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Abstract The aim of this paper is to introduce and investigate some new classes of mappings called

contra-M-continuous mappings and almost contra-M-continuous mappings via M-open sets. Also,

the relationships between these mappings and other types are discussed. Several properties of these

new notions are investigated and the connections between them are studied.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

In the recent literature, many topologists had focused their

research in the direction of investigating different types of
generalized continuity.

Dontchev (1996) introduced a new class of mappings called

contra-continuity. Jafari and Noiri (2001, 2002) exhibited and
studied among others a new weaker form of this class of map-
pings called contra-a-continuous and contra-precontinuous

mappings. Also, a new weaker form of this class of mappings
called contra-semicontinuous mappings was introduced and
investigated by Dontchev and Noiri (1999). Contra-d-precon-
tinuous mapping was obtained by Ekici and Noiri (2006). A

good number of researchers have also initiated different types
of contra continuous like mappings in the papers (Caldas and
Jafari, 2001; Ekici, 2004c, 2008a; Nasef, 2005; Al-Omari and

Noorani, 2009; El-Magbrabi, 2010). The notion of M-open
sets in topological spaces was introduced by El-Maghrabi
and Al-Juhani (2011) and studied some of their properties.

This paper is devoted to introduce and investigate a new class
of mappings called contra-M-continuous mappings. Also,
some of their fundamental properties are studied.

2. Preliminaries

Throughout this paper (X, s) and (Y, r) (simply, X and Y)

represent topological spaces on which no separation axioms
are assumed, unless otherwise mentioned. The closure of sub-
set A of X, the interior of A and the complement of A is de-
noted by cl(A), int(A) and Ac or X/A respectively. A subset

A of a space (X, s) is called regular open (Stone, 1937) if
A = int(cl(A)). A point x 2 X is said to be a h-interior point
of A (Velicko, 1968) if there exists an open set U containing

x such that U ˝ cl(U) ˝ A.
A point x e X is called d-cluster (Velicko, 1968) point of A if

int(cl(V)) \ A „ /, for every open set V of X containing x. The

set of all h-interior points of A is said to be the h-interior set
and a subset A of X is called h-open if A = inth(A). A subset
A of a space (X, s) is called preopen by Mashhour et al. (1982)

or locally dense by Carson andMichael (1964) (resp. d-preopen
by Raychaudhuri and Mukherjee (1993), a-open by Njåstad
(1965), b-open byAbdEl-Monsef et al. (1983), semi-open byLe-
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vine (1963), a-open by Ekici (2008c), d-semi-open by Park et al.
(1997) h-semi-open by Caldas et al. (2008), e-open by Ekici
(2008b), e*-open by Ekici (2009), b-open by Andrijevíc, (1996)

or c-open by El-Atik (1997), M-open by El-Maghrabi and
Al-Juhani (2011) if A ˝ int(cl(A)) (resp. A ˝ int(cld(A)),
A ˝ int(cl(int(A))), A ˝ cl(int(cl(A))), A ˝ cl (int(A)), A ˝ int

(cl(intd(A))), A ˝ cl(intd(A)), A ˝ cl(inth(A)), A ˝ cl(intd(A))
[ int(cld(A)), A ˝ cl(int(cld(A))), A ˝ cl(int(A)) [ int(cl(A))
and A ˝ cl(inth(A)) [ int(cld(A)). The complement of preopen

(resp. d-preopen, a-open, b-open, semi-open, a-open, c-open,
e-open, e*-open, d-semi-open, M-open, h-semi-open) set is
called preclosed (Mashhour et al., 1982) (resp. d-preclosed (Ray-
chaudhuri and Mukherjee, 1993), a-closed (Njåstad 1965), b-
closed (Abd El-Monsef et al., 1983), semiclosed (Levine,
1963), a-closed (Ekici, 2008c), c-closed (El-Atik, 1997), e-closed
(Ekici, 2008b), e*-closed (Ekici, 2009), d-semiclosed (Park et al.,

