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A new deflected subgradient algorithm is presented for computing a tighter lower bound of the dual
problem. These bounds may be useful in nodes evaluation in a Branch and Bound algorithm to find
the optimal solution of large-scale integer linear programming problems. The deflected direction search
used in the present paper is a convex combination of the Modified Gradient Technique and the Average
Direction Strategy. We identify the optimal convex combination parameter allowing the deflected sub-
gradient vector direction to form a more acute angle with the best direction towards an optimal solution.
The modified algorithm gives encouraging results for a selected symmetric travelling salesman problem
(TSPs) instances taken from TSPLIB library.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In this paper we consider the following integer linear program:

IPð Þ
z� ¼ min>x

s:t: A1x 6 b1

x 2 X ¼ x 2 Zn : A2x 6 b2f g;

8><
>: ð1Þ

where x is an n� 1 vector, Zn is the set of integers, c, b1, b2, A1 and A2

are n� 1, m� 1, k� 1, m� n and k� n matrices, respectively. We
assume that the problem ðIPÞ is feasible and that X is a bounded
and finite set. The problem ðIPÞ is called the ‘‘primal problem” and
z� is called the ‘‘primal optimal value”. The constraints A2x 6 b2 are
generally called the easy constraints, in the sense that an integer
linear program with only these constraints is easy to solve.
Lagrangian duality (Bazaraa and Sherali, 1981) is the most
computationally useful idea for solving hard integer programs.
The Lagrangian dual problem is obtained via Lagrangian relaxation
approach (Fisher, 1985), where the constraints A1x 6 b1, which are
called the ‘‘complicated constraints”, are relaxed by introducing a
multiplier vector k 2 Rm

þ , called ‘‘Lagrangian multiplier”. The Lagran-
gian relaxation problem is formulated as follows:

RPð Þ w kð Þ ¼ min c>xþ k> A1x� b1ð Þ
s:t: x 2 X;

(
ð2Þ

It is easy to prove that wðkÞ 6 z for all k P 0 (weak duality
(Bazaraa et al., 2006)). The best choice for k would be the optimal
solution of the following problem, called the dual problem:

Dð Þ w� ¼ max w kð Þ
k P 0:

�
ð3Þ

With some suitable assumptions, the dual optimal value w� is
equal to z� (strong duality (Bazaraa et al., 2006)). In general, w�

provides a tighter lower bound of z�. These bounds may be useful
in nodes evaluation in exact methods such as Branch and Bound
algorithm to find the optimal solution of ðIPÞ. The function wðkÞ
is continuous and concave but non-smooth. The most widely
adopted method for solving the dual problem is the subgradient
optimization, see for instance Polyak (1967), Shor (1985), Nedic
and Bertsekas (2010), Nesterov (2014) and Hu et al. (2015). The
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pure subgradient optimization method is an iterative procedure
that can be used to solve the problem of maximizing (minimizing)
a non-smooth concave (convex) function wðkÞ on a closed convex
set X. This procedure is summarized in Algorithm 1, and it is used
in various fields in science and engineering (Sra et al., 2012).

Algorithm 1 (Based Subgradient Algorithm).

1. Choose an initial point k0 2 X.
2. Construct a sequence of points kk

� �
k
� Xwhich eventually

converges to an optimal solution using the rule
kkþ1 ¼ PX kk þ tksk

� �
, where PX :ð Þ is a projection operator

on the set X and tk is a positive scalar called step length
such that
tk ¼ dk
w� �wk

kskk2
; ð4Þ

where wk ¼ wðkkÞ is the dual function at the current itera-
tion, dk 2�0;2½ and sk is a subgradient of the functionw at kk.

