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that the differential transform method is very effective and convenient for solving a large number
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1. Introduction

In this paper we consider the singularly perturbed Volterra
integral equations (Alnasr et al., 1997, 2000; Lange and Smith,
1988; Angell and Olmstead, 1987)

eyðxÞ ¼ gðxÞ þ
Z x

0

Kðx; t; yðtÞÞ; 0 6 t 6 X; ð1:1Þ

where, e is a small parameter satisfying 0 < e 1 and where g

and K are given smooth functions on [0, X]. Under appropriate
conditions g and K, for every e > 0, Eq. (1.1) has unique con-
tinuous solutions on [0, T] (see, e.g., Alnasr et al., 1997; Brun-

ner and Van Der Houwen, 1986. The singularly perturbed
nature of (1.1) arises when the properties of the solution with
> 0 are incompatible with those when e = 0. For e > 0, (1.1)

is an integral equation of the second kind which typically is



Table 1 Operations of differential transform.

Original function Transformed function

fðxÞ ¼ uðxÞ � vðxÞ FðkÞ ¼ UðkÞ þ GðkÞ
fðxÞ ¼ auðxÞ FðkÞ ¼ aUðkÞ
fðxÞ ¼ uðxÞvðxÞ FðkÞ ¼ UðkÞGðkÞ
fðxÞ ¼ duðxÞ

dx FðkÞ ¼ ðkþ 1ÞUðkþ 1Þ
fðxÞ ¼ dmuðxÞ

dxm FðkÞ ¼ ðkþ 1Þðkþ 2Þ . . . ðkþmÞUðkþmÞ
fðxÞ ¼ xm FðkÞ ¼ dðk�mÞ
fðxÞ ¼ ek x FðkÞ ¼ kk

k!

fðxÞ ¼ sinðxxþ aÞ FðkÞ ¼ xk

k! sinðpk=2þ aÞ
fðxÞ ¼ cosðxxþ aÞ FðkÞ ¼ xk

k! cosðpk=2þ aÞ
fðxÞ ¼

R x
x0
uðtÞdt FðkÞ ¼ Uðk�1Þ

k ; k P 1;Fð0Þ ¼ 0

fðxÞ ¼
R x
x0
uðtÞvðtÞdt FðkÞ ¼ 1

k

Pk�1
k1¼0Uðk1ÞVðk� k1� 1Þ; k P 1

fðxÞ ¼ uðxÞ
R x
x0
vðtÞdt FðkÞ ¼

Pk
k1¼1

1
k1Uðk� k1ÞVðk1� 1Þ; k P 1
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well posed whenever K is sufficiently well behaved. When

e = 0, (1.1) is reduced to an integral equation of the first kind
whose solution may well be incompatible with the case for
e > 0 .The interest here is in those problems which do imply

such an incompatibility in the behavior of y near x = 0. This
suggests the existence of boundary layer near the origin where
the solution undergoes a rapid transition (Alnasr et al., 1997,
2000; Lange and Smith, 1988; Angell and Olmstead, 1987).

The aim of our study is to employ the differential transform
method (in short, DTM) Pukhov et al., 1980; Zhou et al., 1986
as an alternative to existing methods in solving the singularly

perturbed Volterra integral problems and the method is imple-
mented to four numerical examples. The concept of differential
transform method was first introduced by Pukhov et al. (1980)

and Zhou et al. (1986), who solved linear and nonlinear initial
value problems in electric circuit analysis. It is a semi-numeri-
cal and semi-analytic technique that formulizes Taylor series in

a totally different manner. With this technique, the given dif-
ferential equation and its related boundary conditions are
transformed into a recurrence equation that finally leads to
the solution of a system of algebraic equations as coefficients

of a power series solution. This method is useful to obtain
the exact and approximate solutions of linear and nonlinear
differential equations. No need to linearization or discretiza-

tion, large computational work and round-off errors are
avoided. It has been used to solve effectively, easily and accu-
rately a large class of linear and nonlinear problems with

approximations. The method is well addressed in Ertürk and
Momani (2007), Arıkoğlu and Özkol (2005), Ayaz (2004),
Liu and Song (2007), Hassan (2008), Bildik et al. (2006) and
Ertürk and Momani (2007).