1997), M-closed (El-Maghrabi and Al-Juhani, 2011), h-semi-
closed (Caldas et al., 2008)). The family of all preopen (resp.
d-preopen, a-open, b-open, semi-open, c-open, h-semi-open,

e-open, e*-open, d-semi-open, M-open) is denoted by PO(X)
(resp. d-PO(X), aO(X), bO(X), SO(X), cO(X), h-SO(X),
e-O(X), e*O(X), d-SO(X), MO(X)). The intersection of all M-

closed (resp. h-semi-closed, d-preclosed, e-closed) sets contain-
ing A is called the M-closure by El-Maghrabi and Al-Juhani
(2011) (resp. h-semi-closure by Caldas et al. (2008), d-preclosure
by Raychaudhuri and Mukherjee (1993), e-closure by Ekici

(2008b)) ofA and it is denoted byM-cl(A) (resp. sclh(A), pcld(A),
e-cl(A)). The union of allM-open (resp. h-semi-open, d-preopen,
e-open) sets contained in A is called theM-interior (El-Maghra-

bi and Al-Juhani, 2011) (resp. h-semi-interior (Caldas et al.,
2008), d-pre-interior (Raychaudhuri and Mukherjee, 1993), e-
interior (Ekici, 2008b)) of A and it is denoted byM-int(A) (resp.

sinth(A), pintd(A), e-int(A)).
The following definitions and results were introduced and

studied.

Definition 2.1. A mapping f: (X, s) fi (Y, r) is called contra-

continuous (Dontchev, 1996) (resp. contra a-continuous
(Jafari and Noiri, 2001), contra-h-semicontinuous, contra
semicontinuous (Dontchev and Noiri, 1999), contra precon-

tinuous (Jafari and Noiri, 2002), contra-d-precontinuous
(Ekici and Noiri, 2006), contra-a-continuous (Ekici, 2008a),
contra-e-continuous (Ekici, 2008a, Ghosh and Basu, 2012),

contra-e*-continuous(Ekici, 2008a), contra-b-continuous
(Ekici, 2004e), contra b-continuous (Caldas and Jafari,
2001), contra-d-semicontinuous (Ekici, 2004c)) if, f�1(V) is
closed (resp. a-closed, h-semiclosed, semiclosed, preclosed,

d-preclosed, a-closed, e-closed, e*-closed, b-closed, b-closed,
d-semiclosed) in X for each open set in Y.

Definition 2.2. A mapping f: (X, s) fi (Y, r) is called almost

contra-h-continuous (resp. almost contra-h-semicontinuous,
almost contra continuous, almost contra-super-continuous
(Ekici, 2004f), almost contra d-semicontinuous (Ekici,
2004d), almost contra-precontinuous (Ekici, 2004a), almost

contra d-precontinuous (Ekici, 2004b), almost contra-a-con-
tinuous (Baker, 2011), almost contra-a-continuous (Ekici,
2007) almost contra-e-continuous (Ekici, 2007), almost con-

tra-e*-continuous (Ekici, 2007), almost contra-c-continuous
(Ekici, 2005), almost contra-b-continuous, almost contra
semicontinuous) if, f�1(V) is h-closed (resp. h-semiclosed,

closed, d-closed, d-semiclosed, preclosed, d-preclosed, a-closed,
a-closed, e-closed, e*-closed, c-closed, b-closed, semiclosed) in
X for each regular open set of Y.

Definition 2.3. Let A be a subset of space (X, s). Then:

(i) the kernel of A (Mrsevic, 1986) is given by ker
(A) = \{U2s: A ˝ U},

(ii) the M-boundary of A (El-Maghrabi and Al-Juhani,
2011) is given by M-b(A) = M-cl(A)/M-int(A)

Lemma 2.1 Jafari and Noiri (1999). The following properties
are holds for two subsets A, B of a topological space (X, s):

(i) x 2 ker(A) if and only if A \ F „ /, for any closed set F
of X containing x,

(ii) A ˝ ker(A) and A = ker(A), if A is open in X,

(iii) If A ˝ B, then ker(A) ˝ ker(B).