3. Replace k by kþ 1 and repeat the process until some stop-
ping criteria.

In the context of Lagrangian relaxation, computing the subgra-

dient direction sk and the projection PX kk þ tksk
� �

ðX ¼ Rm
þÞ is a

relatively easy problem. Since the subgradient sk is not necessarily
a descent direction, the step-length rule (4) differs from those
given in the area of descent methods. In fact, this choice assures

the decreasing of the subsequence kk � k�
��� ���� �

k
as well as the con-

vergence of kk
� �

k
to k�. However, it is impossible to know in

advance the value of w� for most problems. To this end, the most
effective way is to use the variable target value methods developed
in Kim et al. (1990), Fumero (2001) and Sherali et al. (2000).

Another challenge in subgradient optimization is the choice of
direction search that affects the computational performance of
the algorithm. It is known that choosing the subgradient direction
sk, leads to the zigzagging phenomenon that might cause slow the
procedure to crawl towards optimality (Bazaraa et al., 2006). To
overcome this situation, in the spirit of conjugate gradient method
(Nocedal and Wright, 2006; Fletcher and Reeves, 1964), we can
adopt a direction search that deflects the subgradient pure direc-

tion. Accordingly, the direction search dk at kk is computed as:

dk ¼ sk þWkd
k�1

; ð5Þ
where Wk P 0 is a deflection parameter, sk is a subgradient of the

function w at kk and dk�1 is the previous direction ðd0 ¼ 0Þ. Then,
the new iteration is computed as:

kkþ1 ¼ PX kk þ tkd
k

� �
: ð6Þ

Some promising deflection algorithms of this type are the Mod-
ified Gradient Technique (MGT) (Camerini et al., 1975) and the
Average Direction Strategy (ADS) (Sherali and Ulular, 1989). The
MGT method was found to be superior to the pure subgradient
method when used in concert with a specially designed step-
length selection rule. The deflection parameter WMGT

k is computed
according to:

WMGT
k ¼

�gk
skdk�1

dk�1k k2 if skdk�1
< 0;

0 otherwise;

8<
: ð7Þ

where 0 < gk 6 2. With this choice of the deflection parameter, the
direction becomes:
dk
MGT ¼ sk þWMTG

k dk�1
: ð8Þ

The ADS strategy recommends to make the deflection at each
iteration point by choosing the direction search which simply
bisects the angle between the current subgradient sk and the pre-

vious direction search dk�1. To get this direction, the deflection
parameter is computed according to:

WADS
k ¼ kskk

kdk�1k
: ð9Þ

With this choice of the deflection parameter, the direction
becomes:

dk
ADS ¼ sk þWADS

k dk�1
: ð10Þ

Nowadays, the deflected subgradient method remains an
important tool for nonsmooth optimization problems, especially
for linear integer programming, due to its simple formulation
and low storage requirement. In this paper, we present a new
deflected direction search as a convex combination of the direction

dk
MGT (8) and the direction dk

ADS (10). Our main result is the identifi-
cation of the convex combination parameter which forces the algo-
rithm to have a better deflection search than those given in the
pure subgradient, MGT and ADS. For a numerical comparison of
our approach and the two concurrent techniques MGT and ADS,
we opted for the Travelling Salesman Problem (TSP) where its
importance comes from the richness of its application and the fact
that it is a typical of other problems of combinatorial optimization
(Diaby and Karwan, 2016; El-Sherbeny, 2010).

The remainder of the paper is organized as follows: in Section 2,
we describe our deflected subgradient method with convergence
analysis. The computational tests, conducted on the Lagrangian
relaxation of TSP of different sizes are described in Section 3. In
Section 4 we conclude the paper.

2. A new modified deflected subgradient method

In this section, we present a new modified deflected subgradi-
ent method ðNMDSÞ which determines the direction search as
follows:

dk ¼ ð1� akÞdk
MGT þ akd

k
ADS; ak 2 0;1ð Þ: ð11Þ

We then obtain the following deflection parameter:

Wk ¼
�gk 1�akð Þskdk�1þak skk k dk�1k k

dk�1k k2 if skdk�1
< 0;

0 otherwise;

8<
: ð12Þ

hence dk ¼ sk þWkd
k�1.

