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Abstract Nanostructured ZnO thin films with high transparency have been grown on glass

substrate by atomic layer deposition at various temperatures ranging from 100 �C to 300 �C. Efforts
have been made to observe the effect of substrate temperature on the thickness of the deposited thin

films and its consequences on the energy band gap. A remarkably high growth rate of 0.56 nm per

cycle at a substrate temperature of 200 �C for ZnO thin films have been achieved. This is the

maximum growth rate for ALD deposited ZnO thin films ever reported so far to the best of our

knowledge. The studies of field emission scanning electron microscopy and X-ray diffractometry

patterns confirm the deposition of uniform and high quality nanosturtured ZnO thin films which

have a polycrystalline nature with preferential orientation along (100) plane. The thickness of

the films deposited at different substrate temperatures was measured by ellipsometry and surface

profiling system while the UV–visible and photoluminescence spectroscopy studies have been used

to evaluate the optical properties of the respective thin films. It has been observed that the thickness

of the thin film depends on the substrate temperatures which ultimately affect the optical and

structural parameters of the thin films.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Zinc oxide (ZnO) is known to be as n-type semiconductor and

a transparent conductive oxide with excellent optoelectronic
properties like wide band gap (3.37 eV), high dielectric con-
stant, high exciton binding energy (60 meV), and high thermal

stability (Özgür et al., 2005). Hence, it is used in a wide range
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of applications such as solar cells, gas sensors, optoelectronic
devices, biosensors and transducers (Klingshrin, 2007; Look
et al., 1999; Pearton et al., 2003; Reynolds et al., 1996;

Wraback et al., 1999). ZnO thin films have been prepared by
many methods such as RF-magnetron sputtering
(Krupanidhi and Sayer, 1984), ion beam-assisted reactive

deposition (IBAD) (Zhang and Brodie, 1994), chemical vapor
deposition (CVD) (Minegishi et al., 1997), pulsed laser
deposition (PLD) (Ryu et al., 2000), molecular beam epitaxy

(MBE) (Kang et al., 1998; Segawa et al., 1997) and atomic
layer deposition (ALD) (Guziewicz et al., 2008; Keun Kim
et al., 2005; Lim et al., 2004). ALD method is a special
modification of chemical vapor deposition for self-limiting film

growth. It can be considered as one of the best techniques to
synthesize nanostructured thin films of the order of few
angstroms (Keun Kim et al., 2005; Lim and Lee, 2007; Lim

et al., 2004). ALD reactions use two chemicals, typically
called precursors which react with the surface of a material
one at a time in a sequential, self-limiting manner. When the

precursors are exposed to the substrate surface repeatedly, a
fine quality ultra-thin film is deposited. Slow deposition
growth rates of ALD facilitate several processes as an advan-

tage to ensure uniform high quality and pinhole defect free
films over large areas. ALD grown ZnO thin films have gained
substantial interest in the field of semiconductor research
because of their high purity, ultra thinness and crystallinity

which influence the optical and electrical properties of the film
and make it a suitable candidate for optoelectronics applica-
tions. The optoelectronic devices require optical coating of

high quality (good surface uniformity, high packing density,
good adhesion with underlying substrate, low defect density)
and precise thickness control which depends on the deposition

method being used (Martinu et al., 2014).
The structural and optical properties are greatly influenced

by the substrate temperature of the thin film, however, there

have been few research articles on the substrate temperature
dependent thickness and the associated changes in the struc-
tural, optical and electrical properties of the ZnO thin films
(Ahmad et al., 2015). These physical properties of ZnO thin

films are affected by the mechanism and growth conditions
such as substrate temperature, pressure, precursors and thick-
ness (Enigochitra et al., 2015). For optoelectronic devices

based on ZnO thin films, influence of a parameter such as sub-
strate temperature on the structural and optical properties is of
great importance (Rahal et al., 2014). This work aims to

achieve maximum growth rate of ZnO thin films deposited
by ALD at different substrate temperatures and the associated
changes on the thickness and energy band gap.

1.1. Experimental setup

In our present study we have used Syskey Atomic Layer
Deposition system for the deposition of ultra-thin ZnO layers.

