression (Sato et al., 2021). Tobita et al. developed a classifier 
model constructed using the SVM method for hERG inhibitors (Tobita 
et al., 2005). Du et al. analyzed chemical motifs for hERG inhibitors 
(Du et al., 2015). Keseru et al. developed a traditional and hologram 
QSAR model for predicting hERG potassium channel affinities 
(Keseru et al., 2003). Zhang et al. employed various ML methods to 
predict hERG potassium channel blockage based on the patch clamp 
method’s descriptors and fingerprints on a dataset on mammalian 
cell lines (Zhang et al., 2016). However, most of these models built 
with ML for the classification of hERG blockers are inappropriate for 
quantitative prediction. We have focused our attention on developing 
a deep learning-based QSAR model and chemical analysis of chemical 
structure. Springer et al. conducted a fingerprint pair analysis of hERG 
inhibitors in the Novartis internal database (Springer et al., 2013). 
The structure-activity landscape index (SALI) method for pair analysis 
uses fingerprints to identify similar pairs (Guha et al., 2008). SALI is 
also used for activity cliff analysis. Choi et al. studied on 5299 hERG 
inhibitors using chemical fingerprint analysis and ML and deep learning 
algorithms for binary classification (Choi et al., 2020). 

While traditional drug development methods have been studied 
extensively, the toxicity problem remains challenging. In the 
computational approach, deep learning and ML have successfully 
performed tasks such as classification models. However, the field faces 
some challenges. While predicting molecules using a regression model, 
it is unclear how to quantitatively predict a classification model and 
which part of fingerprints is responsible for biological activity. In this 
paper, we address some of these limitations by chemical analysis and 
regression problems.

Chemical space analysis is the most efficient technique for identifying 
new drug candidates due to the assumption that the same chemical 
structures would produce similar biological effects. Techniques like 
t-distributed stochastic neighbor embedding (t-SNE) and principle 
components analysis (PCA) can be applied (Naveja et al., 2019). PCA 
makes mapping deterministic and easy. This method disregards how 
nonlinear features interact with one another.

 We proposed CNN architecture on the experimental dataset, which 
can quantitatively predict the cardiotoxicity of unknown molecules. 
QSAR is integrated with CNN. The molecular descriptors used in the 
QSAR model provide details on the physical and chemical structure 
of the chemical. Following the entry of these descriptors, the CNN 
framework is used to train a trustworthy and stable model and, 
eventually, predict the biological activity of hERG blockers. In this 
study, we determined PCA and t-SNE, chemical space, activity cliff, 
molecular fingerprint similarity, and scaffolds responsible for blocking 
the hERG potassium channel. 

2. Materials and Methods

2.1 Data collection

We collected hERG blockers with IC50 values from the publicly 
available cHEMBL database (CHEMBL829152) (https://www.ebi.
ac.uk/chembl/assay_report_card/CHEMBL829152/). In the dataset, 
there are 73  chemicals in total. Data were curated by removing 
incorrect smile formats, conversion of IC50 to pIC50 values, and 
conversion of smile format to 3D SDF format. We finally obtained 71 
compounds for further processing. We changed the IC50 value into the 
pIC50 value because the data points for IC50 values might not have 
been spread equally. pIC50 value is a negative logarithmic value of 
IC50, which is computationally calculated using an aggregate function. 
The pIC50 values after transformation fell between 4.82 and 8.0. Using 
the CORINA software, we added hydrogen atoms to 2D structures to 
make them 3D (Sadowski et al., 1994).

2.2 Descriptor calculation

Molecular descriptors are the physical and chemical characteristics 
of a compound and are employed to connect biological functions 
to structure. We converted the 1D structure into a 3D vector that 
contained critical physical and chemical structural data. Here, we 

generated molecular descriptors using the PowerMV tool (Liu et al., 
2005) and got 147 binary vectors of pharmacophore fingerprint and 
24 weighted burden descriptors. Further, we applied PCA and reduced 
these descriptors into eight principal components (PCs) descriptors 
and two 2D t-SNE descriptors. Using a random selection, we divided 
85–15% of the train-test subsets' findings into 60 compounds for the 
training dataset and 11 for the test dataset.

