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A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

�̃�𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 
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A B S T R A C T

Type 2 diabetes (T2D) is a chronic metabolic condition characterized by impaired blood glucose regulation. 
Liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is a commonly used drug for T2D management. 
Despite scientific advancements, the molecular mechanism underlying liraglutide therapy in T2D remains 
poorly understood. The study aimed to identify key microRNAs (miRNAs) and uncover the mechanisms of 
action of liraglutide in T2D by employing an integrated systems biology approach. The miRNA expression 
dataset, GSE223538, containing data from T2D patients treated with and without liraglutide, was retrieved 
from NCBI’s Gene Expression Omnibus (GEO) database. The dataset comprised 32 samples (13 control and 
19 treated). Raw FASTQ reads were processed by trimming 3' adapter sequences using the fastx_clipper tool 
from the FASTX-Toolkit. Reads shorter than 18 nucleotides were discarded, and the remaining reads were 
consolidated into unique sequences for streamlined mapping and analysis. Five miRNAs – hsa-miR-9-5p, hsa-
miR-22-3p, hsa-miR-19b-3p, hsa-miR-132-3p and hsa-miR-93-5p – were found to be significantly linked to genes 
involved in the PI3K/Akt, MAPK, and FOXO1 signaling pathways. These findings suggest that liraglutide’s 
therapeutic effects may be mediated through miRNA-regulated mechanisms that modulate PI3K/Akt and other 
associated signaling pathways. In turn, these pathways regulate the cellular processes that enhance β-cell 
function, promote insulin secretion, and increase glucose uptake in patients with T2D. The results indicate that 
these miRNAs provide important insights into the mechanisms through which liraglutide reduces T2D risk, 
potentially guiding the approach for the development of novel biomarkers, targeted therapies, and precision 
health strategies. Additionally, the findings lay the groundwork for further experimental substantiation of the 
key pathways involved in liraglutide therapy.

1. Introduction

Type 2 diabetes (T2D) is a chronic metabolic condition that affects 
approximately 6.3% of the global population (Khan et al. 2020). T2D 
develops when β-cells fail to meet the increased demand for insulin 
required to maintain normal glycemic levels. Persistent chronic 
hyperglycemia damages nerves and blood vessels, making T2D a major 
risk factor for both microvascular and macrovascular problems (Al-
Ozairi et al. 2024; Mansour et al. 2023). Obesity in individuals with 
diabetes further exacerbates the burden of diabetes- and obesity-linked 
health problems (Al Ozairi et al. 2024; Cui et al. 2021). These challenges 
underscore the demand for effective therapeutic approaches to manage 
diabetes and its associated complications.

Several glucose-lowering agents are available for T2D management. 
Recently, the American Diabetes Association (ADA) and the European 
Association for the Study of Diabetes (EASD) have recommended the 
use of glucagon-like peptide-1 (GLP-1) receptor agonists for individuals 
with obesity and T2D (Davies et al. 2022). In the recent past, liraglutide, 
a GLP-1 receptor agonist with almost 97% structural homology with 
human GPL-1, has emerged as a prominent option for T2D management 
(Knudsen and Lau 2019). By mimicking the human GLP-1, liraglutide 
controls blood glucose levels by improving insulin release, decreasing 
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glycogen secretion, and reducing elevated glucose levels (Knudsen and 
Lau 2019). Liraglutide improves β-cell function, promotes glucose-
dependent insulin secretion, increases satiety, slows gastric emptying, 
and supports weight loss (Santilli et al. 2017).

Besides having glucose-lowering effects, liraglutide also supports 
weight management and reduces cardiovascular risk, which are critical 
concerns in T2D management (Howell et al. 2019). Furthermore, 
reduction of weight and improvement in glycemic levels have also been 
observed in liraglutide-treated individuals with type 1 diabetes (Al-
Ozairi et al. 2023).