Definition 2.4. A topological space (X, s) is said to be:

(i) Urysohn (Singal and Mathur, 1969) if, for each two

distinct points x, y of X, there exist two open sets U and V
such that x 2 U, y 2 V and cl(U) \ cl(V) = /,

(ii) ultra Hausdorff (Staum, 1974) if, for each two distinct
points x, y of X, there exist two closed sets U and V such
that x 2 U, y 2 V and U \ V= /,

(iii) ultra normal (Staum, 1974) if for each pair of non-
empty disjoint closed sets can be separated by disjoint

clopen sets.

(iv) weakly Hausdorff (Soundararajan, 1971) if each
element of X is the intersection of regular closed sets of X,

(v) strongly S-closed (Joseph and Kwack, 1980) (resp. S-
closed (Dontchev, 1996), S-Lindelöff (Ekici, 2004a), count-
ably S-closed (Dlaska et al., 1994) if for closed (resp.
regular closed, regular closed, countably regular closed)

cover of X has a finite (resp. finite, countable, finite)
subcover.
3. Contra-M-continuous mappings

Definition 3.1. A mapping f: (X, s) fi (Y, r) is called contra-
M-continuous, if f�1(U) 2 MC(X), for every open set U of Y.

Remark 3.1. According to Definitions 2.1, 3.1, the implica-
tions between these types of functions are given by the follow-
ing diagram.

contra cont.           contra α-cont.    contra precont.                       contra δ-precont.

contra semicont. contra γ-cont. contra β-cont.

contra δ-cont.            contra-a-cont.           contra δ-semicont.                   contra-e*-cont. 

contra θ-cont.       contra θ-semicont.                        contra M-cont.        contra-e-cont.
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The converses of these implications need not be true in gen-
eral and by the following examples and by Ekici
(2008a,b,c,d,e); Ekici and Noiri (2006)).

Example 3.1. Let X = {a, b, c, d} with s = {X, /, {a}, {b}, {a,
b}, {a, b, c}, {a, b, d}} and Y = {a, b, c} with r = {Y, /, {a},
{b}, {a, b}}. Hence a mapping f: (X, s) fi (Y, r) which defined

by f(a) = f(c) = c, f(b) = a and f(d) = b is contra-e-continu-
ous but not contra-M-continuous. Since, f�1({a, b}) = {b, d}
is not M-closed of X.

Example 3.2. Let X = Y = {a, b, c} with s = {X, /, {a}, {b},
{a, b}} and r = {Y, /, {a}, {b, c}}. If, f: (X, s) fi (Y, r) which
defined by the identity mapping, then f is contra-M-continuous
mapping but not contra d-precontinuous. Since, f�1({a}) =

{a} is not d-preclosed set of X. Also, f is contra-M-continuous
mapping but not contra h-semicontinuous. Since, f�1({b,
c}) = {b, c} is not h-semiclosed set of X.

Theorem 3.1. For a mapping f: (X, s) fi (Y, r), the following

statements are equivalent:

(i) f is contra-M-continuous,

(ii) for each x 2 X and each closed subset F of Y containing
f(x), there exist U 2MO(X) such that x 2 U and f(U) ˝ F,

(iii) for every closed subset F of Y, f�1(F) 2 MO(X),

(iv) f(M-cl(A)) ˝ ker(f(A)), for each A ˝ X,

(v) M-cl(f�1(B)) ˝ f�1(ker(B)), for each B ˝ Y.

Proof. (i)fi(ii). Let x 2 X and F be any closed set of Y con-
taining f(x). Then x 2 f�1(F). Hence by hypothesis, we have
f�1(Y/F) is M-closed in X and hence f�1(F) is M-open set of

X containing x. We put U = f�1(F), then x 2 U and f(U) ˝ F.

(ii)fi(iii). Let F be any closed set of Y and x 2 f�1(F). Then
f(x) 2 F. Hence by hypothesis, there exists an M-open
subset U containing x such that f(U) ˝ F, this implies that,
x 2 U ˝ f�1(F). Therefore, f�1(F) = [{U: x 2 f�1(F)}

which is M-open in X. Then f is contra-M-continuous.