The paper has been organized as follows. In Section 2, a
brief description of the method is presented, while, in Section
3, four numerical examples are solved to demonstrate the

applicability of the present method. The discussion on our re-
sults is given in Section 4.

2. Differential transform method

Let f (r) be analytic in a domain R and let r= r0 represent any

point in R. Then, the function f (r) is represented by a power
series whose center is located at r0. The differential transform
of the kth derivative of the function f (r) in one variable is de-

fined as follows:

FðkÞ ¼ 1

k!

dkfðrÞ
drk

� �
r¼r0

; ð2:1Þ

where, f (r) is the original function and (F (k) is the trans-
formed function. The inverse transformation of the function
f (r) is defined by

fðrÞ ¼
X1
k¼0

FðkÞðr� r0Þk: ð2:2Þ

Combining Eqs. (2.1) and (2.2), one may write:

fðrÞ ¼
X1
k¼0

1

k!

dkfðrÞ
drk

� �
r¼r0

ðr� r0Þk: ð2:3Þ

Eq. (2.3) implies that the concept of differential transform
method is derived from Taylor series expansion. However,
the method does not evaluate the derivatives symbolically.

An iterative procedure which is described by the transformed
equations of the original functions can be used to calculate

the related derivatives. In this study, we use the lower case let-
ter to represent the original function and upper case letter to
stand for the transformed function.

In actual applications, the function f (r) is expressed by a

finite series and Eq. (2.2) can be written as

fðrÞ ¼
XN
k¼0

FðkÞðr� r0Þk; ð2:4Þ

which implies that
P1

k¼Nþ1FðkÞðr� r0Þk is negligibly small. In

this study, the convergence of the natural frequencies deter-
mines the value of N. The theorems which are frequently used
in the transformation analysis are shown in Table 1.
3. Applications and numerical results

In order to illustrate the advantages and the accuracy of differ-

ential transformmethod for solving singularly perturbedVolter-
ra integral equations, we have applied the method to four
problems.

Example 1. We consider the following linear singularly
perturbed Volterra integral equation discussed in Alnasr
(2000) and Alnasr and Momani (2008):

eyðxÞ ¼
Z x

0

½1þ t� yðtÞ�dt: ð3:1Þ

The exact solution of this problem is known as

yðxÞ ¼ xþ 1� exp
�x
e

� �
� e 1� exp

�x
c

� �� �
ð3:2Þ

According to the operations of differential transformation gi-
ven in Table 1, we have the following recurrence relation:

YðkÞ ¼ 1

e
dðk� 1Þ þ dðk� 2Þ � Yðk� 1Þ

k

� �
k P 1; Yð0Þ ¼ 0:

ð3:3Þ
Utilizing the recurrence relation in Eq. (3.3), we find

Yð1Þ ¼ 1

e
;

Yð2Þ ¼ � 1

2e2
þ 1

2e
;
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Yð3Þ ¼ 1

6e3
� 1

6e2
;

Yð4Þ ¼ � 1

24e4
þ 1

24e3
;

Yð5Þ ¼ 1

120e5
� 1

120e4
;

Yð6Þ ¼ � 1

720e6
þ 1

720e5
;

Yð7Þ ¼ 1

5040e7
� 1

5040e6
;

Yð8Þ ¼ � 1

40320e8
þ 1

40320e7
;

..

.

and so on, in this manner YðkÞ for k P 9 can be easily ob-

tained. Therefore, from (2.2), the first few terms of the series
solution is as follows:

yðxÞ ¼ x

e
þ � 1

2e2
þ 1

2e

� �
x2 þ 1

6e3
� 1

6e2

� �
x3

þ � 1

24e4
þ 1

24e3

� �
x4 þ 1

120e5
� 1

120e4

� �
x5

þ � 1

720e6
þ 1

720e5

� �
x6 þ 1

5040e7
� 1

5040e6

� �
x7

þ � 1

40320e8
þ 1

40320e7

� �
x8 þ � � � ð3:4Þ

As the number of terms involved increases, one can observe
that the series solution obtained using differential transform

method converges to series expansion of the exact solution
(3.2). Note that 20 terms are considered in Eq. (3.4) for the
numerical results. Comparison of the numerical results with

the exact solution (3.2) for e ¼ 1; e ¼ 0:75; e ¼ 0:5 and
e ¼ 0:25 is shown in Table 2.