The molecular-level therapeutic effects of liraglutide have been 
investigated in animal models, but there is limited research available 
on its effects in human populations. Liraglutide has been reported to 
inhibit cytokine-induced apoptosis in rat islet-cells, reduce apoptosis 
triggered by free fatty acids (Bregenholt et al. 2005), and enhance islet 
function by regulating nine specific microRNAs (miRNAs) involved 
in pathways, such as PI3k signaling, autophagy, FOXO, and HIF-
1 signaling in diabetic rats (Guo et al. 2021). Similarly, liraglutide 
reduced pancreatic β-cell apoptosis via decreasing miRNA-139-5p 
expression in diabetic rats (Li et al. 2017). In T2D patients, three 
specific miRNAs, i.e., miRNA-130a, miRNA-27b, and miRNA-210 have 
been associated with improved cardiometabolic outcomes following 
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liraglutide treatment (Romaine et al. 2015; Giglio et al. 2020). Whereas, 
another study reported no substantial difference in expression levels of 
miRNA between untreated and treated T2D patients (Scherbak et al. 
2023).

Microribonucleic acids (miRNAs) are small endogenous non-coding 
RNAs (∼22 nucleotides in length) that regulate cellular processes 
through modulation of post-transcriptional gene expression (Singh 
et al. 2020; Khan et al. 2022). Under physiological conditions, miRNAs 
play roles in diverse biological processes, including cell development, 
proliferation, differentiation, apoptosis, and metabolism (Ahmed 
et al. 2022; Ali et al. 2024; Nizam et al. 2024). To date, nearly 2000 
miRNAs have been discovered in humans (Pordzik et al. 2019). Each 
miRNA can target multiple genes, enabling broad regulatory effects. 
However, aberrant expression of miRNA due to pathological stress has 
been reported in chronic diseases like cancer, metabolic diseases, and 
cardiovascular diseases (Kim and Zhang 2019; Ahmed et al. 2022; Iqbal 
et al. 2021; Ali et al. 2024). Almost 70 miRNAs were found upregulated, 
while 100 miRNAs were found downregulated in the blood samples of 
T2D patients (Kim and Zhang 2019). The ability of miRNA to regulate 
multiple cellular pathways makes them promising therapeutic targets 
for addressing cellular dysfunction in disease states (Hanna et al. 2019). 
The development of miRNA-specific inhibitors represents a promising 
frontier in drug development (Chakraborty et al. 2017).

Although dysregulated miRNA expression in T2D has been 
extensively reported, research on the impact of GLP-1 receptor agonists 
on miRNA expression in T2D patients remains scanty. This study 
aimed to identify key miRNAs and elucidate mechanisms of action of 
liraglutide in T2D using an integrated systems biology approach. In 
this study, we utilized publicly available miRNA databases from the 
repository and performed an analysis to explore cellular pathways and 
their roles in diabetes management. Recent advancements in molecular 
technology provide valuable insights into miRNA’s functions, enhancing 
our understanding of cellular response to liraglutide.

2. Material and methods

2.1 Retrieval of data and processing

The miRNA expression dataset GSE223538, comprising T2D 
patients treated with and without liraglutide was retrieved from the 
Gene Expression Omnibus (GEO) database of NCBI (Scherbak et al. 
2023). This study included 32 samples (13 control and 19 treated). 
Initial processing of raw FASTQ reads involved trimming the 3' adapter 
sequence using the fastx_clipper program from the FASTX-Toolkit 
(Keller et al. 2011). Reads shorter than 18 nucleotides were excluded 
to minimize non-specific or degraded RNA fragments, which are more 
likely to arise from technical noise and are less likely to map uniquely 
to the genome. This threshold is used in small RNA sequencing studies 
to ensure the reliability of downstream analyses. The batch effects 
are critical for ensuring robust and reproducible results. To address 
potential batch effects, the Limma package was applied to normalize 
the data across different batches (Ritchie et al. 2015). This process 
was conducted during the data preprocessing stage to mitigate any 
variability introduced by experimental conditions. The remaining reads 
were amalgamated into a unique sequence, and their frequencies were 
recorded for each sample to make the mapping process more efficient.

FastQC was used to appraise the quality of the processed reads, 
ensuring high data quality. Further, the miRDeep2 quantifier 
(Friedländer et al. 2012) was used to map and quantify reads against 
the latest human reference from miRBase (Ver. 22) (Kozomara et al. 
2019). Raw read counts were normalized, and differential expression 
analysis was performed by DESeq2 package of R (Love et al. 2014). 
The criteria applied in DESeq2 for the identification of differentially 
expressed miRNAs were, adjusted False Discovery Rate (FDR), p-value 
<0.05, a log2 fold change (FC) >1, and a base mean >5.

