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A B S T R A C T

Traumatic brain injury (TBI), a progressive neurological disease caused by physical injury to the brain tissue, 
impacting its functions. This study employed metabolomics based on untargeted mass spectrometry method to 
examine plasma specimens from well-established mouse models with induced TBI (n = 6) and control mice 
(n = 6). The objective was to assess the metabolomics profile and the associated biochemical pathways in TBI. 
There was a noticeable segregation between TBI and reference groups (Q2 = 0.342, R2 = 0.993), according to 
orthogonal partial least square-discriminant analysis, indicating significant difference in metabolic expression. 
Moreover, 102 metabolites were significantly altered in TBI mice; 59 were upregulated, while 43 were down-
regulated in TBI mice. Correspondingly, the TBI model showed a significant dysregulation in number of key 
metabolic pathways, including metabolism of glycerophospholipids, linoleic acid, glycine, serine, threonine, 
pyrimidine, tryptophan, nicotinate and nicotinamide. Additionally, isoleucyl-asparagine, 2′-deoxyinosine 
triphosphate, diglycosyl diacylglycerols (25:0/26/2), and phosphatidylethanolamine (24:0/22:4) demonstrated 
excellent performance for TBI detection with an area under the curve ≥ 0.8. This study identified putative plasma 
biomarkers of TBI and highlighted the dysregulated biochemical pathways, providing valuable clinical insights 
into TBI research.

1. Introduction

Traumatic brain injury (TBI), a complicated neural disease related to 
temporarily or permanently impaired brain functions (Abu Hamdeh 
et al., 2021). TBI affects individuals of all ages, and the risk for subse-
quent early-onset Alzheimer’s disease, dementia, and tauopathies is 
increased (Crane et al., 2016; Gu et al., 2022). Moreover, morbidity and 
mortality rate of TBI is approximately 27 to 69 million incidents re-
ported on an annual basis (James et al., 2019).

Recently, research in TBI has been gaining more attention due to TBI- 
associated long-term negative impacts on patients’ lives and the lack of 
accurate differential diagnostic approaches and effective 

pharmacological intervention (Bragge et al., 2016). The current clinical 
diagnostic tools, including the Glasgow Coma Scale (GCS) and Computer 
Tomography (CT) scan, could not represent the heterogeneous patho-
physiology of the disease and cellular metabolic changes, thus chal-
lenging TBI diagnosis and therapeutic strategies (Bodien et al., 2021). In 
addition, the heterogeneity of TBI is a serious barrier to developing an 
optimal set of molecular biomarkers for diagnosis, monitoring, and 
prognosis (Vidhya et al., 2021). Moreover, the difficulty of obtaining 
steady TBI biological samples, such as brain tissue and cerebrospinal 
fluid (CSF), has limited our understanding of TBI’s molecular mecha-
nism and alterations.

Metabolomics is a comprehensive analytical technique for high- 
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throughput qualification and quantification of a global metabolic profile 
of a disease progression. Omics-related research is emerging, and several 
studies have used this holistic analytical approach. In the case of TBI, 
especially in acute conditions, the metabolome reflects significant 
disruption and alteration in the biochemical homeostasis (Posti et al., 
2017). In addition, several factors could affect the TBI progress and 
outcome in human including age, gender, genetic factors, patient’s 
health, medication, and severity of the primary injury. Therefore, in 
vivo, metabolomics-based research would provide a valuable homoge-
nous brain injury model. The objective of the present research study was 
to use the targetless metabolomics approach to analyze TBI’s metabolic 
profile in mice models and underpinning putative pathways to discover 
potential biomarkers for diagnosing and TBI prognosis.

2. Materials and Methods

2.1. Animal model

This research project involved twelve male C57BL/6J mice 
(healthy), aged 6–10 weeks and 16–23 g in weight. These were sourced 
from the Animal Center at the College of Pharmacy, King Saud Uni-
versity. Standard conditions were maintained: 12hr. light/dark cycle, 
25 ◦C temperature, and ad libitum feeding. These were split into groups 
of six: Group A (control) and Group B (TBI). For group B, weight-drop 
model was used to perform a TBI as earlier described (Sivandzade 
et al., 2020).

In summary, mice underwent an isoflurane vapor anesthesia prior to 
being positioned on soft platform under the weight-drop device. Brain 
trauma was induced by dropping 30 g of metal freely from a height of 
80 cm at the center of head between the ears. Group A mice were 
anesthetized only without receiving a brain injury.

2.2. E**thical statement

The ethical approval was given by the Research Ethics Committee 
(REC) of King Saud University, Kingdom of Saudi Arabia (KSU-SE- 
23–65).