Example 2. Consider the following singularly perturbed Vol-
terra integral equation discussed in Alnasr (2000), Alnasr

and Momani (2008) and Ibrahim and Alnasr (1998):

eyðxÞ ¼
Z x

0

ð1þ x� tÞ½1þ t� yðtÞ�dt: ð3:5Þ
Table 2 Numerical results compared to exact solution for Example

x e ¼ 1:0 e ¼ 0:75

yðxÞApprox yðxÞExact yðxÞApprox yðxÞExact
0.0 0.0 0.0 0.000000 0.000000

0.1 0.1 0.1 0.131207 0.131207

0.2 0.2 0.2 0.258518 0.258518

0.3 0.3 0.3 0.382420 0.382420

0.4 0.4 0.4 0.503338 0.503338

0.5 0.5 0.5 0.621646 0.621646

0.6 0.6 0.6 0.737668 0.737668

0.7 0.7 0.7 0.851690 0.851690

0.8 0.8 0.8 0.963962 0.963962

0.9 0.9 0.9 1.074700 1.074700

1.0 1.0 1.0 1.184100 1.184100
The exact solution of this problem is known as

yðxÞ ¼ xþ 1þ 1

c1� c2
c2� 1þ 1

e

� �
expðc1xÞ� c1� 1þ 1

e

� �
expðc2xÞ

� �
;

ð3:6Þ

where the parameters c1 and c2 are defined as

c1 ¼
1

2e
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4e
p� �

; c1 ¼
1

2e
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4e
p� �

ð3:7Þ

If we apply differential transform to the Eq. (3.5), by using
Table 1, we can obtain the following transformed equation:

YðkÞ ¼ 1

e
dðk� 1Þ� dðk� 3Þ

k
þ
Xk
k1¼1

1

k1
dðk�k1� 1Þ½dðk1� 1Þ

 

þdðk1� 2Þ�Yðk1� 1Þ�þ 1

k

Xk�1
k1¼1

1

k1
Yðk1Þ½dðk�k1� 2Þ

�dðk�k1� 1ÞÞ; kP 1;Yð0Þ ¼ 0: ð3:8Þ

Consequently, we find

Yð1Þ ¼ 1

e
;

Yð2Þ ¼ � 1

2e2
þ 1

e
;

Yð3Þ ¼ 1

6e3
� 1

2e2
þ 1

6e
;

Yð4Þ ¼ 1

24e6
�þ 1

6e3
þ 1

8e2
;

Yð5Þ ¼ 1

120e5
� 1

24e4
þ 1

20e3
� 1

120e2
;

Yð6Þ ¼ � 1

720e6
þ 1

120e5
� 1

72e4
þ 1

180e3
;

Yð7Þ ¼ 1

5040e7
� 1

720e6
þ 1

336e5
� 1

504e4
þ 1

5040e3
;

Yð8Þ ¼ � 1

40320e8
þ 1

5040e7
� 1

1920e6
þ 1

2016e5
� 1

8064e4
;

..

.

and so on, in this manner YðkÞ for k P 9 can be easily
obtained.Therefore, from (2.2), the first few terms of the series
solution are as follows:
1.

e ¼ 0:5 e ¼ 0:25

yðxÞApprox yðxÞExact yðxÞApprox yðxÞExact
0.000000 0.000000 0.000000 0.000000

0.190635 0.190635 0.347260 0.347260

0.364840 0.364840 0.613003 0.613003

0.525594 0.525594 0.824104 0.824104

0.675336 0.675336 0.998578 0.998578

0.816060 0.816060 1.148500 1.148500

0.949403 0.949403 1.281960 1.281960

1.076700 1.076700 1.404390 1.404390

1.199050 1.199050 1.519430 1.519430

1.317350 1.317350 1.629510 1.629510

1.432330 1.432330 1.736260 1.736260



Table 3 Numerical results compared to exact solution for Example 2.

x e ¼ 1:0 e ¼ 0:75 e ¼ 0:5

yðxÞApprox yðxÞExact yðxÞApprox yðxÞExact yðxÞApprox yðxÞExact
0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.104833 0.104833 0.137510 0.137510 0.199683 0.199683