Diethyl zinc, Zn(C2H5)2 precursor and water as an oxidant
have been used in this experiment. Before the deposition of
thin films, the substrate (glass slides) was cleaned in an ultra-

sonic bath with solvents (trichloroethylene, acetone and
isopropanol) and finally with deionized water. ALD reaction
mechanism for ZnO thin films cycle may be summarized in a

single equation:

ZnðCH2CH3Þ2 þH2O ! ZnOþ 2C2H6 ð1Þ
Cyclic repetition of the above process results into layer by layer
growth of ZnO thin films at atomic scale. In all experiments both
precursors were kept at room temperature 22–24 �C in the lab,

while a substrate temperature was increased from 100 �C to
300 �C with an interval of 50 �C. During all experiments the water
(H2O) pulsing time was kept constant at 15 ms, DEZ pulsing time

60 ms and purging flow time 10,000 ms. We achieved the maxi-
mum growth of ZnO thin films at a substrate temperature of
200 �C i.e., 0.56 nm per cycle which is evident to be the best depo-

sition rate using ALD ever reported in the literature (Chaaya
et al., 2013; Lim et al., 2004; Singh et al., 2014).

1.2. Thin film characterization

Different physical properties of the deposited ZnO thin films
have been characterized by several techniques. The surface
characterization have been performed by field emission scanning

electron microscopy (FESEM-JSM7600F JEOL – Japan), while
the XRD (Ultima-IV; Rigaku, Japan) patterns gave the
crystalline structure and phases of grown ZnO thin films.

Ellipsometry (Horiba UVISEL, France) and surface profiler
(Dektak, Bruker-Germany) have been used for thickness
measurements of the thin films. Finally the UV–visible spectro-

meter (Perkin Elmer Lambda 750) and photoluminescence (PL)
spectrometer (RF-5301PC-Shimadzu, Japan) devices have been
used to investigate the optical properties of the thin films.

2. Results and discussion

2.1. Surface characterization

Surface morphology studies of thin films have been conducted
using FESEM. Fig. 1 shows the FESEM images of ZnO thin films

at a high resolution. It has been observed that the particle size of
ZnO thin films increases with the increase in temperature up to
200 �C and decreases when the temperature was increased further

from 200 �C to 300 �C. These changes in the particle size at differ-
ent substrate temperatures show the effect of temperature on
growth mechanism of the thin film. The decrease in the energy

band gap (Eg) with the increase in the films thickness is due to
the increase in localized density of states near the band edges which
results in the decrease in Eg with thickness. The decrease in direct
Egwith the increase in film thickness can also be associated with an

increase in particle size (Seval et al., 2010). This shows the depen-
dence of Eg on the thin film thickness. These results are also in
good agreement with the literature (Alnajjar, 2012).

2.2. Thickness measurement

The thickness of the films has been measured by ellipsometry

(Horiba UVSEL, France). We observed 14.1 nm, 27.6 nm,
33.4 nm, 30.7 nm and 23.07 nm thicknesses for 100 �C,
150 �C, 200 �C, 250 �C and 300 �C substrate temperatures

respectively. These results were also confirmed with the surface
profiling system (Dektak Bruker, Germany).
2.3. Structural characterization

For the structural analysis of ZnO nanostructured thin films,

we have used X-ray diffraction (XRD) measurements. The



(A) 
100 oC 

(B)  
150 oC 

(C) 
200 oC 

(D) 
250 oC 

(F)        
300 oC 

Figure 1 FESEM micrograph of ZnO thin films deposited at different substrate temperatures (A) 100 �C (B) 150 �C (C) 200 �C (D)

250 �C (E) 300 �C. All the images were taken at 120 k magnification with SEI detector and the scale shown is 100 nm in size.
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Figure 2 XRD patterns of ZnO thin films deposited at different

substrate temperatures.
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analysis was performed using Ultima-IV Rigaku XRD system
with Cu-Ka radiation (k = 1.54060 nm) operated at 40 kV
and 40 mA at room temperature. The XRD spectra were

measured in the 2h angular region between 25� and 75�. The
XRD patterns of thin films obtained at different substrate
temperatures are shown in Fig. 2. All the patterns clearly

reveal the polycrystalline structure with orientation along
different planes. These planes are (100), (002), (101), (102),
(110), (103) and (112) of ZnO nano structures, indicating that

the samples are polycrystalline wurtzite structure (Zincite,
ICDD-PDF card No. 01-074-9940). The 4-index notation of
all XRD patters is shown below in Table 1. The XRD patterns
consists of the major diffraction peak of ZnO at an angle (2h)
of 32.1� along (100) plane while the others with low intense
peaks attributed to (002), (101), (102), (110), (103) and
(112) planes. It is clear from the XRD patterns that the initial

increase in the temperature from 100 �C to 200 �C results in
improved crystallinity along (100) as the major peak intensity
considerably increases up to 200 �C. Afterward the major peak

intensity of the thin film decreases above 200 �C substrate



Table 1 3-index and 4-index notation of different XRD peaks

at corresponding angle (2h) of ZnO thin films prepared at

different substrate temperatures.