2.2 Identification of miRNAs targeting differentially expressed genes

miRNA enrichment network tools, MIENTURNET (Licursi et 
al. 2019) and miRnet (Chang et al. 2020), were used to predict the 
interaction between miRNAs and differentially expressed genes. These 

open-source web tools performed statistical analyses through over-
representation of miRNA-target gene interactions using an input list 
of genes and mature miRNAs, thereby retrieving both computational 
prediction and experimentally validated data from miRTarBase (Huang 
et al. 2020) and miRDB (Chen and Wang 2020). A co-expression 
network of target gene-miRNA interactions was constructed using 
Cytoscape 3.6.1 (Smoot et al. 2011). Further, functional enrichment 
analyses for target genes and selected miRNAs were performed using 
REACTOME, WiKi Pathways, KEGG, and human Disease Ontology. The 
most statistically enriched Gene Ontology (GO) terms were visualized 
using ggplot2 (Wickham 2011).

2.3 Identification of driver target genes of key miRNA 

CytoHubba v.0.1 plugin of Cytoscape was utilized for identifying 
potential hub genes among the differentially expressed miRNAs (Chin 
et al. 2014). To identify the potential driver gene(s) targeted by the 
key miRNA, an eccentric topological property approach was employed 
for the constructed miRNA-mRNA regulatory network. Eccentric 
topological properties are critical for identifying the most central 
nodes in a network, as these eccentric nodes serve as essential driver 
connectors nodes with significant roles in signal processing, functional 
integration, and network dynamics.

2.4 Statistical analysis

Statistical analysis was performed using the Signed Rank Tests 
and Wilcoxon Rank Sum Test (non-parametric test for comparing two 
groups), with the significance level maintained at p < 0.05.

3. Results

3.1 Expression profile of miRNA in liraglutide treated T2D patients 

The miRNA expression profiles of 19 T2D patients treated with 
liraglutide were compared to those of 13 T2D patients, who did not 
receive liraglutide treatment. Principal component analysis (PCA) of the 
miRNA sequencing data showed distinct clustering of individual patient 
groups with a clear differentiation between T2D patients treated with 
and without liraglutide (Fig. 1a). Heatmap clustering was performed 
using the expression patterns of the top 50 miRNAs from both T2D 
patients treated with and without liraglutide (Fig. 1b). Differential 
expression analysis identified 33 miRNAs (out of 2886 miRNAs), which 
were notably diverse between T2D patients treated with and without 
liraglutide (P < 0.05; Fig. 1c).

A total of 19 miRNAs, viz., hsa-miR-5588-5p, hsa-miR-497-3p, 
hsa-miR-4690-3p, hsa-miR-3175, hsa-miR-4781-5p, hsa-miR-6782-3p, 
hsa-let-7f-2-3p, hsa-miR-610, hsa-miR-570-3p, hsa-miR-9-5p, hsa-miR-
3064-5p, hsa-miR-125a-3p, hsa-miR-338-3p, hsa-miR-542-3p, hsa-
miR-19b-3p, hsa-miR-92b-5p, hsa-miR-126-5p, hsa-miR-142-5p, and 
hsa-miR-15b-3p were found significantly overexpressed in T2D patients 
treated with liraglutide compared to those not received liraglutide 
treatment. Whereas, 14 miRNAs, hsa-miR-943, hsa-miR-489-3p, hsa-
miR-3164, hsa-miR-193b-3p, hsa-miR-3177-3p, hsa-miR-125b-2-3p, 
hsa-miR-365a-3p, hsa-miR-550a-3p, hsa-miR-3158-3p, hsa-miR-769-
3p, hsa-miR-132-3p, hsa-miR-484, hsa-miR-22-3p and hsa-miR-93-5p 
were found significantly downregulated in T2D patient treated with 
liraglutide (Fig. 1c).