0.2 0.218669 0.218669 0.282340 0.282340 0.397589 0.397589

0.3 0.340519 0.340519 0.433015 0.433015 0.592269 0.592269

0.4 0.469413 0.469413 0.588175 0.588175 0.782594 0.782594

0.5 0.604405 0.604405 0.746572 0.746572 0.967719 0.967719

0.6 0.744584 0.744584 0.907074 0.907074 1.147046 1.147046

0.7 0.889072 0.889072 1.068664 1.068664 1.320191 1.320191

0.8 1.037037 1.037037 1.230437 1.230437 1.486949 1.486949

0.9 1.187692 1.187692 1.391602 1.391602 1.647272 1.647272

1.0 1.340300 1.340300 1.551470 1.551470 1.801234 1.801234
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yðxÞ ¼ x

e
þ � 1

2e2
þ 1

e

� �
x2 þ 1

6e3
� 1

2e2
þ 1

6e

� �
x3

þ � 1

24e6
þ 1

6e3
� 1

8e2

� �
x4

þ 1

120e5
� 1

24e4
þ 1

20e3
� 1

120e2

� �
x5

þ � 1

720e6
þ 1

120e5
� 1

72e4
þ 1

180e3

� �
x6

þ 1

5040e7
� 1

720e6
þ 1

336e5
� 1

504e4
þ 1

5040e3

� �
x7

þ � 1

40320e8
þ 1

5040e7
� 1

1920e6
þ 1

2016e5
� 1

8064e4

� �
x8

þ � � �
ð3:9Þ

As the number of terms involved increases, one can observe
that the series solution obtained using differential transform

method converges to series expansion of the exact solution
(3.6). Note that 11 terms are considered in Eq. (3.9) for the
numerical results. Comparison of the numerical results with

the exact solution (3.6) for e ¼ 1; e ¼ 0:75 and e ¼ 0:5 are
shown in Table 3.

Example 3. We consider the following nonlinear singularly
perturbed Volterra Integral Equation discussed in Alnasr
(2000) and Alnasr and Momani (2008):

eyðxÞ ¼
Z x

0

ex�t y2ðtÞ � 1
	 


dt; ð3:10Þ

which has the exact solution

yðxÞ ¼ 2 1� ecxð Þ
eðc� 1Þecx þ cþ 1

; c ¼ 1

e

ffiffiffiffiffiffiffiffiffiffiffiffi
4þ e2
p

: ð3:11Þ

One can see that the differential transform of Eq. (3.10) can
be evaluated by using Table 1 as follows:

YðkÞ ¼ 1

e

Xk
k3¼1

Xk3
k2¼1

Xk2
k1¼1

1

k3

ð�1Þk1�1

ðk1� 1Þ!Yðk2� k1ÞYðk3� k2Þ
 

� 1

ðk� k3Þ!�
Xk
k1¼1

1

k1

1

ðk� k1Þ!
ð�1Þk1�1

ðk1� 1Þ!

!
;

k P 1;Yð0Þ ¼ 0: ð3:12Þ
Consequently, we find

Yð1Þ ¼ � 1

e
;

Yð2Þ ¼ � 1

2e
;

Yð3Þ ¼ 1

3e3
� 1

6e
;

Yð4Þ ¼ 1

3e3
� 1

24e
;

Yð5Þ ¼ � 2

15e5
þ 11

60e3
� 1

120e
;

Yð6Þ ¼ � 17

90e5
þ 13

180e3
� 1

720e
;

Yð7Þ ¼ 17

315e7
� 1

7e5
þ 19

840e3
� 1

5040e
;

Yð8Þ ¼ 31

315e7
� 8

105e5
þ 1

168e3
� 1

40320e
;

..

.

and so on, in this manner YðkÞ for k P 9 can be easily ob-

tained. Therefore, from (2.2), the solution of the integral equa-
tion (3.10) is given as

yðxÞ ¼ �x

e
� 1

2e
x2 þ 1

3e3
� 1

6e

� �
x3 þ 1

3e3
� 1

24e

� �
x4

þ � 2

15e5
þ 11

60e3
� 1

120e

� �
x5

þ � 17

90e5
þ 13

180e3
� 1

720e

� �
x6

þ 17

315e7
� 1

7e5
þ 19

840e3
� 1

5040e

� �
x7

þ 31

315e7
� 8

105e5
þ 1

168e3
� 1

40320e

� �
x8 þ � � � : ð3:13Þ

The evolution results for the exact solution (3.11) and the
approximate solution obtained using differential transform
method, for different values of e, are shown in Figs. 1–3. Note

that 11 terms are considered in Eq. (3.13) for the numerical
results.