Algorithm 2 (The Deflected Subgradient Algorithm).

1. (Initialization): Choose a starting point k0 2 X ¼ Rm
þ , let

d0 ¼ 0 and k ¼ 0.
2. Determine a subgradient sk 2 @wðkkÞ and compute
dk ¼ sk þWkd
k�1

;

kkþ1 ¼ PXðkk þ tkd
kÞ;

where Wk is given by relation (12) and tk will be specified
later.

3. Replace k by kþ 1 if a stopping condition is not yet met
and return to step 2.

Consider the deflected subgradient method algorithm given in
Algorithm 2. The following proposition extends important proper-
ties of the subgradient vector sk and the deflected subgradient
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direction dk
MGT to the new deflected subgradient direction dk (11).

With a best choice of the parameter tk; d
k make an acute angle with

k� � kk and dk�1. We also get the decreasing of the subsequence
ðkk� � kkkÞk.

Proposition 1. Let sk 2 @wðkkÞ, dk be the new deflected subgradient

direction given by (11) and (12) and let fkkg be the sequence of
iterations generated by the deflected subgradient scheme. If we take
0 < gk 6 2 and the stepsize tk to satisfy

0 < tk <
w� �wðkkÞ

dk
��� ���2 ; 8k ¼ 0;1;2; . . . ð13Þ

then,

1. dk�1 k� � kk
� �

> 0; ð14Þ

2. kkþ1 � k�
��� ��� < kk � k�

��� ���; ð15Þ

3. dkdk�1 P 0:

for all k where kk are non optimal points and k� is an optimal
solution.
Proof.

1. The proof is established by induction on k. Since we start with

d0 ¼ 0, the case k ¼ 1 is trivial. Now, assume that we have
dk�2 k� � kk�1
� �

P 0; 8k P 2; ð16Þ

and let us establish (14) at iteration k. Using the definition of

dk�1, we obtain that

dk�1 k� � kk
� �

¼dk�1 k� � kk�1 þ kk�1 � kk
� �

¼dk�1 k� � kk�1
� �

þ dk�1 kk�1 � kk
� �

¼ sk�1 þWk�1d
k�2

� �
k� � kk�1

� �
þ dk�1 kk�1 � kk

� �
¼sk�1 k� � kk�1

� �
þWk�1d

k�2 k� � kk�1
� �

þ dk�1 kk�1 � kk
� �

:

Furthermore, from the concavity of the function w �ð Þ, the induc-
tion hypothesis (16) and the inequalities in (13), we get

dk�1 k� � kk
� �

P w� �wðkk�1Þ
� �

� dk�1 kk � kk�1
� �

ð17Þ

Since the vector kk � PXðkk�1 þ tk�1d
k�1Þ is perpendicular to the

supporting hyperplane of X ¼ Rm
þ at kk, the angle at kk is obtuse

(see Fig. 1). We deduce that

dk�1ðkk � ðkk�1 þ tk�1d
k�1ÞÞ 6 0;

which is equivalent to

�dk�1ðkk � kk�1Þ P �tk�1kdk�1k2 ð18Þ
Substituting (18) in (17) we obtain

dk�1 k� � kk
� �

P w� �wðkk�1Þ
� �

� tk�1kdk�1k2 > 0: ð19Þ
2. We have
k� � kkþ1
��� ���2

¼ k� � PXðkk þ tkd
kÞ

��� ���2

6 k� � kk � tkd
k

��� ���2

¼ k� � kk
��� ���2

þ t2k dk
��� ���2

� 2tkd
k k� � kk
� �

¼ k� � kk
��� ���2

þ tk tk dk
��� ���2

� 2dk k� � kk
� �� �

:

From the concavity of w, the inequalities in (13) and by applying
(14) in Proposition 1, we get the following relations,
respectively:

tk dk
��� ���2

6w� �wðkkÞ 6 2 w� �wðkkÞ
� �

62sk k� � kk
� �

62dk
MGT k� � kk

� �
62dk k� � kk

� �
:

