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Monitoring techniques based on the multivariate coefficients of variation (MCV) have received a great
deal of attention in quality control. Numerous studies have shown that adaptively changing the charting
parameters based on the past sample information can improve the performance of a chart in detecting
process changes. In view of the performance benefits of adaptive strategies, two one-sided cumulative
sum (CUSUM) charts are proposed to monitor the MCV and a variable sampling interval (VSI) strategy
is incorporated into these charts. By using the Markov chain method, the formulas for calculating the
average and standard deviation of time to signal measures of the VSI CUSUM MCV control charts are
derived. Then for the known and unknown shift sizes, the optimization algorithms for obtaining the
charting parameters are presented. The superiority of the proposed control charts is confirmed by com-
paring their performance with two existing MCV charts. Finally, an example using real investment data
demonstrates the practical application of the proposed charts.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Control charts are widely applied as an effective monitoring
tool to ensure product quality and production stability in statistical
process control (SPC). When there is an assignable cause in an
industrial process that can lead to process deterioration or
improvement, control charts tend to be triggered with a warning
signal indicating the process as out-of-control (OOC). Then, correc-
tive strategies to find and eliminate assignable causes are imple-
mented by practitioners to further ensure the process stability.
By preventing anomalies in an early stage, control charts facilitate
the reduction of quality costs and thus increase product
competitiveness.
Traditionally, the process mean or/and variance is monitored
for change detection in a process. Monitoring of the coefficient of
variation (CV), which combines the mean and variance in a ratio
form, has been much overlooked. In some applications, even
though both the mean l and the standard deviation r have chan-
ged, a process may not be OOC when there is a constant ratio
between l and r, see Muhammad et al. (2018). In this case, the
CV, denoted by c ¼ r=l, can be considered as a good monitoring
alternative. This can be illustrated in the example of the clinical-
chemistry control problem in Kang et al. (2007), in which measure-
ments of chemical characteristics in the patient’s blood need to be
taken repeatedly. Since the average value of the measurement var-
ies from patient to another, the CV should be monitored instead of
the l of the process. Hence, the research of CV monitoring is valu-
able in practical application.

Extensive investigations have been devoted to the performance
and enhancement of univariate CV charts. A pioneering study was
conducted by Kang et al. (2007), who developed a Shewhart ver-
sion of the CV chart. Since only the latest sample information
was considered, small changes may not be detected by the She-
whart CV chart. Exponentially weighted moving average (EWMA)
charts were therefore applied by Castagliola et al. (2011) to deal
with scenarios with small and medium changes. Following the
same EWMA charting scheme, Zhang et al. (2014) suggested some
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modifications and further improves its performance in detecting
small changes. Instead of using the EWMA scheme, Tran and
Tran (2016) applied a cumulative sum (CUSUM) scheme and devel-
oped two new one-sided CV charts. More research efforts on CV
charts include the run sum CV charts by Teoh et al. (2017), a set
of CV charts based on the auxiliary information by Abbasi (2020)
among others. A review of univariate CV charts is detailed in
Jalilibal et al. (2021).

It can be seen that the aforementioned studies aimed at moni-
toring one single quality characteristic. However, it is more com-
mon that simultaneously monitoring MCV are of interest. For
instance, in genetics and biometrics, CV is an important measure
of the relative variability of different populations, where usually
various characteristics of individuals are involved. Since the corre-
lation exists among these characteristics, univariate CV for differ-
ent characteristics cannot be taken into account separately, see
Albert and Zhang (2010). Similarly, the relative variability of 14
traits in female pouched gophers was measured in Soulé and
Zegers (1996), and in this process, the MCV was monitored instead
of the univariate CV, which ignores the correlation structure
between different variables. Hence, the study and enhancement
of MCV charts is a worthy concern in SPC research.

Among the existing studies, Yeong et al. (2016) first designed
the MCV chart using the Shewhart scheme. Subsequently, Lim
et al. (2017) improved the Shewhart charts by integrating the
run sum feature and the proposed chart showed a stronger sensi-
tivity in detecting changes than the Shewhart charts. Another
effort to improve the Shewhart MCV charts is the two one-sided
synthetic charts suggested by Nguyen et al. (2019a,b). Further,
the MCV chart was extended to the EWMA framework for small
shift detection by Giner-Bosch et al. (2019). To overcome the lim-
itation that the existing MCV schemes are for sample sizes greater
than 1, an EWMA scheme was designed for individual observations
in Haq and Khoo (2022). Examples of other research contributions
include MCV charts considering measurement errors by Ayyoub
et al. (2020), sensitivity of Shewhart MCV charts for short runs
by Khatun et al. (2019), and comparison among various MCV charts
in Phase I by Abbasi and Adegoke (2018).

The control charts previously discussed follow a fixed chart
parameter strategy, i.e., the chart parameters of these charts are
always fixed regardless of the previous sample information. Incor-
porating the adaptive features to the control charts with fixed
chart parameters is one of the strategies to improve chart perfor-
mance. As shown in the comprehensive study of the adaptive
charts properties in Epprecht et al. (2003), adaptive control charts
outperform their non-adaptive counterparts in shift detection.
Readers can see the work in Tagaras (1998) for more research on
adaptive control charts.

Both univariate CV and MCV control charts can benefit from
integration of adaptive strategies. For instance, the variable sam-
pling interval (VSI) and the variable sample size (VSS) strategies
were applied to traditional Shewhart CV chart in order to detect
outliers more quickly by Castagliola et al. (2013) and Castagliola
et al. (2015), respectively. The VSI feature was also incorporated
to the EWMA CV chart by Yeong et al. (2017) and to the CUSUM
CV squared chart by Tran and Heuchenne (2021). Yeong et al.
(2018) considered the combination of VSI, VSS and variable control
limits for CV chart and designed a variable parameters (VP) CV
chart. Recently, Yeong et al. (2023) improved the performance of
the run sum charts for CV by combining variable sample size and
sampling interval (VSSI) and VP. With regard to the adaptive
MCV charts, Khaw et al. (2018) favored the use of VSSI MCV chart
based on the numerical comparison among the VSI, VSS and VSSI
control charts. Chew et al. (2019) designed a VP MCV chart and
showed its higher sensitivity than existing MCV charts. Nguyen
et al. (2019a,b) increased the detection sensitivity of Shewhart
2

MCV charts by combining VSI features. Haq and Khoo (2019) sug-
gested two adaptive EWMA (AEWMA) charts for monitoring uni-
variate CV and MCV. Focusing on detection of the downward
shift in the MCV, Chew and Khaw (2020) designed a one-sided con-
trol chart with VSSI features. Nguyen et al. (2021) designed two
one-sided EWMAMCV charts with VSI features and further studied
the effect of measurement errors on their performance. Sabahno
and Celano (2023) designed the Shewhart scheme in the presence
of autocorrelation and incorporated VP features to improve its
monitoring performance for MCV.

As reviewed above, most researches on adaptive MCV charts are
limited to the Shewhart type. The EWMA and CUSUM types, which
are more effective in detecting small fluctuations, have received less
attention. In traditional monitoring context, CUSUM charts are
known to achieve optimal performance for specific shifts and is
superior to EWMA charts when actual shifts are as expected, see
Hawkins and Wu (2014). Such advantage of CUSUM charts was also
validated in the applications of monitoring normal ratio by Tran
et al. (2018) and univariate CV by Tran and Tran (2016). In order
to enhance adaptive MCV chart in detecting small shifts, this paper
combines VSI features with CUSUM MCV charts, and designs two
one-sided VSI CUSUM MCV charts based on the one-sided CUSUM
MCV charts proposed by Hu et al. (2023). Superiority of the pro-
posed charts is clarified through numerical experiments, where per-
formance criteria including average signal time (ATS) and expected
ATS (EATS) are thoroughly evaluated using the Markov chain model
under deterministic and unknown shift size conditions.

The structure of this paper is organized as follows. First, we pre-
sent a simple description of the basic properties of the sample MCV
squared in Section 2, where the one-sided VSI EWMA MCV charts
and the CUSUMMCV charts are also briefly introduced. In Section 3,
the proposed one-sided VSI CUSUM MCV charts are constructed,
along with their ATS properties derived from a Markov chain
model. To minimize the value of OOC ATS and EATS, an optimiza-
tion algorithm are presented under deterministic and unknown
shift size conditions in Section 3. Numerical studies on perfor-
mance comparison among the proposed and some benchmark con-
trol charts are presented in Section 4. A real case analysis using the
proposed charts is illustrated in Section 5. The last Section 6 outli-
nes the main conclusions and future recommendations.

2. Some existing MCV charts

First, the basic properties of the sample MCV squared are briefly
reviewed. Then, some existing MCV charts are introduced, including
the one-sided VSI EWMA MCV charts and the CUSUM MCV charts.

