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Abstract This paper studies the Boussinesq equation in the presence of a couple of perturbation
terms. The traveling wave hypothesis is used to extract the soliton solution. Subsequently, other
nonlinear wave solutions are also obtained by the aid of exponential function and G'/G methods.
The constraint relations are also indicated for the existence of these wave solutions.
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1. Introduction

The Boussinesq equation (BE) is one of the nonlinear evolu-
tion equations (NLEEs) that model the shallow water waves
(Bruzon, 2009; Christov and Choudhury, 2011; Daripa,
2006; Dutykh and Dias, 2007; Hamdi et al., 2005; Hsu et al.,
2005; Kordyukova, 2008; Liu and Sun, 2005; Wang et al.,
2009; Wazwaz, 2010). In fact BE can be asymptotically re-
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duced to the Korteweg—de Vries (KdV) equation that is more
commonly studied in the context of shallow water waves
(Kordyukova, 2008). There are various other NLEEs that
model these shallow water waves. Some of them are the mod-
ified KdV equation, Peregrine equation, Kawahara equation,
Benjamin—-Bona—Mahoney equation, just to name a few. In
this paper, the perturbed BE will be studied with power law
nonlinearity.

The integration of the BE will be carried out in this paper.
There are several approaches to integrate NLEEs. Some of
them are the variational iteration method, Hirota’s bilinear
method, Adomian decomposition method, Fan’s F-expansion
method. In this paper, however, first, the simplest method,
namely the traveling wave approach will be made to obtain
the solitary wave solution to this equation. Subsequently, the
exponential function method and the G’'/G method will be used
to carry out the integration of this equation to extract a few
other solutions.

1018-3647 © 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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2. Traveling wave hypothesis

The strongly perturbed BE is
qu — kqu.\’ + a(qzn)xx + qu.\’.\'x = ﬁq,\'x + P xxxx (1)

where f§ is the coefficient of dissipation and p represents the
higher order stabilization term. Using the traveling wave
assumption that some g(z) satisfies (1) where

zZ=X—Vi, (2)
(1) transforms to
Vzg// _ ng// =+ a(g2n)// + bg”” — ﬂg// + pg”” (3)

Integrating (3) twice and taking both constants of integration
to be zero, since the search is for solitary waves, lead to

(2 =k = Pg+ag” + (b—p)g" =0 (4)
Multiplying (4) by ¢’ and integrating a third time and taking
the constant of integration to be zero, once again, yield

_ "2 2 _ 1.2 _ 2
(b=p)&) + (" =K =g +5

After solving for g’ and integrating using separation of vari-
ables, (5) becomes

2n—1
2 tanh™' 11— 2ag2
-1 2n+1)(kK> =2 + p)

K =2
=Z 7‘) + ﬂ (6)
b—p
Solving (6) for g(z) and substituting in z = x — vt gives the ex-
act traveling wave solution to (1) as

g2n+l =0 (5)

2n+1
2a

(ES el o

which can be rewritten as

(kK* — v* 4 p)sech’

Q(x’ [) =

q(x, 1) = Asechm T [B(x — vi)] (8)

where the amplitude A4 of the solitary wave is given by

L b=
4 {(2n+ 1)(/;a v +ﬂ)} )
and
3:2"2_1 kz;fz:ﬂ (10)
Since
0< Vv <k*+ B, (11)
it is necessary that
B> k. (12)
The fact that
-4 p>0 (13)
implies
b > p. (14)

It must also be assumed that
n>1/2 (15)

for the existence of the solitary waves.

3. The % method

In this section, we first describe the %—expansion method, then
apply it to construct the traveling wave solutions for the per-
turbed Boussinesq equation.

3.1. Details of the method

Suppose that a non-linear partial differential equation is given
by

F(Ll, Upy Uxy Upry Uxpy Uxxy =

) =0, (16)

where u(x,f) is an unknown function, F is a polynomial in
u = u(x, 1) and its partial derivatives, in which the highest or-
der derivatives and non-linear terms are involved. In the fol-
lowing, we give the main steps of the %—expansion method:

Step 1. The traveling wave variable
u(x, 1) =u(f), &=x-—nt, (17)

where v is constant, permits us to reduce Eq. (16) to
an ODE for u = u(¢) in the form:

Flu, o', u",--)=0. (18)

Step 2. Suppose that the solution of (18) can be expressed as
a polynomial in %’ as follows:

n G i
= A=), 19
o)=Y u() (19)
where G = G(&) satisfies the second order linear dif-
ferential equation in the form:

G+ G + uG =0, (20)

where o;, v, 4 and u are constants to be determined
later, o, # 0. The positive integer n can be determined
by considering the homogeneous balance between the
highest order derivatives and non-linear terms
appearing in (18).

Step 3. Substituting (19) into (18) and using (20), collecting
all terms with the same power of (£) together, and
then equating each coefficient of the resulted polyno-
mial to zero, yield a set of algebraic equations for «;,
v, 2 and p.

Step 4. Since the general solutions of (20) have been well
known to us, then substituting o, v, 4 and u and
the general solutions of (20) into (19) we have more
traveling wave solutions of the non-linear partial dif-
ferential Eq. (16).