It follows, that

tk dk
��� ���2

� 2dk k� � kk
� �

6 0:

Consequently,

k� � kkþ1
��� ��� < k� � kk

��� ���:
3. If skdk�1 P 0 then dk ¼ sk and hence the claim follows. Thus,

consider the case skdk�1
< 0. we have then
dkdk�1 ¼ sk þWkd
k�1

� �
dk�1

¼skdk�1 þWk dk�1
��� ���2

¼skdk�1 � gk 1� akð Þskdk�1 þ ak sk
�� �� dk�1

��� ���
¼ �ak þ gkakð1� akÞ þ akð Þ sk

�� �� dk�1
��� ���

¼gkak 1� akð Þ sk
�� �� dk�1

��� ���
P0:

This completes the prove. h
The importance of Proposition 1 lies on the fact that choosing
the deflection parameter Wk using the rule (12) with 0 < gk 6 2
forces the current deflected subgradient direction to form always
an acute angle with the previous step direction and hence, this
method eliminates the zigzagging of the pure subgradient proce-
dure. Note that the choice of the vector of deflected direction

dk
MGT is always at least as good as the direction of the subgradient

vector sk. If 1 6 gk 6 2, then dk
MGTd

k�1
MGT P 0 (Camerini et al., 1975).

The theorem below shows that with a particular choice of the
convex combination parameter ak and the parameter gk, the

deflected subgradient vector direction dk is always at least as good

as the direction dk
MGT in a sense that dk can form a more acute angle

with the best direction towards an optimal solution than dk
MGT does

(see Fig. 2), which enhances the speed of convergence. The two
lemmas below are necessary for the proof of our principal result.



Fig. 1. Illustration in a two-dimensional case.

Fig. 2. Case where sk is deflected since it has formed an obtuse angle with dk�1 and the direction dk
NMDS is better as compared to other directions dk

ADS and dk
MGT .
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Lemma 1. Let sk 2 @wðkkÞ and set ak ¼ � cosðsk; dk�1Þ if skdk�1
< 0.

With the assumption in (13) and letting

0 < gk 6
1

2� ak
; ð20Þ

then

dk k� � kk
� �

P dk
MGT k� � kk

� �
forallk: ð21Þ
Proof. Using (8), (10) and (11) we obtain the following relation:

dk k� � kk
� �

� dk
MGT k� � kk

� �
¼ akd

k
MGT k� � kk

� �
þ 1� akð Þdk

ADS k� � kk
� �

� dk
MGT k� � kk

� �
¼ 1�akð Þ dk

ADS k� � kk
� �

� dk
MGT k� � kk

� �h i
¼ 1�akð Þ sk þWADS

k dk�1
� �

k� � kk
� �

� sk þWMGT
k dk�1

� �
k� � kk

� �h i
¼ 1�akð Þ WADS

k �WMGT
k

� �
dk�1 k� � kk

� �
:

From (7) and (9) it follows that:

WADS
k �WMGT

k ¼
sk

�� �� dk�1
��� ���

dk�1
��� ���2 1þ gkcosðsk; dk�1Þ

h i
: ð22Þ
Using the last equality and applying Proposition 1 we get
(21). h
Lemma 2. Under the same hypothesis of Lemma 1, we have

dk
��� ��� 6 dk

MGT

��� ��� for all k: ð23Þ

Proof. If skdk�1 P 0 then Wk ¼ 0 and hence (23) obviously holds

and one simply has dk ¼ dk
MGT . In the case where skdk�1

< 0, then:

dk
��� ���2

� dk
MGT

��� ���2
¼ sk þWkd

k�1
��� ���2

� sk þWMGT
k dk�1

��� ���2

¼ W2
k � WMGT

k

� �2
� 	

dk�1
��� ���2

þ 2 Wk �WMGT
k

� �
skdk�1

¼ Wk �WMGT
k

� �
Wk þWMGT

k

� �
dk�1

��� ���2
þ 2skdk�1

� �
:

Since skdk�1 ¼ sk
�� �� dk�1

��� ���cosðsk; dk�1Þ one finds:

dk
��� ���2

� dk
MGT

��� ���2
¼ a2

k sk
�� ��2 �gkak þ 1ð Þ gk 2� akð Þ � 1½ �:

By the choice of gk such that we obtain

dk
��� ��� 6 dk

MGT

��� ���: �
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Theorem 1. Under the same hypothesis of Lemma 1, we have

(i)
dk k��kkð Þ

dkk k P
dkMGT k��kkð Þ

dkMGTk k : ð24Þ

(ii) If the vectors dk and dk
MGT form an angle hdk and hdkMGT

, respec-

tively, with the vector k� � kk, then
0 6 hdk 6 hdkMGT
6 90�:
1 http://comopt.ifi.uniidelberg.de/software/TSPLIB95/.
Proof. Direct consequence of the previous lemmas. h

3. Computational results

The proposed algorithm has been applied to one of the standard
integer linear programming problems in the field of operational
research, namely the symmetric travelling salesman problem
(TSPs). The travelling salesman problem is a classical NP-Hard
combinatorial optimization problem (Garey and Johnson, 1990).
It can be formulated as follows: giving a set of cities, and distances
between them, the goal is to find the shortest tour visiting every
city only once and returning to the starting city. More details on
this problem may be found in Lawler et al., 1985. The TSPs can
be stated as follows (where cij is the cost of link ði; jÞ):

min
Xm
i¼1

Xm
j ¼ 1
j – i

cijxij; ð25Þ

subject to

Xm
j¼1

xij ¼ 1; i ¼ 1; . . . ;m; ð26Þ

Xm
i¼1

xij ¼ 1; j ¼ 1; . . . ;m; ð27Þ

Xm
i2Q

Xm
j2Q

xij 6 Qj j � 1; 8Q : 2 6 Qj j 6 m� 2; ð28Þ

xij ¼ 0 or 1; i; j ¼ 1; . . . ;m; ð29Þ
where Q � 1; . . . ;mf g. Letting X be the set of all 1-trees (Held and
Karp, 1970), the subtour constrains (28) can be eliminated by insist-
ing that a vector x satisfying the constraints (26), (27) and (29) must
also belong to X. In particular for the symmetric case, constraints
(26) and (27) can be replaced by (30) leading to the following equiv-
alent formulation of the TSPs:

min
Xm
i¼1

Xm
j¼1j – i

cijxij;

subject to

Xm
j ¼ 1
j– i

xij þ
Xm
j ¼ 1
j– i

xji ¼ 2 for i ¼ 1; . . . ;m; ð30Þ

x 2 X:

From this, one obtains the following dual function, which has to
be maximized:
w kð Þ ¼ min
Xm
i¼1

Xm
j ¼ 1
j – i

cij þ ki þ kj

 �

xij; x 2 X

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

� 2
Xm
i¼1

ki; ð31Þ

where k 2 Rm is the vector of Lagrangian multipliers.
Given a vector k, if x optimizes w k


 �
, then a vector s whose ith

component

si ¼
Xm
j ¼ 1
j – i

xij þ
Xm
j ¼ 1
j – i

xji � 2

0
BBBBB@

1
CCCCCA ð32Þ

is a subgradient of w kð Þ at k (Bazaraa et al., 2006; Held et al., 1974).
To validate the feasibility and effectiveness of the proposed

approach, we have applied it on some TSPs instances taken from
TSPLIB.1 The proposed algorithm, MGT and ADS were implemented
in Matlab and executed on an Intel(R) Core(TM) i517U CPU @
1.70 GHz 1.70 GHz RAM 4.00GO.

For all symmetric instances and for a fair comparison between
the three algorithms, the following parameter settings were
chosen:

	 The same initial multiplier k1 ¼ ð0;0; . . . ;0ÞT was used for the
three algorithms.