(iii)fi(iv). Let A be any subset of X and y ker(f(A)). Then

by Lemma 2.1, there exists a closed set F of Y containing y
such that f(A) \ F= /. Hence, A \ f�1(F) = / and M-
cl(A) \ f�1(F) = /. Then f(M-cl(A)) \ F = / and y f(M-

cl(A)). Therefore, f(M-cl(A)) ˝ ker(f(A)).

(iv)fi(v). Let B be any subset of Y. Then by hypothesis and

Lemma 2.1, we have f(M-cl(f�1(B))) ˝ ker(f(f�1(B))) ˝ -
ker(B). Thus M-cl(f�1(B)) ˝ f�1(ker(B)).

(v)fi(i). Let V be any open subset of Y. Then by hypothesis
and Lemma 2.1, M-cl(f�1(V)) ˝ f�1(ker(V)) = f�1(V).
Therefore, f�1(V) is M-closed in X. Hence, f is contra-M-

continuous.

Definition 3.2 (El-Maghrabi and Al-Juhani (2013a,b)). A
mapping f: (X, s) fi (Y, r) is called:

(i) M-continuous if, f�1(U) 2MO(X), for each U 2 r,

(ii) M-irresolute if, f�1(U) 2MO(X), for each U 2MO(Y),
(iii) pre-M-open if, f(U) 2MO(Y), for each U 2MO(X),

(iv) pre-M-closed if, f(U) 2MC(Y), for each U 2MC(X).

Theorem 3.2. If a mapping f: (X, s) fi (Y, r) is contra-M-con-

tinuous and Y is regular, then f is M-continuous.

Proof. Let x 2 X and V be an open set of Y containing f(x).
Since Y is a regular space, then there exists an open set G of
Y such that f(x) ˝ G ˝ cl(G) ˝ V. But, if f is contra-M-contin-

uous, then there exists U 2MO(X) such that x 2 U and
f(U) ˝ cl(G) ˝ V. Hence, f is M-continuous. h

Remark 3.2. The composition of two contra-M-continuous
mappings need not be contra-M-continuous as shown by the

following example.

Example 3.3. Let X = Y = Z = {a, b, c, d}, with topologies
sx = {X, /,{a},{b}, {a, b}}, sy is an indiscrete topology and

sz = {Z, /, {a, d}}. Then the identity mappings f: (X,
sx) fi (Y, sy) and g: (Y, sy) fi (Z, sz) are contra-M-continuous
mappings, but g o f is not contra-M-continuous. Since, f�1({a,
d}) is not M-closed of X.The next theorems give the conditions

under which the composition of two contra-M-continuous
mappings is also contra-M-continuous.

Theorem 3.3. For two mappings f: (X, sx) fi (Y, sy) and g: (Y,
sy) fi (Z, sz), the following properties are hold:

(i) If f is contra-M-continuous and g is continuous mappings,

then g o f is contra-M-continuous,

(ii) If f is M-irresolute and g is contra-M-continuous

mappings, then g o f is contra-M-continuous.

Proof. (i) Let U 2 sz and g be a continuous mapping. Then
g�1(U) 2 sy. But, f is contra-M-continuous, then (g o
f)�1(U) 2MC(X). Hence, g o f is contra-M-continuous.

(ii) Let U 2 sz and g be a contra-M-continuous mapping.
Then g�1(U) 2MC(Y). But, f is M-irresolute, then (g o

f)�1(U) 2MC(X). Hence, g o f is contra-M-continuous. h

Theorem 3.4. Let f: X fi Y be a surjective M-irresolute and pre-
M-open mapping. Then g o f: X fi Z is contra-M-continuous if

and only if g is contra-M-continuous.

Proof. Necessity. Obvious from Theorem 3.3.Sufficiency. Let
g o f: X fi Z be a contra-M-continuous mapping and F be a
closed set of Z. Then (g o f)�1(F) 2MO(X). Since f is surjective

pre-M-open, then g�1(F) 2MO(Y). Therefore, g is contra-M-
continuous. h

Definition 3.3 El-Maghrabi and Al-Juhani, 2013c. A topolog-
ical space (X, s) is called:

(i) M-connected if X cannot be expressed as the union of

two disjoint non-empty M-open sets of X,

(ii) M-normal if, for every pair of disjoint closed sets F1 and

F2, there exist disjoint M-open sets U and V such that
F1 ˝ U and F2 ˝ V,
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(iii) M-T1-space if for every two distinct points x, y of X,

there exist two M-open sets U, V such that x 2 U, y U and
x V, y 2 V.