3.2 Prediction of target genes of miRNAs

miRNAs are key regulators of mRNA expression within cells. They 
bind to target mRNAs, leading to translation processes. Target prediction 
was performed separately for differentially expressed miRNAs. A total 
of 1246 potential target genes for differentially expressed miRNAs in 
T2D patients treated with liraglutide were predicted using miRNet. 
The predicted target genes were identified using the miRNA databases. 
The results confirm the presence of 1246 potential target genes for 
these differentially expressed miRNAs. Subsequently, a miRNA-gene 
interaction network consisting of differentially expressed miRNA-gene 
pairs was constructed using Cytoscape software. The shortest path 
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filter network is illustrated in Fig. 2a. The resulting regulatory network 
revealed that the miRNA-genes interaction network comprised 164 
interacting nodes and 203 edges. Notably, hsa-miR-9-5p targeted 45 
genes, hsa-miR-22-3p targeted 28 genes, hsa-miR-19b-3p targeted 23 
genes, hsa-miR-132-3p targeted 22 genes and hsa-miR-93-5p targeted 
16 genes (Fig. 2a-b).

3.3 Predicted functions and pathways of differentially expressed miRNAs

A functional enrichment analysis of the predicted target genes 
of dysregulated miRNAs was done for T2D patients treated with 
liraglutide. KEGG (Kyoto Encyclopedia of Genes and Genomes) and 
Biological pathway enrichment analyses were performed using DAVID 
(Database for Annotation, Visualization, and Integrated Discovery) 
to endorse the involvement of these miRNAs in ADPKD (autosomal 
dominant polycystic kidney disease). The results revealed that the 
targeted genes were predominantly enriched in several key pathways, 
including phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), 
MAPK (mitogen-activated protein kinase), forkhead box protein O1 
(FOXO1), p53, apoptosis, and Wnt signaling pathways (Fig. 3).

4. Discussions

The present study explored the differential expression of miRNAs 
in T2D patients treated with liraglutide and identified the key 
miRNA associated with therapeutic responses. Liraglutide treatment 

significantly influences the expression levels of 33 miRNAs, with 19 
miRNAs showing increased levels and 14 miRNAs showing decreased 
expression levels. Network analysis revealed five miRNAs, hsa-miR-9-
5p, hsa-miR-22-3p, hsa-miR-19b-3p, hsa-miR-132-3p and hsa-miR-93-
5p were highly interconnected with other miRNAs and linked to 45, 
28, 23, 22, and 16 target genes, respectively. These miRNAs and their 
target genes are associated with several key signaling pathways, such 
as PI3K/Akt (CCND2, THBS1, XIAP, ITGA2, MAPK1, CREB1, PTEN, and 
ATF2 genes), MAPK (MAPK1, FAS, and ATF2 genes), FOXO1 (MAPK1, 
CCND2, and PTEN genes), and Wnt (CSNK2A1, CALM1, AP2B1, XIAP, 
and PFN1 genes) signaling pathways. The PI3K/Akt, MAPK, and FOXO1 
pathways are intricately connected to the target genes regulated by 
these miRNAs (Fig. 2b). These pathways play crucial roles in various 
cellular processes, for e.g., differentiation, proliferation, apoptosis, 
and stress responses, emphasizing the significance of miRNA-mediated 
intercellular communication in modulating these signaling networks.

The findings of this study are corroborated by several other in vivo 
or in vitro studies published in the recent past. A study demonstrated 
that liraglutide treatment enhanced the levels of PI3K, Akt, and mTOR 
in rate with acute myocardial injury (Abdel-Reheim et al. 2024) and 
promoted anti-apoptotic activity through activation of PI3K/Akt 
and MAPK signaling pathways (Zhu et al. 2016; Nizam et al. 2024). 
Similarly, an in vitro study reported that liraglutide treatment enhanced 
β-cell mass by activating the PI3K/Akt pathway and inhibiting FOXO1 
(Fang et al. 2012). Likewise, another study reported that liraglutide 
activates the PI3K/Akt  pathway in HaCaT cells (Nagae et al. 2018). 

Fig. 1. Expression profile of miRNA. (a) Principal component analysis (PCA) of miRNA expression in people with T2D treated with and without liraglutide, (b) Heatmap of the top 
50 differentially expressed miRNAs in people with T2D treated with and without liraglutide, (c) Expression levels of differentially expressed miRNAs in people with T2D treated with 

and without liraglutide. T2D: Type 2 diabetes.