	 The stop conditions are the maximum number of iteration
iterMAX ¼ 1000, or j w� �wðkkÞ j6 e, where e is a small toler-
ance ðe ¼ 10�2Þ.

	 The step size tk is defined according to formula (4).
	 The parameter dk follows the Held et al. (1974) suggestion, that
makes 0 < dk 6 2, beginning with dk ¼ 2. If after 20iterations
wðkkÞ not increases, dk is updated to dk ¼ dk

2 .
	 For MGT algorithm, as mentioned in Camerini et al. (1975), the
use of gk ¼ 1:5 is recommended and its intuitive justification
together with computational results are also given, which indi-
cates that in practise, the performance of MGT strategy is supe-
rior to that of the pure subgradient algorithm.

	 For our algorithm the value of gk depends on the optimal con-
vex combination parameter ak as indicated in Lemma 1, where

ak ¼ � cosðsk; dk�1Þ if skdk�1
< 0. We used gk ¼ 1

2�ak � e, where e
is an arbitrary small value.

Table 1 shows the experimental results obtained by: MGT strat-
egy, ADS strategy and by applying our NMDS algorithm proposed
in this paper with 11 symmetric benchmark instances between
n = 6 and n = 101 vertices taken from TSPLIB. For the three strate-
gies, the duality GAP for these 11 examples is null. However,
always NMDS algorithm outperforms the others in number of iter-
ations and execution time. Table 2 gives the computational results
for 19 symmetric benchmark instances between 131 and 3056 ver-
tices. This table also shows that our algorithm gives near optimal
results for several instances. The column headers are as follows:

	 Name: Indicate the instance name.
	 n: Indicate the problem size.
	 w�: The best known optimal solution.
	 LB: The best value (lower bound) obtained by each strategy.
	 Iter: Number of iterations at which the best value LBis obtained
(limited to 1000).

http://comopt.ifi.uniidelberg.de/software/TSPLIB95/


Table 1
Computational results for 6 6 n 6 101.

Name n w� Strategy

Our method ADS strategy MGT strategy

LB GAP Iter CPU LB GAP Iter CPU LB GAP Iter CPU

tsp6 6 207 207 0 2 0.027862 s 207 0 2 0.032690 s 207 0 2 0.028533 s
tsp7 7 106.4 106.4 0 3 0.028651 s 106.4 0 3 0.028819 s 106.4 0 3 0.029059 s
tsp8 8 100 100 0 3 0.032122 s 100 0 3 0.032360 s 100 0 3 0.033069 s
tsp10 10 378 10 0 3 0.077130 s 378 0 18 0.085784 s 378 0 15 0.099755 s
ulysses16 16 68.59 68.59 0 16 0.077255 s 68.59 0 30 0.099056 s 68.59 0 26 0.090043 s
gr21 21 2707 2707 0 19 0.077098 s 2707 0 26 0.086654 s 2707 0 22 0.080609 s
ulysses22 22 70.13 70.13 0 21 0.219532 s 70.13 0 70 0.467253 s 70.13 0 28 0.253197 s
tsp33 33 10861 10861 0 18 0.27955 s 10861 0 19 0.303524 s 10861 0 22 0.304997 s
eil76 76 538 538 0 12 0.728258 s 538 0 23 1.285156 s 538 0 18 1.071510 s
rat99 99 1211 1211 0 19 1.817552 s 1211 0 20 1.902072 s 1211 0 34 3.111573 s
eil101 101 629 629 0 13 1.253360 s 629 0 16 1.523116 s 629 0 15 1.422569 s

Table 2
Computational results for 131 6 n 6 3056.