(iv) M-T2-space or M-Hausdorff space if for every two
distinct points x, y of X, there exist two disjoint M-open
sets U, V such that x 2 U and y 2 V.

Theorem 3.5. If, f: (X, s) fi (Y, r) is an injective closed and

contra-M-continuous mappings, and Y is ultra normal, then X
is M-normal.

Proof. Let F1 and F2 be two disjoint closed subsets of X.

Since f is closed injection, then f(F1) and f(F2) are two dis-
joint closed subsets of Y and since Y is ultra normal space,
then there exist two disjoint clopen sets U and V such that
f(F1) ˝ U and f(F2) ˝ V. Hence, F1 ˝ f�1(U) and

F2 ˝ f�1(V). Since f is injective contra-M-continuous, then
f�1(U) and f�1(V) are two disjoint M-open sets of X. There-
fore, X is M-normal. h

Theorem 3.6. If, f: (X, s) fi (Y, r) is a contra-M-continuous
mapping and X is M-connected, then Y is not a discrete space.

Proof. Suppose that Y is a discrete space and U any subset of
Y. Then U is open and closed set in Y. Since f is contra-M-con-

tinuous, f�1(U) is M-closed and M-open in X which is a con-
tradiction with the fact that X is M-connected. Hence, Y is not
discrete space. h

Theorem 3.7. If, f: (X, s) fi (Y, r) is an injective contra-M-

continuous mapping and Y is an Urysohn space, then X is M-T2.

Proof. Let x, y 2 X and x „ y. By hypothesis, f(x) „ f(y). Since
Y is an Urysohn space, there exist two open sets U and V of Y

such that f(x) 2 U, f(y) 2 V and cl(U) \ cl(V) = /. Since f is
contra-M-continuous, then there exist two M-open sets P
and Q such that x 2 P, y 2 Q and f(P) ˝ cl(U), f(Q) ˝ cl(V).
Then f(P) \ f(Q) = / and hence, P \ Q= /. Therefore, X is

M-T2. h

Corollary 3.1. If f: (X, s) fi (Y, r) is an injective contra-M-
continuous mapping and Y is an ultra Hausdorff space, then

X is M-T2.

Definition 3.4. A mapping f: (X, s) fi (Y, r) is called weakly-
M-continuous if, for each x 2 X and each open set V of Y con-
taining f(x), there exists U 2MO(X) such that x 2 U and

f(U) ˝ cl(V).

Theorem 3.8. If f: (X, s) fi (Y, r) is a contra-M-continuous
mapping, then f is weakly-M-continuous.

Proof. Let x 2 X and V 2 r containing f(x). Then cl(V) is

closed set in Y. Since f is contra-M-continuous, then
f�1(cl(V)) 2MO(X) and containing x. If we put
U = f�1(cl(V)), then f(U) ˝ cl(V). Hence, f is weakly-M-

continuous. h

Remark 3.3. The converse of Theorem 3.8 is not true as shown
by the following example.
Example 3.4. Let X = {a, b, c, d} andY = {a, b, c} with topol-

ogiess = {X,/, {a}, {b}, {a,b}, {a,b, c}, {a,b,d}}andr = {Y,/
, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Then a mapping f: (X,
s) fi (Y, r) which defined by f(a) = f(c) = c, f(b) = a and

f(d) = b is weakly-M-continuous mapping but, it is not contra-
M-continuous. Since, f�1({a, b}) = {b, d} is not M-closed of X.
4. Almost contra-M-continuous mappings

Now, we introduce a new type of continuity called almost con-

tra-M-continuity which is weaker than almost contra-d-pre-
continuity (Ekici, 2004b), almost contra-h-semicontinuity and
stronger than almost contra-e-continuity (Ekici, 2007).