Peak position at 2h (�) (hk l) (hk i l)

31.1 (100) (10�10)

34.7 (002) (0002)

36.4 (101) (10�11)
47.9 (102) (10�12)

56.9 (110) (11�20)

62.8 (103) (10�13)

68.1 (112) (11�22)
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temperature. The change in the peak intensity is associated
with the change in the structural parameters. The Full width

at half maximum (FWHM) of ZnO peaks also changes with
the change in the substrate temperature. This indicates that
the growth, orientation and grain size of ZnO nanocryatals

depend on the substrate temperature. The following Debye
Scherrer formula (Gordillo et al., 1995) has been used to calcu-
late the grain size of the deposited thin films

D ¼ 0:9k
b cos h

ð2Þ
Figure 3 (A and B). UV–visible absorbance and transmittance

temperatures 100 �C, 150 �C, 200 �C, 250 �C and 300 �C.
where D is the grain size, k is the X-ray wavelength used, b is

the angular line width at half-maximum intensity in radians
and h is the Bragg angle. The grain size of the deposited thin
films at different substrate temperature was observed from

6.9 nm to 10.4 nm from XRD data. Dislocation density (d) is
related to grain size by the following formula (Callister, 1997)

d ¼ 1

D2
ð3Þ

The above relation verifies that if the crystallite size
increases then dislocation density decreases. Since, the disloca-
tion density and strain are the manifestations of dislocation

network in the films, the decrease in the strain and dislocation
density indicates the formation of higher quality films (Lalitha
et al., 2004).

2.4. Optical characterization

UV–visible spectrophotometry (Perkin Elmer Lambda 750)

was used to obtain the wave length (k) dependent transmission
(T) and absorbance (A) spectra. Data acquisition was made at
room temperature. Fig. 3(A) and (B) shows the overlap graph

of optical absorbance and transmission spectra respectively,
obtained for the five ZnO thin films grown at different
substrate temperatures ranging from 100 �C to 300 �C with
spectra of the ZnO thin films deposited at different substrate
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an interval of 50 �C. It can be noticed that the absorbance of
thin films, in Fig. 3(A), increases with the increase in the sub-
strate temperature up to 200 �C and then starts decreasing as

the substrate temperature was increased further from 200 �C
to 300 �C. These changes in the absorbance are associated with
the film thicknesses which have been deposited at different sub-

strate temperatures. An increase in the absorbance is due to
increase in the thin film thickness which may increase in the
carrier concentration which blocks the energy. The decrease

in the absorbance of the thin films which were deposited at
substrate temperatures of 250 �C and 300 �C allowing to pass
more energy due to decrease in the thin film thickness.Fig. 3
(B) shows the optical transmittance above 89.88% in the visi-

ble wavelength range, which complements the absorbance
spectra.

The relation between transmittance, T and absorption coef-

ficient, a in the high absorption region is expressed in the fol-
lowing equation:
Figure 4 Plot of (ahm)2 versus photon energy, ht of ZnO thin films de

250 �C and 300 �C.
T ¼ A expð�adÞ ð4Þ
where T is the transmittance, A is nearly equal to unity at

absorption edge, and d is the thickness of the film.
The energy band gap Eg can be calculated by assuming a

direct transition between valence and conduction bands. The

absorption coefficient a as a function of photon energy can
be expressed as in the following equation (Lalitha et al., 2004):

aht ¼ Aðht� EgÞr¼1=2 ð5Þ
where h is Planck’s constant, t is the frequency of the incident

photon and Eg is the energy band gap. The energy band gap
values are obtained by extrapolating the liner portion of the
plots of (aht)2 versus ht to a = 0 as shown in Fig. 4. The

change in the values of optical properties at different substrate
temperatures of the thin films are shown in Table 2. The results
clearly display the dependency of the energy band gap on the

film thickness. We observed that the energy band gap value
posited at different substrate temperatures 100 �C, 150 �C, 200 �C,



Table 2 Optical parameter of ZnO thin films prepared at different substrate temperatures along with film thickness.