2.1. Basic properties of the sample MCV squared

Denote by X1;X2 � � � ;Xnf g a random sample of size n. Each Xi is a
p-dimensional vector from a multivariate normal distribution with
mean parameter l and covariance parameter R, i.e., Xi � Np l;Rð Þ,
i ¼ 1;2;3; � � � ;n. The population MCV is then derived as

c ¼ lTR�1l
� ��1

2 ð1Þ

according to Voinov and Nikulin (1996). Let X
�
and S be the sample

mean vector and sample covariance matrix of X1;X2 � � � ;Xn, i.e.,

�X ¼ 1
n

Xn
i¼1

Xi;

S ¼ 1
n� 1

Xn
i¼1

Xi � �X
� �

Xi � �X
� �T

:
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Then the sample MCV is

ĉ ¼ �X TS�1 �XÞ�
1
2:

�
ð2Þ

To monitor the MCV, the distribution of the MCV c or the MCV
squared (bc2) is of interest. It has been derived that the cumulative
distribution function (c.d.f.) of bc2 is

Fbc2 xjn;p; cð Þ ¼ 1� FF
n n� pð Þ
n� 1ð Þpx jp; n� p;

n
c2

� �
; ð3Þ

where FF �j�; �; �ð Þ is the c.d.f. of a non-central F distribution; p and
n� p are the two parameters for the degrees of freedom; and
n=c2 is the non-centrality parameter (Yeong et al., 2016).

2.2. The existing one-sided VSI EWMA MCV charts

Considering that the Shewhart chart focuses only on the latest
sample information, a one-sided MCV chart based on the EWMA
scheme was proposed in Giner-Bosch et al. (2019). The VSI feature
is then incorporated by Ayyoub et al. (2022) to further enhance the
EWMA MCV chart.. In both studies, only upward shifts were con-
sidered, while downward shifts were neglected. Motivated by this,
Nguyen et al. (2021) suggested two one-sided VSI EWMA MCV
charts with a ‘‘restart state” to overcome the ‘‘inertia problem” in
the previous VSI EWMA scheme. The construction methods of their
charts are described as follows.

The charting statistic for the upward EWMA MCV chart is

Zþ
t ¼ max l0 bc2� �

; 1� kþ
� �

Zþ
t�1 þ kþbc2

t

� �
; ð4Þ

where kþ 2 0;1½ � is the smoothing constant, and the initial statistic
Zþ
0 ¼ l0 bc2

� �
takes the value of sample mean for in-control (IC) bc2.

To monitor Zþ
t , the upper control limit (UCL) is

UCL ¼ l0 bc2� �þ Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ

1� kþ

s
r0 bc2� �

; ð5Þ

where r0 bc2
� �

is the standard deviation of the IC bc2, and Lþ > 0 is the
control limit parameter. The charting statistic for the downward
EWMA MCV chart is

Z�
t ¼ min l0 bc2� �

; 1� k�ð ÞZ�
t�1 þ k�bc2

t

� �
ð6Þ

with Z�
0 ¼ l0 bc2

� �
as the initial value, and k� 2 0;1½ � being the

smoothing constant. To monitor Z�
t , the lower control limit (LCL) is

LCL ¼ l0 bc2
� �� L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�

1� k�

r
r0 bc2

� �
; ð7Þ

where L� > 0 is the control limit parameter. It is noticeable that
methods of calculating both l0 bc2

� �
and r0 bc2

� �
for a pre-defined

dimension p are provided in Giner-Bosch et al. (2019). Therein,
the lower bound of k (representing kþ or k�) was set to be 0.01.
The same value is adopted by Nguyen et al. (2021) as well as in this
paper. When the statistic Zþ

t > UCL or Z�
t < LCL, the EWMA MCV

charts trigger an OOC signal indicating a potential change in the
process MCV. The values of the MCV squared bc2 for the sample t
are computed as in Eq. (2).

Furthermore, the upper warning limit (UWL) and lower warn-
ing limit (LWL) are defined in Nguyen et al. (2021) as

UWL ¼ l0 bc2� �þ Cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ

1� kþ

s
r0 bc2� �

; ð8Þ

and,

LWL ¼ l0 bc2� �� C�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�

1� k�

r
r0 bc2� �

; ð9Þ
3

where C Cþ > 0 and C� > 0
� �

is the chart coefficient of the corre-
sponding warning limit. When the statistics Zþ

t 2 l0 bc2
� �

;UWL
	 


or
Z�
t 2 LWL;l0 bc2

� �	 

, the process stays well IC and a long sampling

interval (hL) is used to draw the next sample. When
Zþ
t 2 UWL;UCL½ � or Z�

t 2 LCL; LWL½ �, the process is still IC but consid-
ered to be risky. Therefore, a short interval (hS) is employed to
determine the next sampling time. If Zþ

t exceeds UCL or Z�
t falls

below LCL, an OOC signal is captured. Further actions need to be
taken by engineers to identify and eliminate the potential assign-
able cause.

2.3. The existing one-sided CUSUM MCV charts

To make use of the advantage of the CUSUM control chart in
detecting small shifts in univariate CV, Hu et al. (2023) have sug-
gested two one-sided MCV charts based on the CUSUM scheme.
The charting methods are as follows.

The charting statistic for the upward CUSUM chart is

Cþ
t ¼ max 0;Cþ

t�1 þ bc2
t � l0 bc2� �� Kþ

� �� �
ð10Þ

with the initial value Cþ
0 ¼ 0 and the UCL for Cþ

t is defined as

UCL ¼ HU � r0 bc2� �
> 0 ð11Þ

The charting statistic for the downward CUSUM chart is

C�
t ¼ max 0;C�

t�1 � bc2
t � l0 bc2� �� K�

� �� �
ð12Þ

with the initial value C�
0 ¼ 0 and the LCL for C�

t is defined as

LCL ¼ HD � r0 bc2
� �

> 0 ð13Þ
where H HU > 0 and HD > 0ð Þ is the control limit parameter. In
Eqs. (10) and (12), Kþ and K� are the reference values and can be
further written in the form Kþ ¼ KU � r0 bc2

� �
(K� ¼ KD � r0 bc2

� �
),

where KU > 0 andKD > 0 are the charts’ parameters. When the
statistic Cþ

t > Hþ or C�
t > H�, the CUSUM MCV chart triggers an

OOC signal to indicate an upward or a downward shift of MCV.

3. The proposed one-sided VSI CUSUM MCV charts

The construction, performance measures and optimal design
procedures of the VSI CUSUM MCV control charts are provided in
this section. First, Section 3.1 combines the VSI strategy with the
standard CUSUM MCV charts and describes in detail the construc-
tion of the VSI CUSUM MCV control charts. Second, the perfor-
mance metrics are derived based on a Markov chain method in
Section 3.2. Finally, optimization algorithms for calculating control
limits by minimizing the performance metrics are presented.

3.1. The proposed one-sided VSI CUSUM MCV charts

The above CUSUM MCV charts proposed in Hu et al. (2023)
belongs to the non-adaptive type charts, which adopt a fixed sam-
pling interval (FSI) strategy. To be consistent with the VSI EWMA
MCV charts reviewed in Section 2.2, the VSI CUSUM MCV control
charts are constructed by adapting the fixed sampling interval in
the original FSI chart into the variable version h, while the UCL
and the LCL remains the same. The VSI h of the proposed VSI
CUSUMMCV control charts changes at both hS and hL levels for dif-
ferent values of the current statistic Cþ

t or C�
t , where hS < hL. To

implement the VSI CUSUM MCV chart, it is necessary to introduce
new warning limits (UWL and LWL), which are defined as follows:

UWL ¼ WU � r0 bc2
� �

> 0; ð14Þ
and,
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LWL ¼ WD � r0 bc2� �
> 0; ð15Þ

where W WU > 0 andWD > 0ð Þ is the warning limit coefficient. The
region determined by UWL and LWL are always smaller than the
region corresponding to the control limits, i.e.,
H > W HU > WU > 0 andHD > WD > 0ð Þ: With H and W available,
the control charts are separated into three regions: the safe region
(0, LWL] or (0, UWL], the warning region (LWL, LCL] or (UWL, UCL]
and the OOC region (Otherwise), which is shown in Fig. 1. After this
division, the VSI CUSUM MCV charts works subject to the following
strategy:

� When the monitored statistic Cþ
t or C�

t falls into the safe region,
the process is declared as IC and a long sampling interval hL is
adopted to draw the next sample.

� When the monitored statistic Cþ
t or C�

t falls into the warning
region, the process is IC but with a high risk of being OOC.
Hence, the next sample interval it set to be short, say hS, to
detect potential assignable causes more quickly.

� When the monitored statistic Cþ
t or C�

t falls into the OOC region,
the process is declared as OOC and prompt actions should be
taken to locate and remove assignable causes quickly.

3.2. Performance measures

Traditionally, in order to evaluate the performance of FSI type
charts, criteria based on the run length distribution is widely used.
Among these criteria, the average run length (ARL) is the most
commonly adopted. For VSI type charts, the time between two suc-
cessive samples varies. Therefore, ARL is not applicable. To evalu-
ate the properties of VSI type control charts,. the ATS and
standard deviation of time to signal (SDTS) are suggested. ATS indi-
cates the expected time to the appearance of an OOC signal since
the process monitoring is started, and SDTS measures the variabil-
ity of the time to signal. A well-performed control chart is expected
to falsely alarm at a low rate for an IC process and to trigger a sig-
nal as fast as possible for an OOC process. Therefore, a large IC ATS
(ATS0) and a small OOC ATS (ATS1) are considered to be the indica-
tion of excellent chart performance.