For the model development, we calculated 40 properties of 
molecules, such as cLogP, where P is ratio of octanol/water; cLogS, 
where S is water solubility in mol/I, pH=7.5, at 25°C temperature, 
relative polar surface area, total surface area, topological polar surface 
area, H-donors, H-acceptors, non-hydrogen and carbon hydrogen atom 
count, metal atom count, electronegative atom count (As, Br, Cl, F, I, 
N, O, P, S, Se), stereo center count, rotable bond count, ring closure 
count, sp3-atom count, systemic atom count, small ring count with 
or without hetero atoms, small fully saturated ring count, small non-
aromatic ring count, aromatic ring count, small saturated carbo-ring 
count, small carbo-non aromatic ring count, carbo aromatic ring count, 
small hetero non aromatic ring count, hetero aromatic ring count, 
functional groups: amide nitrogen, amine, alkyl-amine, aryl amine, 
aromatic nitrogen atom, basic nitrogen, acidic oxygen, stereo isomer 
count and relation, 3D: globularity (linear<0.5<spherical), Globularity 
(non-spherical<0.9<spherical, solvent excluded surface area using 
VDW-radii and 1.4 Å probe, molecule volume inside solvent excluded 
surface using VDW-radii and 1.4 Å probe for , PCA and t-SNE analysis 
using DataWarrior tools.

2.3 QSAR model

We used a CNN architecture, which is very effective and frequently 
used for drug prediction. We used Python 3.6, a deep learning package 
called Tensorflow (https://www.tensorflow.org), and Keras (https://
keras.io/) for model development. In order to more accurately predict 
biological activity (pIC50 values), a rigorous iteration procedure 
is required. The hyperparameters, such as hidden layers, number of 
epochs, activation function such as rectified linear unit (ReLU), output 
layer, dense layer, and model optimizer stochastic gradient descent 
(SGD) were optimized. As loss functions, we employed the mean 
absolute error (MAE) and mean squared error (MSE). The performance 
of the model was assessed using the MSE and MAE measures.

Input vector: Chemical compound descriptors matrix 60*51 are used 
as input vectors for QSAR model. In this case, the whole input vector 
(descriptors are 51 in length while the hidden state at each step is 71 in 
length) loads and produces outputs that fed to the convolutional layer.

Convolutional layer: The basic CNN architecture is composed of 
three consecutive sequential layers called convolutional layers of the 
network in order from input to output.The convolutional layer uses 
a filter to reduce feature maps, and its hyper-parameters help reduce 
feature size and stride. We used a 1x1 kernel size and applied the ReLU 
activation function. Similarly, this procedure is repeated for two other 
layers with 128 and 256 output channels.To improve the compound’s 
biological activity (pIC50 value) prediction, our proposed QSAR model 
has three convolutional layers, two fully connected layers, and one 
output layer, as shown in Fig. 1.

2.4 ReLU

The rectified linear activation function in CNN model has the 
highest non-saturation level (ReLU). To shorten the training time, the 
convergence of SGD is accelerated. If no negative input is provided, the 
function returns zero; otherwise, it returns a positive integer. You can 
express it in Eq. (1) as follows:

f(x) = max (0, x) (1)

where f(x) is the ReLU function and x is the input to a neuron.

2.5 Model validation and evaluation metrics

Validating the model and assessing its predictive capability with 
statistical parameters are critical steps in developing a QSAR model. 
The dataset is randomly divided into 85% training dataset for model 
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development and 15% test dataset for model validation. A QSAR model 
is constructed using the training data. External performance can be 
assessed using the validated bioactivity of the test dataset, whereas 
internal performance is frequently used to validate the bioactivity of 
the training dataset. The MSE and MAE values were used to calculate 
the difference between expected and experimental activity. The 
correlation coefficient (Q2), predicted correlation coefficient (R2), root 
MSE (RMSE), MSE, and MAE were used to evaluate the QSAR model's 
performance. The Q2 varies between 0 and 1. A good model has Q2s 
close to one and low RMSE, MSE, and MAE values. The best epoch was 
used to predict the bioactivity of unidentified compounds.