Substrate temperature (�C) 100 150 200 250 300

ZnO thin film thickness (nm) 14.1 ± 0.03 27.6 ± 0.60 33.4 ± 0.50 30.7 ± 0.75 23.07 ± 0.66

Growth rate (nm/cycle) 0.24 0.46 0.56 0.51 0.38

Energy band gap (eV) 3.10 3.08 3.06 3.07 3.09

Refractive index (n) 1.52 1.54 1.56 1.55 1.53

Dielectric constant (e1) 2.31 2.37 2.44 2.40 2.35

Static dielectric constant (eo) 19.18 18.71 17.97 18.34 19.18

Figure 5 Photoluminescence spectroscopy graphs for ZnO thin

films deposited at different substrate temperatures.
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first decreases from 3.10 eV to 3.06 eV as the film thickness
increases from 14.1 nm to 33.4 nm with increasing temperature
up to 200 �C and then it increases to 3.09 eV with decreasing
film thickness when the temperature was further increased to

300 �C. These results are in excellent agreement with those of
the reported literature (Ates et al., 2007; Padiyan et al., 2002;
Reddy, 2012; Tüzemen et al., 2009; Yadav et al., 2010;

Yıldırım and Ates, 2010).
The optical properties of semiconductor materials mainly

depend on the energy band gap, refractive index and dielectric

constant. The applications of semiconductors in electronics,
optical and optoelectronic devices are very much determined
by the magnitude of these elementary properties of the materi-

als. The refractive index of the films was calculated using Moss
Relation (Gupta and Ravindra, 1980; Hannachi and
Bouarissa, 2009) which is directly related to the Eg shown in
the following expression:

k ¼ Egn
4 ð6Þ

where k is a constant with the value of 108 eV. We used this
Eq. (6) because it was found to give better agreement with

known data for n in II–VI semiconductors. A different relation
between refractive index and energy band gap is presented by
Ravindra in the following equation (Ravindra et al., 2007):

n ¼ 4:16� 0:85Eg ð7Þ
The dielectric constant of solid material is very important

for optoelectronics because a change in the energy band gap

causes a change in the dielectric constant, which indirectly
alters the ionization energies of impurity atoms and the bind-
ing energy of the excitons.

The static and high frequency dielectric constants were calcu-
lated for thin films. For high frequency dielectric constant (e1),
we used the following relation (Hannachi and Bouarissa, 2009):

e1 ¼ n2 ð8Þ
where n is refractive index. The static dielectric constant (eo) of
the ZnO thin films was calculated using a relation expressing

the energy band gap dependence of eo for semiconductor com-
pounds in the following form (Hannachi and Bouarissa, 2009):

eo ¼ �33:26876þ 78:61805Eg � 45:70795E2
g þ 8:32449E3

g ð9Þ
For all ZnO films prepared at different substrate tempera-

tures, the calculated values of Eg, n, e1 and eo are shown in
the following Table 2. It can be noted that we have obtained
lower energy band gap reported in the literature, therefore,

the associated optical parameter like dielectric constant and
refractive index also have lower values for the ALD grown
ZnO nano structured thin films.
The photoluminescence spectra of ZnO thin films at differ-
ent substrate temperatures are shown in Fig. 5. The photo-

luminescence spectra were obtained at room temperature. It
can be noticed that all the prepared ZnO thin films having
the strong UV emission which is the indication of good

crystallinity and enhanced optical properties of prepared
ZnO thin films (Zhang et al., 2009). The shift in the ultra violet
emission was found from 391 nm to 393 nm. The peak at

391 nm corresponds to free exciton or bound exciton of ZnO
in the UV region while the peak shift toward 393 nm is due
to ultra violet emission of ZnO. The UV emission is associated
to the near band edge emission of ZnO which may be due to

the decay of exciton.

3. Conclusion

High purity ZnO thin films of different thickness were depos-
ited by atomic layer deposition through diethyl zinc, Zn
(C2H5)2 as a zinc precursor and water as an oxidant. The

optimization of ALD growth parameters results in a maxi-
mum growth rate of 0.56 nm per cycle. According to our
literature survey this is the highest growth rate ever reported.

The thin film thickness was found to be varied between
14.1 ± 0.03 nm to 33.4 ± 0.50 nm when the substrate temper-
ature was increased from 100 �C to 300 �C. We have observed

the maximum growth of ZnO thin films at 200 �C i.e.,
33.4 ± 0.50 nm and the associated refractive index and dielec-
tric constant were found to be 1.56 and 2.44 respectively. The
variation in the energy band gap was from 3.06 eV to 3.10 eV

with the change in the substrate temperature. A systematic
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study on the influence of the substrate temperatures on struc-
tural and optical properties of ZnO thin films deposited by
ALD has been reported.
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