For FSI type charts, the ATS is represented as

ATSFSI ¼ ARLFSI � hF ; ð16Þ
where hF is the fixed sampling interval.

For VSI type charts, the ATS is computed as
Fig. 1. The region division of the upward VSI CUSUM MCV control chart.

4

ATSVSI ¼ ARLVSI � E hð Þ; ð17Þ
where E hð Þ is the average of sampling interval (ASI). To calculate
ATS and SDTS of the VSI CUSUM MCV chart, the Markov chain
approach by Brook and Evans (1972) is employed. For a discrete-
time Markov chain with sþ 2 states, assume states 0;1; � � � ; s are
transient, and corresponding initial probabilities are
q ¼ q0; q1; � � � ; qsð ÞT . Define state sþ 1 as the absorbing state. The
transition probability matrix P is

P ¼ Q r

0T 1

� �
¼

Q0;0 Q0;1 Q0;s r0
Q1;0 Q1;1 Q1;s r1

..

. ..
. . .

. ..
. ..

.

Qs;0 Qs;1 Qs;s rs
0 0 0 1

0BBBBBBB@

1CCCCCCCA; ð18Þ

where 0 ¼ 0;0; � � � ; 0ð ÞT is the column vector of 00s; Q is the
sþ 1; sþ 1ð Þ matrix of transient probabilities. To ensure the row
probabilities being the constant 1, the column vector r is defined
as r ¼ 1� Q1, where 1 ¼ 1;1; � � � ;1ð ÞT is the all ones vector of
length sþ 1. For the matrix P defined in formula (18), the transient
probability Qi;j; i; j ¼ 0;1; � � � ; s needs to be determined. With regard
to the upward VSI CUSUM MCV chart, the interval [0, UCL] is
divided into s subintervals of width 2d, which is shown in Fig. 2.

By definition, Hj, j ¼ 0;1; � � � ; s, denotes the midpoint of the jth

subinterval Hj � d
�

;Hj þ d


. The width of each subinterval is 2d

and decreases with s since d ¼ UCL=2s. When s is sufficiently large,

the subinterval becomes so narrow that all the values in the jth

subinterval can be approximated as Hj. When j ¼ 0; H0 ¼ 0 indi-
cates the proposed charts to ‘‘restart”. The transition probability
Qi;j; i; j ¼ 0;1; � � � ; s from state i to state j is provided as follows.

� For the upward chart,

Qi;j ¼
Fbc2 l0 bc2

� �� Hi þ Kþ��n;p; c� �
; j ¼ 0;

Fbc2 l0 bc2
� �þ Hj � Hi þ dþ Kþ��n; p; c� �

�Fbc2 l0 bc2
� �þ Hj � Hi � dþ Kþ��n;p; c� �

; j–0

:

8>>><>>>: ð19Þ

� For the downward chart,

Qi;j ¼
1� Fbc2 l0 bc2

� �þ Hi � K���n; p; c� �
; j ¼ 0;

Fbc2 l0 bc2
� �þ Hi � Hj þ d� K���n; p; c� �

�Fbc2 l0 bc2
� �þ Hi � Hj � d� K���n;p; c� �

; j–0

;

8>>><>>>: ð20Þ

where Fbc2 �ð Þ is the c.d.f. of bc2 as defined in Eq. (3). The initial state

corresponds to the ‘‘restart state” with

initial probabilitiesq ¼ 1;0; � � � ;0ð ÞT . Denote by gj the sampling
interval (hS or hL) when the charting statistic is in the state j (i.e.,

falling into the jth subinterval). Denote by g the sþ 1;1ð Þ vector
formed by gj’s and by B the diagonal matrix with the j th entry being
equal to gj. As introduced in Saccucci et al. (1992), the ATS and SDTS
are computed as

ATS ¼ qT I� Qð Þ�1g; ð21Þ

SDTS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qTQB 2R � Ið Þg� qTQgð Þ2

q
; ð22Þ

where I is the sþ 1; sþ 1ð Þ identity matrix. Note that gj ¼ hL when
Hj is in safe region, while gj ¼ hS when Hj is in warning region.



Fig. 2. Sub-division of the IC range.
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From Eqs. (17) and (21), the expected sampling interval E hð Þ is
obtained as:

E hð Þ ¼ qT I� Qð Þ�1g

qT I� Qð Þ�11
; ð23Þ

The denominator in Eq. (23) is the formula for ARL as in Brook
and Evans (1972). To make fair comparison, the same IC values of
ATS0 and E0 hð Þ are imposed for both FSI and VSI types of charts.
Then, the OOC metrics ATS1 and E1 hð Þ are evaluated for the compar-
ison purpose. Without the loss of generality, we assumed that hF ¼ 1

time unit, which leads to ATSFSI0 ¼ ARL0 by plugging hF into Eq. (16).

3.3. Optimization algorithm

This section provides an optimization algorithm for minimizing
ATS1 and EATS1 of the VSI CUSUM MCV charts. For the known shift
size case, Section 3.3.1 presents an optimization model to deter-
mine the chart parameters that minimizes the ATS1 of the proposed
control charts. For the unknown shift size case, the EATS measure
is proposed and the corresponding optimization program is
designed in Section 3.3.2.

3.3.1. The known shift size case
Assume the IC c0 is shifted to c1 ¼ c0 � s due to assignable

causes. Here s is a prespecified shift size. The optimal parameters
of VSI CUSUM MCV can be obtained using the optimization algo-
rithm that minimizes the ATS1 with a given ATS0. As proposed in
Castagliola et al. (2013), hS; hLð Þ is usually chosen as a fixed couple
in the VSI setting. It is acceptable to set a fixed value hS in advance
because in the industrial production process, a certain time inter-
val always exists between the production process of two products
or two batches of products. However, predetermining the value of
hL is dubious, since the sampling interval before the next sampling
can be arbitrarily chosen when the value of the current statistic
falls into the safety region, as long as the chart performance is
5

not affected. For this reason, we propose to predetermine the value
of warning limit coefficient WU WDð Þ instead of hL. Then we mini-
mize the ATS1 with respect to K�

U ; H
�
U ; h

�
L

� �
(upward chart) or

K�
D; H

�
D; h

�
L

� �
(downward chart) using some small values of hS. Fur-

thermore, the optimal combination K�
U ; H

�
U ; h

�
L

� �
or K�

D; H
�
D; h

�
L

� �
for

the proposed VSI CUSUM MCV charts with a given shift size s is
calculated as follows.

� For the chart to detect downward shifts,

K�
D; H

�
D; h

�
L

� � ¼ argmin
KD ;HD ;hLð Þ

ATS n;p;KD;HD;WU ; hS;hL; c0; sð Þ ð24Þ
subject to the constraint

ATS n;p;KD;HD;WU ;hS;hL; c0; s ¼ 1ð Þ ¼ ATS0;
E0 hð Þ ¼ 1:

�

� For the chart to detect upward shifts,

K�
U ; H

�
U ; h

�
L

� � ¼ argmin
KU ;HU ;hLð Þ

ATS n;p;KU ;HU ;WD;hS;hL; c0; sð Þ ð25Þ
subject to the constraint

ATS n;p;KU ;HU ;WD;hS;hL; c0; s ¼ 1ð Þ ¼ ATS0;

E0 hð Þ ¼ 1:

�

3.3.2. The unknown shift size case
The optimization model for the VSI CUSUM MCV control charts

presented in Section 3.3.1 was designed with the shift size s being
predetermined. In the actual production process, however, relevant
historical data are hardly possible to be available for predetermin-
ing the exact shift size s. In such a situation, according to the work
of Tran and Heuchenne (2021), we can use EATS as the perfor-
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mance criterion. Given the range of shift size X ¼ smin; smaxð Þ, the
EATS is computed as

EATS ¼
Z
X
f s sð Þ � ATS n; p;KD;HD;WD;hS;hL; c0; sð Þds; ð26Þ

where f s sð Þ is the probability density function (p.d.f.) of the shift s,
and the integral in the EATS formula can be calculated using the
Legendre-Gauss Quadrature method. It is common in numerical
comparison that equally spaced shift sizes are considered. There-
fore, we can assume the shifts are discrete random variables from
a uniform distribution with a density function 1= smax � sminð Þ. Sim-
ilar to the settings in Tran et al. (2018) and Wu et al. (2010), the
range s 2 1;2�ð for the upward shift case and s 2 0:5;1Þ½ for the
downward shift case is considered for performance comparison in
the shift size unknown case. Based on the EATS metric, the optimal
combination K�

U ; H
�
U ; h

�
L

� �
or K�

D; H
�
D; h

�
L

� �
without any preference for

the shift size can be computed by,

� for the downward chart,

K�
D; H

�
D; h

�
L

� � ¼ argmin
KD ;HD ;hLð Þ

EATS n;p;KD;HD;WU ; hS;hL; c0;Xð Þ ð27Þ
subject to the constraint

EATS n;p;KD;HD;WU ; hS;hL; c0; c0ð Þ ¼ ATS0;

E0 hð Þ ¼ 1:

�

� for the upward chart,

K�
U ; H

�
U ; h

�
L

� � ¼ argmin
KU ;HU ;hLð Þ

EATS n;p;KD;HD;WU ;hS;hL; c0;Xð Þ ð28Þ
subject to the constraint

EATS n;p;KU ;HU ;WD; hS;hL; c0; c0ð Þ ¼ ATS0;

E0 hð Þ ¼ 1:

�

4. Numerical results and comparison

Through numerical experiments, we intend to evaluate the
optimal performance of the proposed VSI CUSUM MCV control
charts. Moreover, comparison is conducted among the VSI CUSUM
MCV, the FSI CUSUM MCV charts proposed by Hu et al. (2023), and
the VSI EWMAMCV charts proposed by Nguyen et al. (2021). Cases
of both known and unknown shift sizes are explored. Without loss
of generality, the ATS0 is set to 370.4 and E0 hð Þ ¼ 1. In this paper,
we set hS ¼ 0:1 to ensure that the sampling interval is a suitable
minimum so that a sufficient number of samples can be acquired.
In addition, it should be noted that setting hS < 0:1 is impractical,
see Aparisi and Haro (2001).

4.1. Optimal triples of the VSI CUSUM MCV charts

The optimal triples K�
D; H

�
D; h

�
L

� �
when s ¼ 0:5;0:75; 0:9f g, and

K�
U ; H

�
U ; h

�
L

� �
when s ¼ 1:1;1:25;1:5f g are presented in the Table 1

for n ¼ 10;15f g, p ¼ 2, c0 ¼ 0:1;0:2;0:3;0:5f g and W ¼
0:1;0:6;0:9f g. For the sake of brevity, similar tables for
p ¼ 3;4;5f g are presented in Table A1–A3 in the supplementary
material. From these tables, the following conclusions are drawn.

� In general, given c0, n, p and WU WDð Þ, the values of K�
D; H

�
D; h

�
L

� �
and K�

U ; H
�
U ; h

�
L

� �
vary with Ds ¼ s� 1j j. Specifically, K�

U K�
D

� �
decrease and H�

U H�
D

� �
, h�

L increase as Ds decreases. Considering
6

the setting n ¼ 10, p ¼ 2, c0 ¼ 0:1 andWU ¼ 0:1, the optimal tri-
ples K�

U ; H
�
U ; h

�
L

� �
for the VSI CUSUM MCV control chart are

K�
U ¼ 0:872;H�

U ¼ 3:773;h�
L ¼ 1:25

� �
if Ds ¼ 0:5 and these values

change to K�
U ¼ 0:191;H�

U ¼ 8:588;h�
L ¼ 2:83

� �
if Ds ¼ 0:1

(Table 1).
� In general, given s, c0, p and WU WDð Þ, the values of K�

D; H
�
D; h

�
L

� �
and K�

U ; H
�
U ; h

�
L

� �
vary with n. Specifically, the values of H�

U H�
D

� �
and h�

L increase and the values of K�
U K�

D

� �
decrease as n

decreases. In the case that s ¼ 1:1, p ¼ 2, c0 ¼ 0:1 and
WU ¼ 0:1, the optimal triples K�

U ; H
�
U ; h

�
L

� �
for the VSI CUSUM

MCV control chart are K�
U ¼ 0:191;H�

U ¼ 8:588;h�
L ¼ 2:83

� �
if

n ¼ 10 and these values change to
K�

U ¼ 0:241;H�
U ¼ 7:516;h�

L ¼ 2:46
� �

if n ¼ 15 (Table 1).
� In general, given s, c0, n and WU WDð Þ, the values of K�

D; H
�
D; h

�
L

� �
and K�

U ; H
�
U ; h

�
L

� �
vary with p. Specifically, the values of H�

U H�
D

� �
and h�

L decrease and the values of K�
U K�

D

� �
increase as p

decreases. For instance, when n ¼ 10, s ¼ 1:1, c0 ¼ 0:1 and
WU ¼ 0:1, the optimal triples K�

U ; H
�
U ; h

�
L

� �
for the VSI CUSUM

MCV control chart are K�
U ¼ 0:191;H�

U ¼ 8:588;h�
L ¼ 2:83

� �
if

p ¼ 2 and these values are K�
U ¼ 0:150;H�

U ¼ 9:665;h�
L ¼ 3:16

� �
if p ¼ 5 (Table 1 and Table A1 in the supplementary material).

� In general, given s, c0, n and p, the values of K�
D; H

�
D; h

�
L

� �
and

K�
U ; H

�
U ; h

�
L

� �
vary with W . Specifically, the values of K�

U K�
D

� �
and h�

L decrease and the values of H�
U H�

D

� �
increase as W

increases. For instance, when n ¼ 10, s ¼ 1:1, c0 ¼ 0:1 and
p ¼ 2, the optimal triples K�

U ; H
�
U ; h

�
L

� �
for the VSI CUSUM MCV

control chart are K�
U ¼ 0:191;H�

U ¼ 8:588;h�
L ¼ 2:83

� �
if

W ¼ 0:1 and K�
U ¼ 0:162;H�

U ¼ 9:231;h�
L ¼ 2:05

� �
if W ¼ 0:9.

� In general, given s, p, n and WU WDð Þ, the IC c0 has a slight effect
on the values of K�

D; H
�
D; h

�
L

� �
and K�

U ; H
�
U ; h

�
L

� �
. For instance,

when n ¼ 10, s ¼ 1:1, W ¼ 0:1 and p ¼ 2, the optimal triples
K�

U ; H
�
U ; h

�
L

� �
for the VSI CUSUM MCV control chart are

K�
U ¼ 0:191;H�

U ¼ 8:588;h�
L ¼ 2:83

� �
if c0 ¼ 0:1 and

K�
U ¼ 0:142;H�

U ¼ 10:116;h�
L ¼ 3:03

� �
if c0 ¼ 0:5. That is, an

increase of c0 leads to a slight increase in H�
U H�

D

� �
and h�

L and
a slight decrease in K�

U K�
D

� �
.

4.2. OOC performance of the VSI CUSUM MCV charts

Table 2 presents the ATS1 values of the three competing charts
for c0 ¼ 0:1;0:2;0:3;0:5f g, p ¼ 2, s ¼ 0:5;0:75;0:9;1:1;1:25;1:5f g,
WU WDð Þ ¼ 0:1;0:6; 0:9f g and n ¼ 10;15f g. For the sake of brevity,
similar tables for p ¼ 3;4;5f g are presented in Tables B1–B3 in the
supplementary material. Conclusions are presented as follows (the
SDRL values are also commented on in the paper even if they are
not shown in these tables):

� Given the values of s, c0, p and WU WDð Þ, performance of the VSI
CUSUM MCV charts is largely influenced by the sample size n.
For instance, when s ¼ 1:1, p ¼ 2, c0 ¼ 0:1 and WU ¼ 0:1, the
ATS1; SDTS1ð Þ values of the upward VSI CUSUM MCV chart for
n ¼ 10;15f g are (16.68, 13.45) and (11.58, 8.95), respectively
(see Table 2).

� Given the values of n, s, p and WU WDð Þ, an increase in the value
of the IC c0 negatively impact the performance of the VSI
CUSUM MCV charts. For instance, with n ¼ 10, s ¼ 1:1,
WU ¼ 0:1 and p ¼ 2, the ATS1 value of the VSI CUSUMMCV chart
increases from 16.68 to 17.35 when the value of c0 increases
from 0.1 up to 0.2 (see Table 2).