2.5.1 Q2

By predicting a molecule's biological activity after it has been 
eliminated from the training set, the model's accuracy is examined. 
Until each molecular biological activity in the training dataset has been 
predicted once, this phase is repeated. Equation is used to determine 
the internal validation, Q2 (2).

Q
y y

y y

i i

i means

2
2

2
�

� �

� �

( )

( ) � 
(2)

where, yi is the actual and yi  is predicted values of the ith molecule 
in the training dataset. ymeans is the average activity of all the compounds 
in the training dataset (Kumari et al., 2016; Steyerberg et al., 2003).

2.5.2 R2

External validation was performed on the test dataset’s molecules by 
calculating the R2 value using the Eq. (3):

R
y y

y y

i i

i means

2
2

2
�

� �

� �

( )

( ) �
(3)

where, yi is the actual and yi  is predicted activities of the ith molecule 
in the test set. ymeans is the average activity of all the compounds in the 
test set.

2.5.3 Root mean square

Eq. (4) defines RMSE as the standard deviation of the prediction 
errors.

RMSE= 1

1

2

N
y y

i

N

i i
�� �( )

(4)

2.5.4 MSE

The MSE is the average of the difference in squares between the 
original values in the dataset and the predicted values. The residuals' 
variance is calculated (Pal R, 2017). MSE is defined in Eq. (5) as follows: 

MSE
N

y y
i

N

i i� �
��1 1

2( ) (5)

where, yi  is actual and yi  is predicted values.

2.5.5 MAE

The average absolute difference between the dataset’s actual and 
predicted values is measured by the MAE. It computes the average of 
the testset. Eq. (6) defines the MAE as follows: 

MAE
N

y y

i

N

i i� �

�
�� � �

1

1

(6)

where, yi  is the predicted value of yi.

2.6 Chemical space visualization

Chemical space visualization is a technique for plotting 2D or 3D 
molecular structures according to a predetermined set of characteristics. 
We employed the visualization techniques PCA and t-NSE to give a 
visual depiction of the chemical space of molecules. By geometrically 
projecting descriptor dimensions onto smaller sizes, PCA reduces their 
size (PC). The first PC (PC1) is selected to maximize projected point 
variation while minimizing the overall distance between the projected 
points and the data points. We employed the t-SNE method to reduce 
the dimension of the molecule’s descriptors. This method uses the 
Gaussian probability distributions. The low-dimensional space clusters 
in the embedding space because it maintains its pairwise molecular 
similarity to the high-dimensional space without significantly losing 
structural information.

We calculated t-SNE for the chemical space analysis of subsets of the 
chemical compounds from the dataset of hERG inhibitors. The t-SNE 
parameters are complexity 10, dimensions 50, and 1000 iterations.

Fig. 1. CNN architecture for QSAR model of hERG potassium channel blockers.
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Further, we conducted chemical space research to assess SAR and 
assist in locating fingerprint pairs of the 71 compounds. This strategy 
was put into practice by carefully analyzing the top ten PCs, which 
explain 99.99% of the variance. The subsets were identified, and the 
chemical similarity at the fragment level was evaluated using activity 
cliff and scaffold analysis.

2.7 Activity cliffs analysis

Small structural modifications known as "activity cliffs" are linked 
to surprisingly substantial variations in biological activity. Activity 
cliffs are a timely and illuminating investigation of the SAR since they 
identify specific, minute structural alterations that dramatically affect 
biological activity. To find probable activity cliffs in the dataset, the 
DataWarrior tool was used to calculate activity cliffs between 2D and 
3D t-SNE using three locations corresponding to the pIC50 value.