(b)(a)

(c)
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Fig. 2. (a) Predicted regulatory networks of differentially expressed miRNAs and their target genes associated with T2D. Red triangular shapes represent miRNAs, and green ellipses 
represent target genes associated with T2D. (b) Wnt, PI3K-Akt, MAPK, and FoxO signaling pathways are intricately linked to the target genes regulated by miRNAs.

Fig. 3. Significantly enriched KEGG pathways of genes targeted by miRNAs. Dot size indicates the gene count, where “count” represents the number of genes associated with each 
pathway. The dot colour denotes the p-values of pathways, and the x-axis represents fold enrichment. KEGG: Kyoto encyclopedia of genes and genomes. TGF-beta: Transforming 
growth factor beta, TNF: Tumor necrosis factor, GnRH: Gonadotropin-releasing hormone, FOXO1: Forkhead box protein O1, cGMP: Cyclic guanosine monophosphate, PKG: Protein 

kinase G, Rap1: Ras-associated protein-1, MAPK: Mitogen-activated protein kinase, PI3K: Phosphoinositide 3-kinase, Akt: Protein kinase B.

(b)

(a)
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Additionally, liraglutide was reported to exert neuroprotective action 
against ischemia-induced apoptosis by activating the PI3K/Akt and 
MAPK signaling pathways (Zhu et al. 2016). Western blot analysis in 
murine MC3T3-E1 preosteoblasts cells revealed that liraglutide activates 
the PI3K/AKT, ERK1/2, cAMP/PKA/β-cat-Ser675 signaling pathways 
(Wu et al. 2017).

Fig. 4 depicts various signaling pathways activated by liraglutide. 
Liraglutide exerts its effects through the GLP-1 receptor and activates 
PI3K/Akt signaling pathway (Wu et al. 2017). The activation of Akt 
inhibits FOXO1, thereby suppresses pro-apoptosis activity, promotes 
β-cell proliferation, and enhances insulin secretion (Zheng et al. 2024; 
Camaya et al. 2022). Moreover, Akt stimulates the mammalian target of 
rapamycin (mTOR) complex, which interacts with multiple downstream 
substrates (Camaya, Donnelly, and O'Brien 2022), leading to increased 
β-cell mass and improves insulin secretion (Halabitska et al. 2024). 
Akt activation also facilitates the translocation of GLUT4 (glucose 
transporter 4)-containing vesicles from intracellular compartments to 
the plasma membrane, enabling glucose uptake into cells. Additionally, 
liraglutide activates the MAPK pathways (Zhu et al. 2016), which is 
crucial for glucose-stimulated insulin secretion by pancreatic β-cells 
(Sidarala and Kowluru 2017). Liraglutide is also linked with Wnt/β-
catenin signaling (Mali et al. 2022), a pathway indispensable for the 
transcription of genes involved in β-cell proliferation and insulin 
secretion (Nie et al. 2021).

Overall, activation of the PI3K/Akt pathway following liraglutide 
treatment appears to play a crucial role in insulin signaling, glucose 
uptake, glycogen synthesis, and maintaining glucose homeostasis 
(Taheri et al. 2024; Singh et al. 2024; Feng et al. 2024).

Earlier studies have suggested that variation in miRNA expression 
contributes to the modulation of various biological processes. Herein, 
miR-365a-3p and miR-125b-2-3p were found to be downregulated 
following liraglutide treatment in T2D patients. However, these miRNAs 
have previously been reported to be upregulated under hyperglycemic 
condition (Satake et al. 2018; Cheung et al. 2022). Similarly, miR-542-
3p, which was reported to be downregulated in diabetic cardiomyopathy 
(Chavali et al. 2014) and ischemic stroke (Li, Tan, et al. 2019), was 
found upregulated in the present study. Additionally, other studies have 
linked the upregulation of miR-550a-3p to polyneuropathies (Pellegrino 
et al. 2023), damaged vascular smooth muscles (Chen et al. 2022), 
severe acute pancreatitis and acute lung injury (Lu et al. 2017; Satoh 
et al. 2015). Whereas, in the present study, miR-550a-3p was found 
downregulated following liraglutide treatment in T2D patients. These 
results were found consistent with the earlier study, wherein miR-550a-
3p downregulation in plasma samples of T2D patients treated with 
sitagliptin was reported (Catanzaro et al. 2018).