3.2. Application to Boussinesq equation

To apply the %—expansion method for the perturbed
Boussinesq equation, we consider Eq. (5). Suppose that the
solutions of the O.D.E (5) can be expressed by a polynomial
in € as follows:
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w0=3 (%), o1

i=0

where «; is the arbitrary constant, while G(&) satisfies the fol-
lowing second order linear O.D.E:

G"+ MG + pG =0, (22)

where /4 and p are constants. Eq. (22) can be changed into

d G/ G/ 2 G/

)0 (0)
By using Eq. (23), balancing (dg f)> with (g(€))*"* ! in Eq. (5)
give

N 2m+2 N\ (2n+1)m
G\ (¢ (24)
G G

so that
2
=— 25
2n—1’ (25)
Thus we make the transformation
g =W, (26)

and transform Eq. (5) into the following ordinary differential
equation

2a(2n — 1’ WHE) — 2n+ 1)(2n — 1)* (= + K + B) W (&)
+42n+1)(b = p)(W)* (&) =0 (27)

Suppose that the solutions of Eq. (27) can be expressed by a
polynomial in & ¢ as follows

zfy()l -

I

where G = G(¢) satisfies Eq. (22). Balancing W* with (W")? in
Eq. (27) gives

@
SO
m=1. (30)

Thus we can write Eq. (28) as

G/
W=oy+ou (E)’ (31)

where o and o, are constants to be determined.
With the help of the symbolic software Maple, substitution
of Eq. (31) with Eq. (22) into Eq. (27) shows that the set of

algebraic equation (collecting the coefficients of (%)l(l =
0, ---,4) and setting it to zero) possesses the solutions:
1+2n B aocol—Zn)
n 2n—1V 2(p—b)(1+2n)’
PR 2aoc02n71 [(p— b 1+2n —_— ﬁ+k2
(p—b)(1+2n)

(32)

where o is an arbitrary constant.
Eq. (32) can be written by using Eq. (31) as

W:OC():l:

NG (pfb)(1+2n)(ﬁ'). (33)

2n—1 2a G

Since in (32), 6 = 4> — 4u = 0 so we obtain only rational func-
tion solution

— 2n—1
N T LS

200=b)(1+2n) ¢+

Using Eq. (26), the perturbed Boussinesq equation with any-
order nonlinear terms have the solutions

B —aoy(2n — 1)w, 123 =
&= (OCO+WO(2(p—b)(1+2n)+cl+62§ . (35)

where wy = =44 /w é —

1, ¢ are free parameters.

(34)

x—vt, v==4v/p+k* and o,

4. Exponential function method

In this section, we first give the details of the exponential func-
tion method, then apply it to the perturbed Boussinesq
equation.

4.1. Details of the method

We now present briefly the main steps of the Exp-function
method that will be applied. A traveling wave transformation
u = u(¢),¢ = x — vt converts a partial differential equation

\P(u7 Upy Uyy Uxyy Usry Upgy -0 ) = 07 (36)

into an ordinary differential equation
O(u, —vid o, o, v’ V") = 0. (37)

The Exp-function method is based on the assumption that
traveling wave solutions can be expressed in the following
form

d o

AN Zn:—(’a" exp(ng)

u(é) = S B exn(md)’ (38)
m=—p mexp(mg)

where ¢, d, p and ¢ are positive integers which are known to be
determined further, a, and b,, are unknown constants. Eq. (38)
can be rewritten in an alternative form

u(®) = a_.exp(—cé) + -+ asexp(dé)
 bpexp(—p) + -+ byexp(ql)”

To determine the values of d and ¢, we balance the linear term
of the highest order in Eq. (37) with the highest order nonlin-
ear term. Similarly, to determine the values of ¢ and p, we bal-
ance the linear term of the lowest order in Eq. (37) with the
lowest order nonlinear term.

(39)

4.2. Application to Boussinesq equation

We consider the perturbed Boussinesq Eq. (1). For getting the
traveling wave solutions of (1) using the Exp-function method,
we consider Eq. (5) as the converted form of (1). We make the
transformation

g =W, (40)
and transform Eq. (5) into the following ordinary differential
equation
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2a(2n — 1) WHE) — 2n+ 1)(2n — 1)2 (= + &> + BYW(&)
+42n+ 1)(b— p)(W)* (&) =0 (41)

According to the Exp-function method, we assume that the
solution of Eq. (41) can be expressed in the following form

d
W(Cf) — an:fc an exp(nf) ,

. (42)
m=—p bm eXp(WZg)

where ¢, d, p and ¢ are positive integers which are unknown to
be further determined, a, and b,, are unknown constants. Eq.
(42) can be re-written in an alternative form as follows

a_.exp(—cé) + -+ agexp(dé)

w(é) = b_,exp(—pé) + - + byexp(qé)”

(43)