Activity cliff or activity landscape methods are 2D scaling processes 
of the chemical space, all involved molecules are positioned such that 
similar molecules are located close to each other. We used the first two 
components of a descriptor of the molecules as coordinates in a PCA to 
scale the data. It also detects SAR between molecules. Every fingerprint 
pair of molecules that is comparable is subjected to similarity analysis. 
It is also known as the SALI. Activity cliffs are molecules that exhibit 
a sudden change in activity despite sharing a relatively comparable 
structure. To create new structural motives with better activities, it 
is important to understand the links between structure and activity. 
These pairs are particularly relevant in this regard. SALI values and 
activities are encoded in marker size and marker color, respectively, 
in the similarity view that is produced after an activity cliff analysis.

2.8 Scaffold analysis

Chemical scaffolds are an essential component of chemical structures. 
Scaffolding enhances pharmacokinetic and biological properties, as well 
as the dependability of bioactive compounds, SAR studies, and other 
studies. The Markush structure was first developed by Eugene A. M. 
(Markush, E. 1924). The two different kinds of scaffolding are structural 
and functional. A functional scaffold has elements that interact with the 
target. Even though the structural scaffold supports exit vectors in the 
proper geometries, interacting moieties can be inserted to embellish 
the scaffold (Brown N., 2013). The Murcko framework is a second 
illustration of scaffolding that was put up by Bemis and Murcko. (Bemis 
et al., 1996).

We used the Datawarrior tool to perform the scaffold analysis. Three 
scaffolding techniques were employed: the Plain Ring System, the Ring 
with Atomic No Substitution, and the Murcko scaffold.

3. Results and Discussion 

We developed a QSAR model to quantitatively predict the 
cardiotoxicity of unknown molecules that block the hERG potassium 
channel. We retrieved 73 chemical structures with accompanying IC50 
values prior to modeling. After the data curation process, we obtained 
71 molecules. We generated fingerprints, weighted burdens, 2D t-SNE, 
and PCA features that characterize the structural and functional 
requirements to construct a QSAR model that can be used to predict 
the bioactivity of drugs in an unknown dataset. After being trained 
on the first 85% of the randomly split set, the model was verified on 
the final 20% of the dataset. The results indicated good predictive 
capacity based on approaches for internal and external validation. For 
the CNN architecture and number of neurons, hidden layers, activation 
functions, and QSAR model, measures of efficiency and performance 
were investigated. The results indicate that it could be possible to 
predict the bioactivity of a significant database using this model. The 
MSE of QSAR models was determined using various loss function 
settings. The change in MSE values versus the values of the loss function 
has been plotted in Fig. 2. As demonstrated in Fig. 3, obtaining robust 
and good performance slowly converged with each epoch increment. 
Eventually, it varied, despite the MAE loss curves of the training and 
test datasets showing a more convergence pace during the first 50 
epochs. As a result, predicting the activity of molecules requires less 

training time for a model. The value of pIC50 of the training and test 
datasets was calculated using the QSAR model. For the training dataset, 
MSE was 0.001, MAE was 0.016, Q2 was 0.99 for the training dataset. 
For the test set, the MSE was 0.62, the MAE was 0.65, and the R2 was 
0.70. The R2 value showed that the model had outliers; the range of 
IC50 values was from 10 nM to 1412537 nM. The scatter plot of the 
experimental versus predicted values for the training and test datasets 
has been shown in Figs. 4 and 5, respectively.