� Given the values of s, c0, n andWU WDð Þ, the detection efficiency
of the VSI CUSUM MCV charts is enhanced when the dimension
p has an increasing trend. In the scenario that n ¼ 10, s ¼ 1:1,



Table 1
The optimal triples K�

D; H
�
D; h

�
L

� �
when s ¼ 0:5;0:75;0:9f g and K�

U ; H
�
U ; h

�
L

� �
when s ¼ 1:1;1:25;1:5f g of the VSI CUSUM MCV charts for n ¼ 10;15f g, p ¼ 2, c0 ¼ 0:1; 0:2;0:3;0:5f g

and W ¼ 0:1; 0:6;0:9f g.

c0 s n ¼ 10 n ¼ 15

W ¼ 0:1 W ¼ 0:6 W ¼ 0:9 W ¼ 0:1 W ¼ 0:6 W ¼ 0:9

0.1 0.5 (1.010,0.856,1.12) (0.700,1.805,1.11) (0.535,2.667,1.13) (1.264,0.702,1.05) (0.885,1.437,1.05) (0.675,2.182,1.07)
0.75 (0.497,2.932,1.71) (0.406,3.693,1.46) (0.380,3.956,1.32) (0.632,2.385,1.46) (0.495,3.201,1.32) (0.431,3.711,1.26)
0.9 (0.197,6.915,3.44) (0.183,7.273,2.50) (0.169,7.660,2.18) (0.251,5.973,2.83) (0.224,6.488,2.15) (0.210,6.793,1.89)
1.1 (0.191,8.588,2.83) (0.176,8.911,2.24) (0.162,9.231,2.05) (0.241,7.516,2.46) (0.222,7.829,1.99) (0.213,8.001,1.81)
1.25 (0.457,5.486,1.66) (0.406,5.854,1.47) (0.353,6.316,1.43) (0.584,4.536,1.49) (0.480,5.107,1.37) (0.441,5.374,1.31)
1.5 (0.872,3.773,1.25) (0.726,4.211,1.19) (0.662,4.445,1.16) (1.104,2.986,1.16) (0.884,3.478,1.13) (0.801,3.711,1.11)

0.2 0.5 (0.984,0.851,1.13) (0.675,1.833,1.11) (0.540,2.553,1.12) (1.194,0.747,1.07) (0.846,1.491,1.06) (0.660,2.182,1.07)
0.75 (0.487,2.915,1.73) (0.398,3.693,1.47) (0.380,3.871,1.31) (0.619,2.381,1.48) (0.486,3.201,1.33) (0.432,3.637,1.26)
0.9 (0.193,6.925,3.51) (0.180,7.275,2.53) (0.166,7.660,2.20) (0.246,6.003,2.89) (0.221,6.487,2.17) (0.207,6.793,1.91)
1.1 (0.184,8.776,2.86) (0.170,9.098,2.25) (0.164,9.232,2.02) (0.233,7.701,2.49) (0.215,8.013,2.00) (0.196,8.373,1.87)
1.25 (0.438,5.714,1.71) (0.380,6.155,1.51) (0.362,6.317,1.41) (0.562,4.731,1.51) (0.494,5.107,1.36) (0.452,5.373,1.30)
1.5 (0.834,4.001,1.27) (0.716,4.364,1.20) (0.633,4.676,1.17) (1.063,3.171,1.17) (0.883,3.582,1.13) (0.754,3.956,1.12)

0.3 0.5 (0.944,0.836,1.13) (0.621,1.952,1.14) (0.490,2.748,1.15) (1.145,0.736,1.07) (0.801,1.529,1.07) (0.630,2.209,1.08)
0.75 (0.472,2.882,1.76) (0.383,3.693,1.49) (0.367,3.871,1.32) (0.599,2.372,1.50) (0.470,3.201,1.34) (0.410,3.711,1.28)
0.9 (0.188,6.928,3.62) (0.175,7.275,2.58) (0.162,7.660,2.22) (0.238,6.041,2.98) (0.200,6.858,2.33) (0.203,6.793,1.93)
1.1 (0.174,9.092,2.90) (0.153,9.601,2.36) (0.148,9.730,2.10) (0.220,8.002,2.60) (0.204,8.291,2.06) (0.198,8.407,1.85)
1.25 (0.417,6.028,1.73) (0.360,6.487,1.53) (0.328,6.793,1.46) (0.529,5.048,1.55) (0.469,5.393,1.38) (0.423,5.714,1.33)
1.5 (0.776,4.381,1.29) (0.673,4.720,1.22) (0.618,4.932,1.18) (0.990,3.498,1.19) (0.840,3.865,1.14) (0.719,4.236,1.14)

0.5 0.5 (0.820,0.784,1.16) (0.516,2.052,1.17) (0.460,2.449,1.12) (0.981,0.748,1.10) (0.699,1.549,1.08) (0.500,2.590,1.13)
0.75 (0.427,2.723,1.87) (0.353,3.479,1.49) (0.315,3.956,1.37) (0.536,2.353,1.59) (0.432,3.117,1.36) (0.385,3.564,1.27)
0.9 (0.174,6.789,3.98) (0.158,7.273,2.75) (0.147,7.660,2.32) (0.218,6.090,3.26) (0.201,6.488,2.31) (0.189,6.793,1.99)
1.1 (0.142,10.116,3.03) (0.130,10.438,2.41) (0.128,10.500,2.12) (0.187,8.886,2.73) (0.173,9.189,2.15) (0.168,9.296,1.94)
1.25 (0.339,7.171,1.83) (0.308,7.462,1.58) (0.289,7.661,1.49) (0.444,6.003,1.66) (0.377,6.487,1.49) (0.341,6.793,1.42)
1.5 (0.623,5.570,1.37) (0.548,5.874,1.27) (0.500,6.102,1.24) (0.819,4.471,1.27) (0.679,4.898,1.21) (0.632,5.071,1.17)

Table 2
A comparison of the OOC ATS1 values of the downward/upward FSI CUSUM MCV charts (third and seventh columns) and the VSI EWMA MCV charts (right side in each cell) with
the VSI CUSUM MCV charts (left side in each cell) for n ¼ 10;15f g, p ¼ 2, c0 ¼ 0:1;0:2;0:3; 0:5f g and W ¼ 0:1;0:6;0:9f g.

c0 s n ¼ 10 n ¼ 15

FSI W ¼ 0:1 W ¼ 0:6 W ¼ 0:9 FSI W ¼ 0:1 W ¼ 0:6 W ¼ 0:9

0.1 0.5 2.43 (1.36,2.31) (1.50,1.66) (1.73,1.47) 1.62 (1.15,2.03) (1.22,1.48) (1.29,1.29)
0.75 8.29 (3.48,4.17) (3.77,3.78) (4.11,4.21) 5.63 (2.52,3.21) (2.72,2.71) (2.96,2.83)
0.9 32.67 (14.93,15.56) (15.46,17.43) (16.03,19.70) 23.36 (10.31,10.94) (10.72,11.81) (11.18,13.27)
1.1 32.07 (16.68,17.18) (17.01,18.59) (17.34,20.58) 23.26 (11.58,12.08) (11.85,12.75) (12.13,14.05)
1.25 8.99 (4.64,5.06) (4.75,4.87) (4.87,5.13) 6.27 (3.30,3.72) (3.39,3.45) (3.48,3.55)
1.5 3.37 (2.10,3.45) (2.13,2.20) (2.18,2.17) 2.37 (1.62,2.03) (1.64,1.74) (1.67,1.67)

0.2 0.5 2.47 (1.37,2.33) (1.53,1.67) (1.79,1.48) 1.65 (1.16,2.05) (1.23,1.48) (1.32,1.30)
0.75 8.51 (3.57,4.26) (3.87,3.89) (4.23,4.35) 5.78 (2.58,3.28) (2.79,2.77) (3.05,2.92)
0.9 33.56 (15.41,16.07) (15.95,17.99) (16.54,20.34) 24.09 (10.66,11.32) (11.09,12.24) (11.56,13.82)
1.1 33.23 (17.35,17.84) (17.71,19.41) (18.05,21.46) 24.21 (12.08,12.58) (12.38,13.39) (12.65,14.73)
1.25 9.43 (4.84,5.25) (4.96,5.09) (5.09,5.39) 6.60 (3.45,3.88) (3.54,3.60) (3.64,3.72)
1.5 3.58 (2.19,3.56) (2.23,2.28) (2.27,2.26) 2.52 (1.68,2.08) (1.70,1.80) (1.74,1.73)

0.3 0.5 2.53 (1.39,2.39) (1.58,1.69) (1.88,1.49) 1.70 (1.18,2.09) (1.25,1.50) (1.37,1.30)
0.75 8.86 (3.71,4.43) (4.03,4.07) (4.43,4.58) 6.05 (2.68,3.41) (2.90,2.89) (3.19,3.08)
0.9 35.04 (16.21,16.93) (16.78,19.00) (17.40,21.50) 25.28 (11.26,11.92) (11.72,12.97) (12.21,14.65)
1.1 35.23 (18.50,18.97) (18.88,20.76) (19.23,23.01) 25.81 (12.92,13.40) (13.24,14.30) (13.55,15.80)
1.25 10.20 (5.19,5.59) (5.32,5.48) (5.46,5.83) 7.17 (3.69,4.11) (3.80,3.86) (3.90,4.02)
1.5 3.94 (2.34,2.70) (2.39,2.43) (2.44,2.43) 2.77 (1.79,2.16) (1.81,1.89) (1.85,1.84)

0.5 0.5 2.73 (1.46,2.53) (1.77,1.72) (2.29,1.57) 1.86 (1.23,2.20) (1.33,1.54) (1.57,1.32)
0.75 9.98 (4.16,5.00) (4.60,4.69) (5.12,5.39) 6.87 (3.00,3.77) (3.29,3.26) (3.66,3.59)
0.9 39.77 (18.91,19.81) (19.55,22.37) (20.33,25.37) 29.01 (13.20,14.01) (13.71,15.45) (14.30,17.43)
1.1 42.35 (22.48,22.90) (22.99,25.71) (23.47,28.67) 31.12 (15.74,16.17) (16.17,17.68) (16.52,19.62)
1.25 12.99 (6.41,6.76) (6.62,6.86) (6.79,7.40) 9.10 (4.52,4.90) (4.66,4.75) (4.79,5.05)
1.5 5.22 (2.87,3.17) (2.94,2.96) (3.01,3.03) 3.63 (2.13,2.46) (2.18,2.21) (2.23,2.20)
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c0 ¼ 0:1 and WU ¼ 0:1, we have ATS1 ¼ 16:68 and
SDTS1 ¼ 13:45 if p ¼ 2, and we have ATS1 ¼ 18:43 and
SDTS1 ¼ 15:03 if p ¼ 3 (see Table 2 and Table B1 in the supple-
mentary material).