Definition 4.1. A mapping f: (X, s) fi (Y, r) is called almost-

M-continuous if, for each x 2 X and each open set V of Y
containing f(x), there exists U 2MO(X) such that x 2 U and
f(U) ˝ int(cl(V)), equivalently, f�1(V) is M-open in X for every

regular open set V of Y.

Theorem 4.1. A mapping f: (X, s) fi (Y, r) is called almost-
M-continuous if and only if for each x 2 X and each regular open
set V of Y containing f(x), there exists U 2MO(X) containing

x such that f(U) ˝ V.

Proof. Necessity. Let V ˝ Y be regular open set containing
f(x). Then x 2 f�1(V). But f is almost-M-continuous, then
f�1(V) = U is regular open set of X containing x such that

f(U) = f f�1(V) ˝ V. h

Sufficiency. Let V˝ Y be regular open set. We need to
prove that f�1(V) 2MO(X). Suppose that x 2 f�1(V). Then
f(x) 2 V. By hypothesis, there exists U 2MO(X) containing x
such that f(U) ˝ V. Hence x 2 U ˝ f�1(f(U)) ˝ f�1(V). Then

f�1(V) = [ {U: x 2 U} is an M-open set of X. Therefore, f is
almost-M-continuous.

Definition 4.2. A mapping f: (X, s) fi (Y, r) is called almost

contra-M-continuous if, f�1(V) is M-closed in X, for every
regular open set V of Y.

Remark 4.1. The implication between some types of mappings
of Definitions 2.2, 4.2, is given by the following diagram.

a. contra cont.        a. contra α-cont.      a. contra precont.   a. contra δ-precont.

a. contra semicont.       a. contra γ-cont. a. contra β-cont. a. contra e*-cont.

 a.contra-super-continuous         a. contra-a-cont. a. contra δ-semicont.    a. contra e-cont.

a. contra θ-cont.        a. contra θ-semicont.  a. contra M-cont.

The converse of these implications need not be true in gen-
eral and by the following examples and by Ekici (2007,

2004a,b,c, 2005)

Example 4.1. Let X = Y= {a, b, c} with topologies s = {X,
/, {a}, {b}, {a, b}}andr = {Y, /, {a}, {b}, {a, b}, {b, c}}. If f:
(X, s) fi (Y, r) is the identity mapping, then f is almost contra-

M-continuous mapping but not almost contra d-precontinu-
ous. Since,f�1({a}) = {a} is not d-preclosed in X.



Some applications of M-open sets in topological spaces 265
Example 4.2. Let X = Y = {a, b, c, d} with topologies

s = {X, /, {a},{c},{a, b}, {a, c}, {a, b, c}, {a, c, d}} and
r = {Y, /, {a}, {b}, {a, b},{a, b, c}, {a, b, d}}.If f: (X,
s) fi (Y, r) is the identity mapping, then f is almost contra-

M-continuous mapping but not almost contra-h-semicontinu-
ous. Since, f�1({a}) = {a} is not h-semiclosed in X.

Example 4.3. Let X = Y = {a, b, c, d} with topologies
s = {X, /, {a},{b},{a, b}, {a, b, c}, {a, b, d}} and r = {Y,

/, {a, b, c}, {b, c}, {a, d}, {a}}. If f: (X, s) fi (Y, r) is the iden-
tity mapping, then f is almost contra-e-continuous mapping
but not almost contra M-continuous. Since, f�1({b, c}) = {b,

c} is not M-closed in X.

Theorem 4.2. For a mapping f: (X, s) fi (Y, r), the following
statements are equivalent:

(i) f is almost contra-M-continuous,

(ii) f�1(F) is M-open in X, for every regular closed set F of
Y, for each x 2 X and each regular closed set F of Y
containing f(x), there exists U 2MO(X) such that x 2 U
and f(U) ˝ F,

(iii) for each x 2 X and each regular open set V of Y not
containing f(x), there exists an M-closed set K of X not

containing x such that f�1(V) ˝ K.