Herein, we noticed that miR-19b-3p was upregulated following 
liraglutide treatment in T2D patients. However, a previous study 
reported miR-19b-3p downregulation in conditions of diabetic 
neuropathy (Rajabinejad et al. 2022), muscular dystrophy, and diabetic 

myopathy (Copier et al. 2017). Another study informed overexpression 
of miR-19b-3p in human skeletal muscle cells after aerobic exercise 
that enhances insulin signaling, increases glucose uptake, and improves 
maximal oxygen consumption (Massart et al. 2021). Likewise, miR-
19b-3p overexpression has been shown to enhance insulin-sensitive 
signaling by upregulation of Akt phosphorylation (Liu et al. 2017).

A reduced expression of miR-338-3p was found associated with 
adverse effects on the Akt/glycogen synthase kinase 3 beta signaling 
pathway, impairing glycogen synthesis and inducing insulin resistance 
(Dou et al. 2017). In contrast, upregulation of miR-338-3p observed in 
this study following liraglutide treatment may contribute to metabolic 
control via the PI3K/Akt signaling pathway (Nagae et al. 2018).

Further, miR-93-5p was found to be downregulated in T2D patients 
treated with liraglutide. This finding aligns with the previous research 
study, which reported liraglutide inhibits miR-93-5p expression in the 
aortas of diabetic rats (Zhang et al. 2019). Lately, a study reported an 
upregulation of miR-93-5p in adipose tissue of T2D patients, which was 
inversely correlated with GLUT4 expression (Yan et al. 2022). Whereas, 
another study reported that the overexpression of miR-93-5p enhances 
insulin resistance and contributes to the progression of T2D in HepG2 
cells (Zhou et al. 2021).

The second-highest hub miRNA, i.e., miR-22-3p was found to be 
downregulated in T2D patients treated with liraglutide. In contrast, 
earlier study reported overexpression of miR-22-3p in the liver of 
diabetic mice is related to impaired gluconeogenesis and increased 
insulin resistance (Kaur et al. 2015). Also, the elevated hepatic miR-
22-3p expression in diabetic db/db mice is linked with the silencing of 
Wnt-responsive transcription factor Tcf7 (Kaur et al. 2015). Moreover, 
the overexpression of miR-22 obstructed stimulation of the PTEN/Akt/
mTOR signaling pathway in myocardial tissues of myocardial infarction 
rats (Li et al. 2024). Furthermore, the elevated levels of miR-22-3p, 
miR-122, miR-192, miR-27a-3p, and miR-27b-3p in the plasma of 
obese mice have been found linked with insulin resistance, glucose 
intolerance, and dyslipidemia (Castaño et al. 2018). Conversely, studies 
have demonstrated that silencing miR-22-3p with an antagomir drug 
improves glucose tolerance, enhances insulin sensitivity, reduces body 
weight, and alleviates cholesterol levels (Thibonnier et al. 2020; Hu 
et al. 2020). The downregulation of miR-22-3p observed in the present 
study following liraglutide treatment in T2D patients may yield similar 
metabolic benefits.

In this study, miR-542-5p, miR-497-3p, miR-125a-3p, and miR-9-
5p were upregulated, while miR-193b-3p was downregulated in T2D 
patients treated with liraglutide. These miRNAs are associated with 
FOXO signaling pathway (Favaro et al. 2021; Tian et al. 2020; Hu et al. 
2022). The upregulation of miR-542-5p, miR-497-3p, and miR-125a-3p 
have been reported to inhibit FOXO1 expression via activation of the 
PI3K/Akt pathway (Tian et al. 2020). Notably, the overexpression of 
miR-542-5p was shown to reverse elevated blood lipid and glucose levels 
(Tian et al. 2020). Whereas, the downregulation of miR-193b-3p has been 

Fig. 4. Diagrammatic representation of intracellular signaling pathways activated by liraglutide via GLP-1 receptor in pancreatic β-cells. GLP-1R: Glucagon-like peptide-1 receptor, 
MAPK: Mitogen-activated protein kinase, PI3K: Phosphoinositide 3-kinase, PIP2: Phosphatidylinositol 4,5-biphosphate, PIP3: Phosphatidylinositol 3,4,5-triphosphate, PTEN: 