Example 4 . We consider the following singularly perturbed
Volterra integral equation (Kauthen, 1997):

eyðxÞ ¼ sinx�
Z x

0

yðtÞdt; ð3:14Þ
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-0.4
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y

Figure 1 Plots of Eq. (3.10) when e ¼ 1. Exact solution (___); the

approximate solution (—).

0.2 0.4 0.6 0.8 1
x

-1.5

-1.25

-1

-0.75

-0.5

-0.25

y

Figure 2 Plots of Eq. (3.10) when e ¼ 0:75. Exact solution (___);

the approximate solution (—).

0.2 0.4 0.6 0.8 1
x

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

y

Figure 4 Plots of Eq. (3.14) when e ¼ 2�3. Exact solution (___);

the approximate solution (—).

0.2 0.4 0.6 0.8 1
x

-1.5

-1.25

-1

-0.75

-0.5

-0.25

y

Figure 3 Plots of Eq. (3.10) when e ¼ 0:5. Exact solution (___);

the approximate solution (—).
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which has the exact solution

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

Figure 5 Plots of Eq. (3.14) when e ¼ 2�5. Exact solution (___);

the approximate solution (—).
yðxÞ ¼ 1

1þ e2
cosxþ e sin x� e�

x
e

� �
: ð3:15Þ

According to the operations of differential transformation

given in Table 1, the following recurrence relation is obtained:

YðkÞ ¼ 1

e
1

k!
sin

pk
2

� �
� Yðk� 1Þ

k

� �
: ð3:16Þ
Utilizing the recurrence relation in Eq. (3.16), we find

Yð1Þ ¼ 1

e
;

Yð2Þ ¼ � 1

2e2
;

Yð3Þ ¼ 1

6e3
� 1

6e
;

Yð4Þ ¼ � 1

24e4
þ 1

24e2
;

Yð5Þ ¼ 1

120e5
� 1

120e3
þ 1

120e
;

Yð6Þ ¼ � 1

720e6
þ 1

720e4
� 1

720e2
;

Yð7Þ ¼ 1

5040e7
� 1

5040e5
þ 1

5040e3

� 1

5040e
;

Yð8Þ ¼ � 1

40320e8
þ 1

40320e6
� 1

40320e4
þ 1

40320e2
;

..

.

and so on, in this manner YðkÞ for k P 9 can be easily

obtained.Therefore, from (2.2), the first few terms of the series
solution are as follows:
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yðxÞ ¼ x

e
� 1

2e
x2 þ 1

6e3
� 1

6e

� �
x3

þ � 1

24e4
þ 1

24e2

� �
x4

þ 1

120e5
� 1

120e3
þ 1

120e

� �
x5

þ � 1

720e6
þ 1

720e4
� 1

720e2

� �
x6

þ 1

5040e7
� 1

5040e5
þ 1

5040e3
� 1

5040e

� �
x7

þ � 1

40320e8
þ 1

40320e6
� 1

40320e4
þ 1

40320e2

� �
x8

þ � � �
ð3:17Þ

The evolution results for the exact solution (3.15) and the

approximate solution obtained using differential transform
method, for e ¼ 2�3 and e ¼ 2�5, are shown in Figs. 4 and 5.
Note that 90 terms are considered in Eq. (3.17) for the numer-
ical results.
4. Conclusion

In this study, Differential transform method is successfully ap-
plied to singularly perturbed Volterra integral equations. A
symbolic calculation software package, MATHEMATICA is

used for all calculations. All the computations show that the
approximate solutions are perfectly identical to the exact solu-
tions. Also, the work emphasized our belief that the method is

a reliable technique to handle these types of problems. It pro-
vides the solutions in terms of convergent series with easily
computable components in a direct way without using lineari-

zation, discretization or restrictive assumptions.
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