4. Chemical analysis

We hypothesized that similar structures share similar biological 
activity. To explore this idea, we collected an experimental bioass9ay 
dataset of hERG blocker and used PCA for finding important 
molecular properties; t-SNE for chemical distribution; activity cliff for 
individual chemical singleton; SALI for fingerprint structure similarity; 
hierarchical relationship between scaffold defined by Murcko algorithm 
and ring system atomic number substitution; SOM and core fragment 
analysis. We then compared the structural neighborhoods of chemicals 
in different ranges of hERG activity values (pIC50). We have used 40 
chemical properties for PCA analysis and t-SNE analysis. Figs. 6(a)-(b) 
depicts the 2D and 3D PCA analysis, respectively, of the first two PCs, 
and Fig. 7 illustrates the 2D eigenvalues of 40 properties. Fig. 8 visually 
represents the 2D t-SNE of hERG blockers with pIC50 values. Each data 

Fig. 2. Plot of CNN based QSAR model's MSE loss value for the training and test 
dataset of hERG potassium channel blockers versus the quantity of training epochs.

Fig. 3. Plot of CNN based QSAR model's MAE loss value for the training and test 
dataset of hERG potassium channel blockers versus the quantity of training epochs.
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Fig. 4. Scatter plot of actual versus predicted values of the training dataset of hERG 
potassium channel blockers.

Fig. 5. Scatter plot of actual value versus predicted values of the test dataset of hERG 
potassium channel blockers for cardiotoxicity prediction.

Fig. 6a. 2D PCA plots of hERG blockers with biological activity (pIC50) shows 71 
chemical structures, and the color indicates pIC50 value range 3 to 8 (from red to blue).

Fig. 6b. 3D PCA plots of hERG blockers with biological activity (pIC50) show 71 
chemical structures, and the color indicates pIC50 value range 3 to 8 (from red to blue).

Fig. 7. Visual representation of chemical properties with the first two PCs of hERG 
potassium channel blockers.

Fig. 8. 2D t-SNE plot of hERG potassium channel blockers with biological activity 
(pIC50) shows 71 chemical structures, and the color indicates pIC50 value from red 

(3) to blue (8).



Kumari et al Journal of King Saud University - Science 2025 37 (2) 3112024

6

point represents a chemical compound, and the color indicates pIC50 
values range from 3 to 8 (red to blue).

4.1 Activity cliff analysis

Activity cliffs identify molecular similarity, rich in SAR annotations, 
with threshold pIC50 values. Figs. 9 and 10 depict constellation maps 
of neighborhood chemicals that share similar X and Y coordinates in the 
2D plot for chemicals with similar structures. The pIC50 value is used 
to color the data points using a scale from light green (low pIC50 value) 
to blue (high pIC50 value). The size of data points represents many 
fragment/fingerprint pairs. Linking lines represent the chemicals that 
are shared among data points. Fig. 10 demonstrates the quantitative 
relationship between the fragment-based similarity and the pIC50 
value. Activity versus fragment similarities (>80%) show that molecules 
with equivalent descriptors also have similar chemical structures.

CHEMBL12713, CHEMBL296419, CHEMBL473, and CHEMBL533 
had pIC50 values of 8.0. CHEMBL296419 (pIC50 = 8.0) is linked with 
CHEMBL94454 (pIC50 = 6.36), shown in Fig. 11. The finding of activity 
cliffs can significantly impact how the QSAR model evolves. The 
specific fragment pair in a molecule is responsible for hERG block. The 
chemicals that act as hERG blockers have many structural similarities, 
as shown in Fig. 10. We identified a QSAR between the fingerprint 
pairings of similarity for the selected substances.

4.2 Relevance of chemical properties to hERG potassium channel

Chemical properties are important for cardiotoxicity prediction. 
Here, we thoroughly examined the connections between hERG and 
seven chemical properties: acidic oxygen, hydrogen-bond acceptors 
AlogP, clogP, clogS, polar surface area, and total surface area. The 
distribution of these properties was shown in Figs. 12(a)-(f). We 
can distinguish these properties between hERG severe blocker, mild 
blocker, and non-blocker. From Fig. 11, we analyzed that adding acidic 
oxygen or aliphatic oxygen (hydroxyl group) reduces hERG inhibition 
and increases clogP (lipophilicity).
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Fig. 9. Constellation plot of the quantitative relationship between pIC50 values and 
fingerprint similarity of hERG potassium channel blockers.