� Given the values of s, c0, n and p, the warning limit coefficient
WU WDð Þ slightly affected the OOC performance of the VSI
CUSUM MCV charts. For instance, when n ¼ 10, s ¼ 1:1,
c0 ¼ 0:1 and p ¼ 2, we have ATS1 ¼ 16:68 and SDTS1 ¼ 13:45 if
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WU ¼ 0:1, and we have ATS1 ¼ 17:34 and SDTS1 ¼ 14:09 if
WU ¼ 0:9 (see Table 2).

4.3. Comparisons with some existing MCV control charts

Control charts for comparison include the VSI CUSUM MCV
charts, the corresponding FSI CUSUM MCV control charts proposed
by Hu et al. (2023) and VSI EWMAMCV charts designed by Nguyen
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et al. (2021). The results from numerical experiments show the
superiority of the VSI CUSUMMCV charts over the competing ones.
4.3.1. The known shift size case
The analysis of Table 2 and Tables B1–B3 in the supplementary

material shows that whatever the values of s, c0, n and p are, the
ATS1 values of the VSI CUSUM MCV charts are smaller than those
corresponding to the FSI CUSUM MCV charts. Taking the down-
ward CUSUM MCV chart as an example, in Table B2 in the supple-
mentary material, when n ¼ 10, WD ¼ 0:1, c0 ¼ 0:1 and p ¼ 4, the
optimal ATS1 value of the FSI chart is 39.54 for s ¼ 0:9, which is
almost two times of the ATS1 ¼ 18:58 of the VSI counterpart. Sim-
ilarly, considering the upward CUSUMMCV chart, when the shift is
increased to s ¼ 1:1, the optimal ATS1 value of the VSI chart is
20:67. This is also much smaller than the ATS1 ¼ 38:48 for the cor-
responding FSI type chart. This fact clearly demonstrates that the
detection efficiency of the standard CUSUM scheme for the MCV
is remarkably enhanced by incorporating the VSI strategy.

The ATS1 values presented in Table 2 and Tables B1–B3 in the
supplementary material show the advantage of the VSI CUSUM
MCV charts over VSI EWMA MCV charts designed by Nguyen
et al. (2021). When s 2 0:75;1:25�½ , the VSI CUSUM MCV charts
have better detection performance. For instance, in Table B3 in
the supplementary material, when n ¼ 10, WD ¼ 0:1, c0 ¼ 0:2 and
p ¼ 5, the ATS1 values of the downward VSI CUSUM MCV chart
and VSI EWMA MCV chart are 5.01 and 5.70 for s ¼ 0:75. When
s 2 0:5;0:75½ Þ [ 1:25;1:5ð �, the performance comparison of these
Table 3
The optimal charting parameters K�

D; H
�
D; h

�
L

� �
for X ¼ 0:5;1½ Þ and K�

U ; H
�
U ; h

�
L

� �
for X

c0 ¼ 0:1;0:2;0:3; 0:5f g and W ¼ 0:1; 0:6;0:9f g.

c0 X n ¼ 10

W ¼ 0:1 W ¼ 0:6 W ¼ 0:9

p ¼ 2
0.10 Dð Þ (0.158,7.992,4.00) (0.136,8.705,2.98) (0.122,9.232,2

Ið Þ (0.222,7.999,2.52) (0.177,8.887,2.19) (0.162,9.230,2
0.20 Dð Þ (0.157,7.941,4.04) (0.136,8.649,3.00) (0.121,9.232,2

Ið Þ (0.207,8.330,2.67) (0.170,9.104,2.25) (0.159,9.359,2
0.30 Dð Þ (0.156,7.842,4.11) (0.136,8.537,3.03) (0.129,8.781,2

Ið Þ (0.197,8.607,2.70) (0.163,9.347,2.25) (0.153,9.587,2
0.50 Dð Þ (0.155,7.361,4.31) (0.130,8.277,3.18) (0.128,8.372,2

Ið Þ (0.166,9.541,2.77) (0.141,10.149,2.28) (0.134,10.330

p ¼ 3
0.10 Dð Þ (0.156,8.000,4.07) (0.130,8.892,3.17) (0.121,9.231,2

Ið Þ (0.224,7.999,2.49) (0.168,9.114,2.26) (0.158,9.367,2
0.20 Dð Þ (0.154,7.997,4.13) (0.128,8.891,3.20) (0.131,8.782,2

Ið Þ (0.200,8.491,2.70) (0.165,9.244,2.26) (0.155,9.488,2
0.30 Dð Þ (0.151,7.971,4.24) (0.132,8.622,3.08) (0.128,8.782,2

Ið Þ (0.191,8.749,2.73) (0.159,9.467,2.26) (0.148,9.730,2
0.50 Dð Þ (0.149,7.553,4.44) (0.130,8.277,3.19) (0.117,8.781,2

Ið Þ (0.163,9.585,2.80) (0.139,10.174,2.29) (0.132,10.349

p ¼ 4
0.10 Dð Þ (0.154,7.999,4.14) (0.129,8.890,3.21) (0.120,9.231,2

Ið Þ (0.197,8.543,2.73) (0.163,9.291,2.27) (0.153,9.532,2
0.20 Dð Þ (0.152,7.998,4.21) (0.127,8.890,3.24) (0.119,9.232,2

Ið Þ (0.193,8.686,2.74) (0.160,9.413,2.27) (0.151,9.646,2
0.30 Dð Þ (0.149,7.997,4.32) (0.125,8.890,3.30) (0.116,9.231,2

Ið Þ (0.185,8.925,2.76) (0.155,9.597,2.26) (0.147,9.810,2
0.50 Dð Þ (0.144,7.785,4.60) (0.129,8.328,3.21) (0.118,8.781,2

Ið Þ (0.160,9.700,2.83) (0.137,10.271,2.31) (0.130,10.439

p ¼ 5
0.10 Dð Þ (0.151,7.999,4.26) (0.125,8.938,3.28) (0.107,9.730,2

Ið Þ (0.189,8.770,2.76) (0.157,9.487,2.28) (0.148,9.731,2
0.20 Dð Þ (0.150,7.999,4.32) (0.125,8.896,3.30) (0.105,9.730,2

Ið Þ (0.185,8.901,2.77) (0.154,9.599,2.28) (0.147,9.788,2
0.30 Dð Þ (0.147,7.999,4.43) (0.123,8.892,3.35) (0.115,9.231,2

Ið Þ (0.178,9.121,2.79) (0.151,9.743,2.32) (0.142,9.967,2
0.50 Dð Þ (0.136,7.992,4.80) (0.115,8.889,3.52) (0.107,9.231,2

Ið Þ (0.155,9.806,2.86) (0.133,10.353,2.32) (0.128,10.516
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two charts has a great difference for different values of the
WU WDð Þ. When the value of WU WDð Þ is small, the VSI CUSUM
MCV charts still outperform the VSI EWMA MCV charts. As shown
in Table B3 in the supplementary material, when n ¼ 15,WD ¼ 0:1,
c0 ¼ 0:1, s ¼ 0:5 and p ¼ 5, we have ATS1 ¼ 1:25 for the downward
VSI CUSUM MCV chart and ATS1 ¼ 2:17 for the downward VSI
EWMA MCV chart. However, when the value of WD is large, VSI
EWMA MCV charts have a slight advantage against the VSI CUSUM
MCV charts. For instance, for the same case studied above but with
WD ¼ 0:9, the ATS1 ¼ 1:38 of the downward VSI EWMA MCV chart
is smaller than the ATS1 ¼ 1:50 of the downward VSI CUSUM MCV
chart.