In order to determine values of ¢ and p, we balance the linear
term of the highest order in Eq. (41) with the highest order

nonlinear term. By simple calculation, we have
4de] + - -

A G 4
¢y expldqé] + - - (44)

and

> _ 3expl(2g +2d)c] + - -

(W) caexpldqé] + -

; (45)

where ¢; are determined coefficients only for simplicity. Balanc-
ing the highest order of Exp-function in Egs. (44) and (45) we
have

4d = 2q + 2d, (46)
which leads to the result
d=gq. (47)

Similarly to determine values of ¢ and p, we balance the linear
term of the lowest order in Eq. (41)

_ drexplrdec]+ -

~ dhexp[—4pe]+ - (48)
and
(i) = hexpl2p 2008 + - "

dyexp[—4pé] +---

where d; are determined coefficients only for simplicity. From
(48) and (49), we obtain

—4¢=—(2p+ 2¢), (50)

which leads to the result
p=c. (51)

We can freely choose the values of ¢ and d, but the final solu-
tion does not strongly depend upon the choice of values of ¢
and d. For simplicity, we set p = ¢ = 1 and d = ¢ = 1, then
Eq. (43) becomes

_a_yexp(—&) +ap + ay exp(&)

W) = exp(=8) £ b0 T b1 exp(®)” (52)

Substituting Eq. (52) into Eq. (41), and equating to zero the
coefficients of all powers of exp(né) yield a set of algebraic

equations for ag, by, ay, a_y, b_y, by and v. Solving the system
of algebraic equations by the help of Maple, we obtain

Case 1

ad(2n — 1)

=0,a,=0,b=0, b = 53
a y d-1 y Do » 01 8b_1(1+2n)(b—p)’ (53)
V@n = D2+ B)+4(p - b)
v==% - . (54)
Substituting Egs. (53) and (54) into Eq. (52) yields
. 2%}
W(g) = 11113(27171)2 ¢ ’ (55)

¢
b_je=s + S (2 (b—p) €

where & = x — vt. Thus, from transformation (40), the exact
traveling wave solution to (1) is

W1
a
g(x, 1) = 0 3 . (56)
b vi—x uu§(2n—l)' X—Vit
1€t g €

where @y and b_; are arbitrary constants.

Case 2
ayg = 0, a_| = 0, b] = O, b,] = 0, (57)
=1 (> +p)+4p—b
e p ) 5
2n—1
Substituting Egs. (57) and (58) into Eq. (52) yields
W(E) =2, (59)
bo

where & = x — vt. Thus, from transformation (40), the exact
traveling wave solution to (1) is

2
n—1
q(x, 1) = (ﬂe“”) . (60)
bo
where @, and b, are arbitrary constants.
Case 3
ayg = 0, aj :07 b] = 0, b,l :O7 (61)
V@n— DX+ B) +4(p - b)
v==% - . (62)
Substituting Egs. (61) and (62) into Eq. (52) yields
we) = te, (63)
bo

where ¢ = x — vt. Thus, from transformation (40), the exact
traveling wave solution to (1) is

q(x, z):( & ) (64)

boevat

where a_; and by are arbitrary constants.
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Case 4

—4by(2n+1)(b - p)

ap=0,b,=0,b_,=0, a = 65
0 1 1 1 aa 1 (1— o)’ (65)
V@n— DX+ B) +28(6 - p)
v==% 1 . (66)
Substituting Egs. (65) and (66) into Eq. (52) yields
a,le*f —4h(7‘)(2n::1;(bz—p)é
W(é) _ aa_;( n) 7 (67)
bo

where ¢ = x — vt. Thus, from transformation (40), the exact
traveling wave solution to (1) is

2
a levt—x _4h(2><2”+1)(b_l)) x—vr\ 2!

alx.1) = T . (68)

where a_; and b are arbitrary constants.

Case 5

_ 2Z] b() 222

br=0 b =0 =50 V=577 (69)

_ by8azt + @t D(b—p)

a 70
1 aa_ (1 —2n)’ (70)
Substituting Egs. (69) and (70) into Eq. (52) yields
) a et + 2k +b§<8zz;z+]<(2;zj21;)<zb—p>> ¢
w(e) = - (71)

bo ’
where £ = x — vt. Thus, from transformation (40), the exact
traveling wave solution to (1) is

N ; 2
b (8azi +Qni D(b=p) x—vr) P

q(x, 1) = b

where z; and z, are respectively roots of the equations

168a°z* + 60a(1 + 2n) (b — p)2> + 5(1 +2n)*(b— p)* =0 (73)

(14 2n)((1 = 2n)* (K> + B) + 12(b — p)) + 1124z}
+8n+4)2=0. (74)

where a_,, by are arbitrary constants.

5. Conclusions

In this paper, the perturbed BE is studied by the traveling wave
hypothesis. The solitary wave solution is obtained. There are
the parameter restrictions that fell out while conducting the
analysis of the traveling wave solutions. The perturbations
are taken to be strong perturbations. Subsequently, the G'/G
method and the exponential method are employed to integrate
this perturbed BE with power law nonlinearity. Several other
solutions are obtained.

In future several more solutions will be retrieved including
the cnoidal and snoidal waves as well as the quasi-stationary
solutions in the presence of such perturbation terms when they
are weak. Those results will be reported elsewhere.
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