Fig. 10. SALI of quantitative relationship pIC50 values (more than 5) and fragment-
based similarity of hERG potassium channel blockers.

Fig. 11. Quantitative relationship between pIC50 values and fingerprint similarity of 
hERG potassium channel blockers.

Fig. 12a. Correlations of eight representative chemical descriptors acidic oxygen.

Fig. 12b. Hydrogen-bond acceptors, AlogP.
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Fig. 12c. ClogP.

Fig. 12d. ClogS.

Fig. 12e. Polar surface area.

Fig. 12f. Total surface area versus pIC50 value of 71 compounds of hERG potassium 
channel blockers.

4.3 Scaffold analysis

The molecules are divided up into four primary components 
by scaffold analysis: the ring system, linkers, side chains, and the 
Murcko framework. We applied the ring system with atomic number 
substitution scaffold and the most central atom core fragment scaffold 
to study the compounds.

Our analysis reveals that furan, sulfonamide, methanesulfonamide, 
p-chlorophenyl, p-fluorophenyl, and ethyl(heptyl)amino groups 
increased hERG risk when added to a molecule, as listed in Table 1 and 
Figs. 13(a, b, c & d). In Table 2, we listed fragments of molecules that 
have pIC50 values less than 5. These fragments are not responsible for 
cardiotoxicity. While in Table 1 lists fragments/fingerprint pairs that 
affect cardiotoxicity. When these fragments were added to molecules, 
they increased the pIC50 values, as shown in Fig. 12.

Fig. 13a. Core fragments (R1) of hERG potassium channel blocker versus pIC50.

Fig. 13b. Core fragments (R2) of hERG potassium channel blocker versus pIC50.

Fig. 13c. Core fragments (R3) of hERG potassium channel blocker versus pIC50.
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Fig. 13d. Core fragments (R5) of hERG potassium channel blocker versus pIC50.

Table 1.  
List of Scaffolds structure/fragments whose pIC50 values are greater than 5, responsible for potassium channel inhibition and cardiotoxicity.

Most central atom core 
fragment

R1 R2 Scaffold (Ring system with atomic number 
substitution)
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Table 2.  
List of Scaffolds structure/fragments whose pIC50 values are less than 5, not 
responsible for potassium channel inhibition and cardiotoxicity.
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5. Conclusion

Small chemicals that block the human-ether-a-go-go-related (hERG) 
potassium channel result in a prolonged QT interval, which can have 
severe cardiotoxic effects and is a major factor in drug development 
failures. To develop the drug successfully, quantitative prediction of 
hERG blockers is essential for designing drug candidates without the 
risk of cardiotoxicity. In this research work, we built a QSAR model 
combined with CNN architecture to predict cardiotoxicity effects 
quantitatively. For model optimization, we reduced 179 descriptors into 
eight PCs and two t-SNE vectors with 40 physicochemical properties. 
The statistical results reveal that for the training dataset, the MSE 
was 0.001, MAE was 0.016, and the Q2 0.99. For the test dataset, the 
MSE was 0.62, the MAE was 0.65, and the R2 was 0.70. In order to 
identify structural characteristics related to biological activity (IC50), 
we also examined chemical space, scaffold, activity cliff, and molecular 
similarity. The ring system shares similar chemical and biological 
activity, employing chemical space with atomic number substitution 
scaffold and the most central atom core fragment scaffold. We analyzed 
that adding acidic oxygen or aliphatic oxygen (hydroxyl group) reduces 
hERG inhibition and increases clogP (lipophilicity). The fragments, 
namely furan, sulfonamide, methanesulfonamide, p-chlorophenyl, 
p-fluorophenyl, and ethyl(heptyl)amino group, increased the hERG 
risk. More than 80% of the fragment pairs exhibited commonality. 
Our analysis reveals that these functional groups increase hERG risk 
when added to a molecule. Ultimately, we conclude that the QSAR 
model combined with CNN promises a potentially novel approach to 
quantitatively predict the cardiotoxicity of the drug candidate.
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