Proof (i). (i)fi(ii). Let F be any regular closed set of Y. Then
Y/F is regular open. By hypothesis, f�1(Y/F) = X/

f�1(F) 2MC(X). Therefore, f�1(F) 2MO(X). h

(ii)fi(i). Obvious.

(ii)fi(iii). Let F be any regular closed set of Y containing
f(x). Then by hypothesis, f�1(F) 2MO(X) and x 2 f�1(F).

Put U = f�1(F), then f(U) ˝ F.

(iii)fi(ii). Let F be any regular closed set of Y and

x 2 f�1(F). By hypothesis, there exist U 2MO(X) such that
x 2 U and f(U) ˝ F. Hence, x 2 U ˝ f�1(F). That
implies f�1(F) = [{U: x 2 f�1(F)} Therefore, f�1(F) 2
MO(X).

(iii)fi(iv). Let V be any regular open set of Y non-

containing f(x). Then Y/V is regular closed set of Y
containing f(x). By (iii), there exists U 2MO(X) such that
x 2 U and f(U) ˝ Y/V. Then U ˝ f�1(Y/V) ˝ X/f�1(V) and

so f�1(V) ˝ X/U. Since U 2MO(X), then X/U = K is M-
closed set of X not containing x and f�1(V) ˝ K.

(iv)fi(iii). Obvious. h

Remark 4.2. The composition of two almost contra-M-contin-
uous mappings need not be almost contra-M-continuous as
shown by the following example.

Example 4.4. Let X = Y = Z = {a, b, c, d}, with topologies
sx = {X, /,{a},{b}, {a, b}, {a, b, c}, {a, b, d}}, sy is an indis-
crete topology and sz = {Z, /, {a}, {b}, {a, b}, {a, d}, {a, b,
c}, {a, b, d}}. Then the identity mappings f: (X, sx) fi (Y, sy)
and g: (Y, sy) fi (Z, sz) are almost contra-M-continuous map-
pings, but g o f is not almost contra-M-continuous. Since,
f�1({a, d}) = {a, d} is not M-closed of X.
Theorem 4.3. For two mappings f: (X, sx) fi (Y, sy) and g: (Y,
sy) fi (Z, sz), the following properties are hold:

(i) If, f is a surjective pre-M-open and g o f: X fi Z is almost

contra-M-continuous, then g is almost contra-M-continuous.

(ii) If, f is a surjective pre-M-closed and g o f: X fi Z is

almost contra-M-continuous, then g is almost contra-M-
continuous.

Proof. Let V ˝ Z be regular closed set. Since, g o f is almost
contra-M-continuous, then (g o f)�1(V) 2MO(X). But, f is sur-

jective pre-M-open, then g�1(V) 2MO(Y). Therefore, g is
almost contra-M-continuous. h(i) Obvious. h

Theorem 4.4. If f: (X, s) fi (Y, r) is an injective almost con-

tra-M-continuous mapping and Y is weakly Hausdorff, then X
is M-T1.

Proof. Let x, y be two distinct points of X. Since f is injective,
then f(x) „ f(y) and since Y is weakly Hausdorff, there exist

two regular closed sets U and V such that f(x) 2 U, f(y) U
and f(x) V, f(y) 2 V. Since f is an almost contra-M-continu-
ous, we have f�1(U) and f�1(V) are M-open sets in X such that

x 2 f�1(U), y f�1(U) and x f�1(V), y 2 f�1(V) and
f�1(U) \ f�1(V) = /. Hence X is M-T1. h

Definition 4.3. A topological space (X, s) is said to be:

(i) M-compact if every M-open cover of X has finite
subcover,

(ii) countably M-compact if every countable cover of X by
M-open sets has a finite subcover,

(iii) M-Lindelöff if every M-open cover of X has a
countable subcover.

Theorem 4.5. If f: (X, s) fi (Y, r) is a surjective almost con-

tra-M-continuous mapping, then the following statements are
hold:

(i) If X is M-compact, then Y is S-closed,

(ii) If X is countably M-compact, then Y is countably S-
closed,

(iii) If X is M-Lindelöff, then Y is S-Lindelöff.