In summary, the detection ability of the VSI CUCUM MCV con-
trol charts outperform their FSI counterparts across the board for
all shifts and show superiority over the VSI EWMA MCV charts in
almost all cases except when the warning limit coefficient
WU WDð Þ and the shift size s are simultaneously large.
4.3.2. The unknown shift size case
The OOC EATS EATS1ð Þ is adopted to compare different MCV

charts over a shift range with the shift s assumed to be uniformly
distributed. Following Eqs. (27) and (28), Table 3 shows the opti-
mal triples K�

D; H
�
D; h

�
L

� �
and K�

U ; H
�
U ; h

�
L

� �
of the proposed charts

corresponding to X ¼ 0:5;1½ Þ and X ¼ 1;2ð � respectively. Other set-
tings are n ¼ 10;15f g, p ¼ 2;3;4;5f g, c0 ¼ 0:1;0:2;0:3;0:5f g and
WU WDð Þ ¼ 0:1;0:6; 0:9f g. The corresponding values of the EATS1
are listed in Table 4. In the scenario n ¼ 15, WD ¼ 0:1, c0 ¼ 0:1
¼ 1;2ð � of the VSI CUSUM MCV control charts for n ¼ 10;15f g, p ¼ 2;3;4;5f g,

n ¼ 15

W ¼ 0:1 W ¼ 0:6 W ¼ 0:9

.67) (0.179,7.551,3.57) (0.154,8.275,2.70) (0.148,8.465,2.34)

.01) (0.236,7.594,2.49) (0.199,8.275,2.08) (0.176,8.756,1.95)

.69) (0.178,7.528,3.61) (0.152,8.275,2.72) (0.137,8.781,2.47)

.04) (0.230,7.746,2.50) (0.187,8.557,2.16) (0.177,8.778,1.94)

.58) (0.176,7.475,3.67) (0.149,8.272,2.76) (0.146,8.372,2.37)

.04) (0.221,7.996,2.53) (0.180,8.781,2.17) (0.169,9.047,1.98)

.56) (0.172,7.238,3.86) (0.146,8.045,2.85) (0.137,8.373,2.46)
,2.09) (0.196,8.710,2.66) (0.161,9.449,2.21) (0.152,9.685,2.01)

.69) (0.175,7.628,3.64) (0.148,8.432,2.83) (0.138,8.781,2.46)

.06) (0.231,7.702,2.51) (0.200,8.276,2.07) (0.176,8.778,1.95)

.56) (0.174,7.604,3.68) (0.147,8.410,2.85) (0.136,8.781,2.48)

.05) (0.225,7.847,2.53) (0.184,8.648,2.17) (0.172,8.924,1.99)

.59) (0.172,7.559,3.74) (0.149,8.276,2.77) (0.145,8.398,2.38)

.09) (0.221,7.999,2.52) (0.177,8.860,2.18) (0.166,9.119,1.99)

.71) (0.168,7.355,3.93) (0.144,8.136,2.88) (0.137,8.373,2.46)
,2.10) (0.193,8.756,2.68) (0.159,9.481,2.22) (0.149,9.731,2.06)

.72) (0.171,7.712,3.71) (0.145,8.506,2.86) (0.137,8.782,2.47)

.06) (0.226,7.823,2.54) (0.184,8.630,2.18) (0.172,8.909,2.00)

.74) (0.170,7.696,3.75) (0.144,8.486,2.88) (0.136,8.781,2.49)

.06) (0.220,7.964,2.55) (0.180,8.754,2.18) (0.169,9.020,2.00)

.77) (0.168,7.662,3.82) (0.143,8.439,2.91) (0.143,8.449,2.40)

.09) (0.223,8.000,2.51) (0.177,8.888,2.17) (0.164,9.207,2.00)

.71) (0.164,7.487,4.00) (0.140,8.276,3.00) (0.137,8.373,2.46)
,2.11) (0.190,8.829,2.71) (0.158,9.543,2.24) (0.150,9.735,2.06)

.93) (0.167,7.800,3.79) (0.142,8.572,2.90) (0.136,8.781,2.49)

.11) (0.220,7.947,2.56) (0.180,8.741,2.19) (0.168,9.009,2.00)

.95) (0.166,7.789,3.84) (0.142,8.550,2.92) (0.141,8.556,2.40)

.10) (0.219,7.999,2.55) (0.176,8.856,2.19) (0.165,9.115,2.00)

.80) (0.164,7.759,3.90) (0.141,8.510,2.95) (0.141,8.491,2.42)

.09) (0.224,7.999,2.49) (0.178,8.886,2.16) (0.163,9.230,1.99)

.89) (0.160,7.609,4.09) (0.138,8.327,3.03) (0.137,8.374,2.47)
,2.12) (0.187,8.893,2.73) (0.155,9.592,2.25) (0.148,9.779,2.07)



Table 4
A comparison of the OOC EATS1 values of the downward/upward FSI CUSUM MCV charts (third and seventh columns) and the VSI EWMA MCV charts (right side in each cell) with
the VSI CUSUM MCV charts (left side in each cell) for n ¼ 10;15f g, p ¼ 2;3;4;5f g, c0 ¼ 0:1;0:2;0:3;0:5f g and W ¼ 0:1; 0:6;0:9f g

c0 X n ¼ 10 n ¼ 15

FSI W ¼ 0:1 W ¼ 0:6 W ¼ 0:9 FSI W ¼ 0:1 W ¼ 0:6 W ¼ 0:9

p ¼ 2
0.1 Dð Þ 26.62 (16.39,17.27) (16.06,18.04) (16.20,19.47) 20.75 (12.83,13.69) (12.43,13.90) (12.47,14.87)

Ið Þ 14.03 (9.95,10.65) (9.68,10.06) (9.64,10.54) 10.96 (7.88,8.68) (7.58,7.80) (7.52,8.12)
0.2 Dð Þ 27.17 (16.75,17.65) (16.42,18.44) (16.58,19.94) 21.24 (13.14,14.02) (12.73,14.29) (12.78,15.27)

Ið Þ 14.45 (10.24,10.90) (9.96,10.36) (9.92,10.87) 11.3 (8.10,8.88) (7.81,8.04) (7.75,8.39)
0.3 Dð Þ 28.06 (17.35,18.29) (17.01,19.14) (17.21,20.68) 22.02 (13.65,14.56) (13.24,14.90) (13.31,15.94)

Ið Þ 15.16 (10.68,11.33) (10.42,10.88) (10.39,11.44) 11.88 (8.45,9.22) (8.18,8.46) (8.12,8.84)
0.5 Dð Þ 30.81 (19.24,20.28) (18.92,21.40) (19.28,23.10) 24.39 (15.22,16.23) (14.80,16.68) (14.94,17.95)

Ið Þ 17.7 (12.20,12.81) (12.02,12.73) (12.03,13.46) 13.81 (9.64,10.32) (9.38,9.81) (9.36,10.33)

p ¼ 3
0.1 Dð Þ 28.46 (17.53,18.41) (17.22,19.35) (17.40,20.91) 21.64 (13.36,14.23) (12.97,14.56) (13.02,15.57)

Ið Þ 15.01 (10.63,11.31) (10.36,10.79) (10.32,11.32) 11.42 (8.19,8.98) (7.90,8.13) (7.83,8.48)
0.2 Dð Þ 29.03 (17.91,18.82) (17.60,19.79) (17.82,21.39) 22.14 (13.68,14.56) (13.29,14.94) (13.35,15.97)

Ið Þ 15.45 (10.92,11.58) (10.65,11.12) (10.63,11.67) 11.79 (8.41,9.19) (8.13,8.39) (8.07,8.76)
0.3 Dð Þ 29.97 (18.54,19.49) (18.24,20.53) (18.48,22.18) 22.95 (14.21,15.12) (13.81,15.53) (13.90,16.65)

Ið Þ 16.22 (11.40,12.05) (11.15,11.68) (11.14,12.28) 12.4 (8.78,9.49) (8.51,8.83) (8.47,9.24)
0.5 Dð Þ 32.86 (20.54,21.57) (20.26,22.92) (20.66,24.72) 25.4 (15.85,16.82) (15.44,17.39) (15.60,18.73)

Ið Þ 18.97 (13.05,13.67) (12.88,13.67) (12.90,14.46) 14.43 (10.04,10.66) (9.78,10.26) (9.77,10.81)

p ¼ 4
0.1 Dð Þ 30.73 (18.94,19.83) (18.65,20.99) (18.89,22.68) 22.64 (13.97,14.83) (13.58,15.26) (13.65,16.33)

Ið Þ 16.2 (11.47,12.13) (11.20,11.69) (11.18,12.28) 11.95 (8.54,9.32) (8.25,8.51) (8.19,8.89)
0.2 Dð Þ 31.32 (19.34,20.19) (19.06,21.48) (19.32,23.18) 23.15 (14.30,15.18) (13.92,15.65) (13.99,16.75)

Ið Þ 16.69 (11.78,12.44) (11.52,12.05) (11.51,12.67) 12.33 (8.77,9.55) (8.49,8.79) (8.44,9.19)
0.3 Dð Þ 32.31 (20.01,20.88) (19.74,22.24) (20.03,24.06) 23.98 (14.85,15.76) (14.46,16.26) (14.58,17.45)

Ið Þ 17.53 (12.31,12.96) (12.07,12.67) (12.07,13.34) 12.98 (9.17,9.93) (8.90,9.25) (8.86,9.69)
0.5 Dð Þ 35.37 (22.15,23.17) (21.92,24.79) (22.36,26.72) 26.53 (16.55,17.51) (16.16,18.19) (16.35,19.61)