Name n w� Strategy

Our method ADS strategy MGT strategy

LB GAP Iter CPU LB GAP Iter CPU LB GAP Iter CPU

xq131 131 564 555.96 0.0159 350 38.134934 s 555.52 0.0167 350 39.009219 s 555.64 0.0165 350 42.417376 s
ch150 150 6528 6498.3 0.0045 193 57.562539 s 6463.2 0.0099 200 58.301731 s 6490.4 0.0057 202 59.548258 s
tsp237 237 1019 1004.8 0.0139 190 76.942993 s 1002.4 0.0162 200 79.046667 s 1003.9 0.0148 197 77.288710 s
a280 280 2579 2569.8 0.0035 251 128.401733 s 2568.3 0.0041 251 134.245723 s 2569.8 0.0035 251 129.376815
linhp318 318 41345 41345 0 188 135.792252 s 41330 0.0003 200 148.125054 s 41337 0.0001 195 140.734334 s
pbk411 411 1343 1443 0 250 328.562376 s 1338.3 0.0034 250 376.626413 s 1338.6 0.0032 250 235.626147 s
pbn423 423 1365 1365 0 251 344.519801 s 1360.3 0.0034 251 349.933052 s 1361.5 0.0025 251 370.504702 s
pbm436 436 1443 1423.9 0.0132 207 241.663478 s 1422.3 0.0143 251 334.741944 s 1421.4 0.0149 207 255.055079 s
rat575 575 6773 6721.2 0.0076 350 1287.476161 s 6716 0.0084 350 1266.572875 s 6718.9 0.0079 350 1138.613357 s
rbx711 711 3115 3099.6 0.0049 500 1648.379114 s 3094.3 0.0066 500 1668.377875 s 3096.2 0.0060 500 1701.099452 s
rat783 783 8806 8652.2 0.0197 121 496.527482 s 8609.5 0.0223 180 744.089813 s 8642.8 0.0185 131 592.200505 s
dkg813 813 3199 3164.7 0.0107 200 126.290411 s 3147.5 0.0203 200 129.330427 s 3154.7 0.0138 200 138.698584 s
pbd984 984 2797 2797 0 500 2216.458302,s 2772 0.0089 500 4059.009584 s 2774.3 0.0081 500 3394.524016,s
xit1083 1083 3558 3551.1 0.0019 550 3394.524016 s 3525.1 0.0092 600 3394.524016 s 3549.6 0.0023 600 3726.7668 s
dka1376 1376 4666 4666 0 500 7321.695698 s 4659.6 0.0013 500 14632.080221 s 4662 0.0008 500 14704.797585 s
dja1436 1436 5257 5194.2 0.0437 500 10959.322745 s 5189.4 0.0128 500 12014.302471 s 5184.4 0.0138 500 11486.802618 s
dcc1911 1911 6396 6367.9 0.0043 500 10602.013548 s 6338.3 0.0097 500 11742.144423 s 6357.2 0.0060 500 11127.0759858 s
djb2103 2103 6197 6197 0 430 13566.845650 s 6133.8 0.0101 500 14954.211430 s 6169.3 0.0044 500 15955.063763 s
pia3056 3056 8285 8285 0 500 51124.513213 s 8192 0.0112 500 59123.013454 s 8228.2 0.0068 500 58072.083303 s
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	 GAP ¼ w��LB
w� .

	 CPU: Total computer time, in second for calculating the best
value LBobtained by each strategy.

4. Conclusion

By identifying the optimal convex combination parameter, a
new deflected direction is given as convex combination of the
deflected direction of MGT and ADS. This direction, at each itera-
tion reduces the zigzagging phenomenon and hence getting closer
and faster to the optimal solution. The analysis studies are consis-
tent with the numerical experiments. Moreover, this method can
be used to improve convergence in the area of deflected subgradi-
ent method using augmented Lagrangian duality (Burachik and
Kaya, 2010) and dual subgradient methods (Gustavsson et al.,
2015). One can also follow Lim and Sherali (2006) and combine this
method with a variable target technique in order to have a good
performance. Finally, the subgradient method is usually used as
subroutine in exact, heuristic and metaheuristic optimization,
which justifies the large spectrum of applications of our approach.
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