Proof. Let {Vi: i 2 I} be any regular closed cover of Y and f be
almost contra-M-continuous. Then {f�1(Vi): 2 I}is M-open
cover of X. But X is M-compact, there exists a finite subset

Io of I such that X = [{f�1(Vi): i 2 Io}, hence Y = [ {f
f�1(Vi): i 2 Io} and then Y = [{Vi: i2Io}. Hence Y is S-closed.

(i) Similar to (i).

(ii) Similar to (i). h
5. Conclusion

The authors study contra-M-continuous and almost contra-
M-continuous mappings. Continuity is a valuable subject in

many branches of maths. Properties and characterizations of
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contra-M-continuous and almost contra-M-continuous
mappings are investigated. Also, the relationships between this
paper and many recent papers are introduced. The relation-

ships between this paper and the related good papers in the lit-
erature are good and important.
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Demonstratio Mathematica,Vol. XXXVIII No 3, 715-727.

Ekici, E., 2007. Some generalizations of almost contra-super-continu-

ity. Filomat 21 (2), 31–44.

Ekici, E., 2008a. New forms of contra continuity. Carpathian J. Math.

24 (1), 37–45.
Ekici, E., 2008b. On e-open sets, DP*-sets and DPE*-sets and

decompositions of continuity. Arabian J. Sci. and Eng. 33 (2A),

269–282.

Ekici, E., 2008c. On a-open sets, A*-sets and decompositions of

continuity and super- continuity. Annales Univ. Sci. Budapest. 51,

39–51.

Ekici, E., 2009. On e*-open sets and (D, S)*-sets. Mathematica

Moravica. 13 (1), 29–36.

Ekici, E., Noiri, T., 2006. Contra–precontinuous functions. Bull. Cal.

Math. Soc. 98 (3), 275–284.

El-Atik, A.A., 1997. A study on some types of mappings on

topological spaces, M. Sci. Thesis Tanta Univ, Egypt.

El-Magbrabi, A.I., 2010. Some properties of contra–continuous

mappings. Int. J. General Topol. 3 (1–2), 55–64.

El-Maghrabi, A.I., Al-Juhani, M.A., 2011. M-open sets in topological

spaces. Pioneer J. Math. Sci. 4 (2), 213–230.

El-Maghrabi, A.I., Al-Juhani, M.A., 2013. New separation axioms by

M-open sets. Int. J. Math. Archive 4 (6), 93–100.

El-Maghrabi, A.I., Al-Juhani, M.A., 2013. New types of functions by

M-open sets. Taibah Univ. J. Sci. 7, 137–145.

El-Maghrabi, A.I., Al-Juhani, M.A., 2013. Further properties on M-

continuity, Proc. Math. Soc. Egypt.

Ghosh, M.K., Basu, C.K., 2012. Contra-e-continuous functions. Gen.

Math. Notes. 9 (2), 1–18.

Jafari, S., Noiri, T., 1999. Contra-super-continuous functions. Ann.

Ales Univ. Sci. Budapest. 42, 27–34.

Jafari, S., Noiri, T., 2001. Contra–continuous functions between

topological spaces. Iranian. Int. J. Sci. 2, 153–167.

Jafari, S., Noiri, T., 2002. On contra-precontinuous functions. Bull.

Malaysian Math. Sc. Soc. 25, 115–128.

Joseph, J.E., Kwack, M.H., 1980. On S-closed spaces. Proceeding

Amer. Math. Soc. 80 (2), 341–348.

Levine, N., 1963. Semi-open sets and semicontinuity in topological

spaces. Amer. Math. Monthly 70, 36–41.

Mashhour, A.S., Abd El-Monsef, M.E., El-Deeb, S.N., 1982. On

precontinuous and weak precontinuous mappings. Proc. Math.

Phys. Soc. Egypt 53, 47–53.

Mrsevic, M., 1986. On pairwise R and pairwise R1 bitopological

spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie 30, 141–148.

Nasef, A.A., 2005. Some properties of contra–continuous functions.

Chaos Solitons Fractals 24, 471–477.
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