Ið Þ 20.52 (14.11,14.74) (13.96,14.83) (13.99,15.68) 15.13 (10.49,11.12) (10.24,10.76) (10.23,11.34)

p ¼ 5
0.1 Dð Þ 23.77 (20.75,21.56) (20.50,23.11) (20.82,24.96) 23.77 (14.66,15.52) (14.28,16.04) (14.37,17.22)

Ið Þ 17.72 (12.53,13.20) (12.28,12.85) (12.27,13.51) 12.55 (8.93,9.72) (8.66,8.95) (8.60,9.36)
0.2 Dð Þ 24.3 (21.18,22.01) (20.94,23.61) (21.29,25.49) 24.3 (15.00,15.89) (14.63,16.45) (14.76,17.66)

Ið Þ 18.26 (12.88,13.54) (12.64,13.25) (12.64,13.94) 12.95 (9.18,9.89) (8.91,9.24) (8.87,9.68)
0.3 Dð Þ 25.17 (21.90,22.78) (21.67,24.49) (22.04,26.40) 25.17 (15.58,16.49) (15.21,17.08) (15.35,18.39)

Ið Þ 19.2 (13.47,14.12) (13.26,13.95) (13.26,14.68) 13.64 (9.61,10.37) (9.35,9.73) (9.31,10.21)
0.5 Dð Þ 27.82 (24.20,25.22) (24.03,27.22) (24.56,29.32) 27.82 (17.36,18.29) (16.99,19.11) (17.21,20.64)

Ið Þ 22.49 (15.47,16.11) (15.34,16.32) (15.39,17.27) 15.93 (11.01,11.64) (10.77,11.34) (10.77,11.96)
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and p ¼ 5, the optimal parameters K�
D; H

�
D; h

�
L

� �
of the downward

VSI CUSUM MCV chart are calculated as 0:167;7:800;3:79ð Þ by
minimizing the EATS1 over the shift range 0:5;1½ Þ in Table 3. The
optimal EATS1 is then obtained as 14:66. In addition, the EATS1 val-
ues of the VSI EWMA MCV charts and the FSI CUSUM MCV charts
are also presented in Table 4 for the comparison purpose. For
instance, with the same parameter settings, the optimal EATS1 val-
ues of the downward VSI EWMA MCV chart and FSI CUAUM MCV
chart are 15:52 and 23:77, respectively.

The effects of n, c0, WU WDð Þ and p on the optimal triples
K�

D; H
�
D; h

�
L

� �
or K�

U ; H
�
U ; h

�
L

� �
are similar to those discussed in Sec-

tion 4.2 under the known shift conditions. Meanwhile, conclusions
on the EATS1 performance can be drawn similar to those on the
ATS1 performance as discussed in Section 4.3.1 Furthermore, as is
shown in Table 4, the VSI CUCUMMCV charts always have the best
detection ability among all charts based on the EATS1 criteria when
shifts are unknown. For example, when n ¼ 10, WU ¼ 0:1, c0 ¼ 0:1,
p ¼ 4 and the shift range s 2 1;2ð � in Table 4, the EATS1 values of
the upward VSI CUSUM MCV chart, FSI CUSUM MCV chart and
VSI EWMA MCV chart are 11:47, 16:2 and 12:13, respectively.
5. An illustrative example

To illustrate how to construct the VSI CUSUM MCV charts in
practical applications, the example from Giner-Bosch et al.
(2019) is analyzed. This example considers the investment returns
9

of a funding company in p ¼ 3 industrial sectors S1 (automotive), S2
(aeronautic) and S3 (electronic) and in n ¼ 5 geographical regions
R1 (Africa), R2 (North America), R3 (South America), R4 (Asia), R5

(Europe). It is well known that the level of investment volatility
is related to the level of investment risk. Greater investment
volatility means greater investment risk. By monitoring the MCV
of investment returns, to measure and compare the risk of different
investments via relative volatility is a natural and wise choice for
investors.

Considering the data from 2000 to 2009 as the Phase I samples,

we can estimate the IC MCV as bc2 ¼ 1
10

P2009
t¼2000bc2

t ¼
0:00163769 i:e: ; c0 ¼ 0:0404684ð Þ. It is the interest of the company
that a shift in c from c0 to c1 ¼ 2c0, i.e., s ¼ 2, should be detected.
Following Giner-Bosch et al. (2019), the initial values are set as
l0 bc2

� � ¼ 0:000819114 and r0 bc2
� � ¼ 0:000820298. When n ¼ 5,

ATS0 ¼ 370:4, WU ¼ 0:9, hS ¼ 0:1 and p ¼ 3, the optimal parame-
ters of the upward VSI EWMA MCV chart are computed as
k ¼ 0:30806, Lþ ¼ 4:14023 and hL ¼ 1:24. The optimal triples
K�

D; H
�
D; h

�
L

� �
of the upward VSI CUSUM MCV chart are obtained

by the Eq. (25) as K�
U ¼ 0:63200, H�

U ¼ 5:53865 and hL ¼ 1:18. Using
Eqs. (5) and (11), the UCLs corresponding to the two charts are cal-
culated as 0.00454 and 0.00227, respectively. The corresponding
UWLs are 0.00074 and 0.00113, respectively.

The charting statistics, the sampling intervals, and the total
times for the upward VSI EWMA and the upward VSI CUSUM
MCV charts are presented in Table 5. Here the statistic Zþ

t , the sam-



Table 5
The Phase I and Phase II dataset in Giner-Bosch et al. (2019).

bc2t Zþ
t hE TE Cþ

t hC TC

0.004082 0.001824 0.1 0.1 0.002744 0.1 0.1
0.001739 0.001798 0.1 0.2 0.003146 0.1 0.2
0.000539 0.001410 0.1 0.3 0.002347 0.1 0.3
0.001422 0.001414 0.1 0.4 0.002432 0.1 0.4
0.002000 0.001594 0.1 0.5 0.003094 0.1 0.5
0.001470 0.001556 0.1 0.6 0.003227 0.1 0.6
0.000603 0.001262 0.1 0.7 0.002492 0.1 0.7
0.001834 0.001439 0.1 0.8 0.002989 0.1 0.8
0.001383 0.001421 0.1 0.9 0.003034 0.1 0.9
0.001305 0.001386 0.1 1 0.003002 0.1 1
0.000499 0.001112 0.1 1.1 0.002163 0.1 1.1
0.002599 0.001570 1.24 2.34 0.003424 0.1 1.2
0.007852 0.003506 0.1 2.44 0.009939 0.1 1.3
0.001588 0.002915 0.1 2.54 0.010189 0.1 1.4
0.004144 0.003293 0.1 2.64 0.012996 0.1 1.5
0.003456 0.003344 0.1 2.74 0.015114 0.1 1.6
0.006183 0.004218 0.1 2.84 0.019960 0.1 1.7

Fig. 3. The upward VSI CUSUM and EWMA MCV charts applied to the dataset in Table 5.
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pling interval hE and the total time TE correspond to the CUSUM
scheme, and the statistic Cþ

t , hC and TC correspond to the EWMA
scheme. Statistics that lie in the OOC region are bolded in Table 5.
Control charts based on the statistics Zþ

t and Cþ
t are shown in Fig. 3.

As it is seen from the figure, both the EWMA and CUSUM schemes

with the VSI feature make the first OOC signal at the 13th sample,
which is the same as the upward FSI CUSUM MCV chart by Hu
et al. (2023). However, the upward VSI CUSUM MCV chart, VSI
EWMA MCV chart and FSI CUSUM MCV chart take 1.3 time units,
2.44 time units and 13 time units to detect the shift, respectively.
The detection time taken by these charts shows that the VSI
CUSUM MCV charts detect the shift faster than the FSI CUSUM
MCV charts and VSI EWMA MCV charts.
6. Conclusions

Integrating the VSI strategy into the CUSUM scheme, this paper
proposes two new one-sided charts for monitoring the MCV. Meth-
ods for performance evaluation of the proposed charts are pro-
vided in both deterministic and unknown shifts cases. Given
deterministic shifts, the optimal performance of the charts is ana-
lyzed using a Markov chain approach. When the shift size is
unknown, the performance of the VSI CUSUM MCV charts is eval-
uated using the EATS criteria with the random shifts assumed to
10
follow a discrete uniform distribution. The performance of the
charts was compared against the corresponding FSI type charts
and the VSI EWMA MCV charts. A numerical comparison shows
that the detection efficiency of the standard CUSUM MCV scheme
is remarkably enhanced by introducing the VSI strategy and the
VSI CUSUM MCV charts outperform the VSI EWMA MCV charts in
most cases. Effectiveness of the proposed VSI CUSUM MCV charts
is also validated through the real case application.

In the design of the proposed MCV charts, it is assumed that
observations follow a multivariate normal distribution. However,
this assumption may not always hold and the underlying distribu-
tion of many processes in practical applications is non-normal, see
Qiu and Li (2011). Hence, future research may develop new MCV
charts for the process with unknown or non-normal distributions.
In addition, the application of VSI CUSUM MCV control charts
when measurement errors are present is also a research direction
worthy of further study.
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