Phosphatase and tensin homologue, AKT: Protein kinase B, mTOR: Mechanistic target of rapamycin, FOXO1: Forkhead box protein O1, GLUT4: Glucose transporter 4.
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reported to reverse impaired glucose metabolism by inhibiting FOXO1 in 
the PI3K/Akt pathway in T2D patients (Hu et al. 2022). Additionally, 
the downregulation of miR-9-5p in diabetic retinopathy was connected 
with greater expression of both, SIRT1 and FOXOs (Li et al. 2019), 
thereby contributing to diabetes progression through the regulation of 
genes involved in glycolytic pathways (Zhang and Zhu 2018; Yu et al. 
2021). The upregulation of miR-9-5p elicits a protective response against 
renal fibrosis and chronic kidney injury (Fierro-Fernández et al. 2020). 
Similarly, the overexpression of miR-193b-3p under hyperglycemic 
conditions was associated with the collection of intracellular lipid droplets 
in human hepatocyte-derived cells (Mollet and Macedo 2023). Based on 
these findings, the upregulation of mir-9-5p and downregulation of miR-
193b-3p observed in this study following liraglutide treatment in T2D 
patients may contribute to reducing the progression of diabetes related 
chronic kidney disease (CKD) and liver fibrosis.

In the present study, miR-125a-5p was upregulated in T2D 
patients treated with liraglutide. Previous studies have reported that 
overexpression of miR-125a-5p is associated with reduced blood 
glucose and lipids levels in diabetic mice (Xu et al. 2018; Ji et al. 2014). 
Also, miR-125a-5p overexpression increased hepatic glycogen content, 
but decreased lipid droplet accumulation in the liver of diabetic mice 
(Xu et al. 2018; Ji et al. 2014).

In the present finding, miR-132-3p was downregulated in T2D 
patients treated with liraglutide. A recent study reported that miR-132 
is drastically upregulated in circulating microvesicles as well as plasma 
of diabetic dyslipidemia patients (Nemecz et al. 2023). Whereas, 
another study reported that antagomir-132 effectively downregulates 
miR-132 under in vivo (BALB/c mice) conditions, thereby, improving 
insulin secretion and reducing blood glucose levels (Bijkerk et al. 
2019). Additionally, the inhibition of miR-132–3p induced by fluorosis 
has been shown to potentiate the activation of the MAPK pathway, 
while its overexpression exhibits the opposite effect (He et al. 2024).

Overall, the miRNA expression data produced from this study 
revealed that liraglutide activates several critical signaling pathways, 
including PI3K/Akt, MAPK, FOXO1, and Wnt. These pathways 
collectively enhance β-cell function, improve insulin secretion, and 
increase glucose uptake in peripheral tissues, presenting liraglutide’s 
potential as a comprehensive therapeutic agent for T2D management.

Study limitations: Despite several important findings, this study 
suffers from some inherent limitations. The small sample size may 
lower the statistical power of the results, as miRNA studies typically 
require larger samples to account for individual variability in miRNA 
expression. The findings of this study are based on bioinformatics 
analysis of publicly available datasets supported with in vivo studies 
in animal models, the lack of in vivo experimental validation in T2D 
patients may weaken the strength of the findings. Furthermore, 
individual genetic, environmental, and lifestyle factors that may 
influence miRNA expression and possibly affect the reproducibility 
and generalizability of the results across different populations were not 
covered in the scope of this study.

5. Conclusion

The miRNA expression data revealed that liraglutide activates PI3K/
Akt along with other signaling pathways, which subsequently enhances 
β-cell function, improves insulin secretion, and increases glucose uptake 
in T2D patients. This study emphasizes the significance of key miRNAs, 
i.e., hsa-miR-9-5p, hsa-miR-22-3p, hsa-miR-19b-3p, hsa-miR-132-3p, 
and hsa-miR-93-5p as potential predictive biomarkers for assessing 
the therapeutic response to liraglutide in T2D patients. Our findings 
indicate that these miRNAs offer vital insights into the mechanisms 
by which liraglutide mitigates T2D risk, opening possibilities for 
the development of novel biomarkers, therapeutic approaches, and 
precision health strategies. These findings provide a solid foundation 
for further experimental validation of the key signaling pathways 
involved in liraglutide therapy.
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