2.3. Samples collection and preparations

Twelve blood samples were taken from Group A (control) and Group 
B (TBI) (6 mice per group) within 24 h post-injury. Around 300 μl of 
plasma was processed within an hour. The samples were centrifuged and 
maintained for further use through storage (− 80 ◦C). We isolated me-
tabolites from the 12 samples of plasma following the protocol detailed 
in our earlier publication (Jaber et al., 2022). Plasma with concentration 
of 100 μl were combined to 50 % ACN of 900 μL in MeOH. The mixture 
was then thoroughly agitated for one hour on a thermomixer (Eppen-
dorf, Germany) at a speed of 600 rpm and a temperature of 25 ◦C. 
Subsequently, the centrifugation of samples was done at 16000 rpm and 
4 ◦C for ten minutes. The resultant supernatants were carefully trans-
ferred into Eppendorf tubes and dried utilizing a Speed-Vac (Christ, 
Germany). After drying, extracts were reconstituted in a solution of 50 % 
mobile phase A (0.1 % formic acid in water) and 50 % mobile phase B 
(0.1 % formic acid in 50 % ACN:MeOH mixture) before being investi-
gated through LC-MS. Preparation of quality control (QC) samples 
through amalgamating equivalent quantities from all samples into a 
single vessel, which was then introduced to the instrument to assess 
system stability.

2.4. LC-MS metabolomic

Metabolic fingerprints were analyzed through the Waters ACQUITY 
UPLC system with a Xevo G2-S QTOF mass spectrometer complemented 
with an electrospray ionization source. The isolated metabolites un-
derwent chromatographic separation via ACQUITY UPLC system with 

an XSelect column (100 × 2.1 mm, 2.5 μm) provided by Waters Ltd., 
Elstree, UK. The mobile phase consisted of 0.1 % formic acid in deion-
ized water (solvent A), and 0.1 % formic acid in a 50 % acetonitrile: 
methanol mixture (solvent B). A gradient elution protocol was followed: 
0–16 min at 95–5 % A, 16–19 min at 5 % A, 19–20 min at 5–95 % A, and 
20–22 min at 5–95 % A, with 300 µL per minute flow rate. Mass spec-
trometry spectra were obtained in negative and positive electrospray 
ionization modes (ESI + and ESI-). The MS conditions were following: 
source temperature at 150 ◦C, desolvation temperature at 500 ◦C 
(ESI + ) or 140 ◦C (ESI − ). The capillary voltage was maintained at 
3.20 kV (ESI + ) or 3 kV (ESI − ), with a cone voltage of 40 V. The 
desolvation gas flow rate was 800.0 L/h, and the cone gas flow rate was 
50 L/h. In MSE mode, the collision energies for low and high functions 
were set to off and between 10 V and 50 V, respectively. The mass 
spectrometer was calibrated using sodium formate, covering a range of 
100–1200 Da. Data was acquired in continuum mode using the Mas-
slynx™ V4.1 workstation (Waters Inc., Milford, Massachusetts, USA).

2.5. Data and statistical analysis

Mass spectrometry records were assessed by means of pipeline 
standardization: alignment based on charge to mass ratio (e/m), reten-
tion time (RT), peak selection, and signal filtering with Progenesis QI 3.0 
(Waters Technologies, Milford, MA, USA). Characteristics of approxi-
mately 50 % of samples were maintained for analysis. Data were 
analyzed through multivariate statistical test with MetaboAnalyst 5.0 
(McGill University, Montreal, Canada, https://www.metaboanalyst.ca
as of 14 July 2022) (Pang et al., 2021). To select accurate model of 
statistic, datasets underwent mean normalization, Pareto scaling, and 
transformation of log to ensure normal distribution. These processes 
created the model of partial least squares-discriminant analysis (PLS- 
DA) and orthogonal partial least squares-discriminant analysis (OPLS- 
DA). The models of OPLS-DA were assessed utilizing goodness of fit 
(R2Y) and predictive capability (Q2) metrics, validated by 100-sample 
permutation tests (Worley and Powers, 2013). Moreover, Mass Profiler 
Professional software (Agilent, Santa Clara, CA, USA) was used to 
perform univariate analysis. In addition, significance in altered features 
of mass were identified by using Volcano plots, with an uncorrected fold 
change (FC) threshold of 2 and a p-value of less than 0.05 (Aleidi et al., 
2021a, 2021b; Gu et al., 2020). Pathway analysis and biomarkers 
associated with traumatic brain injury (TBI) were conducted. Also, the 
production of Receiver Operating Characteristic (ROC) curves were 
performed by utilizing the PLS-DA method in MetaboAnalyst version 5.0 
for comprehensive global analysis for potential biomarkers 
identification.

2.6. Identification of metabolites

Core element in every dataset were carefully chosen and labelled 
using Progenesis QI v.3.0 software (Waters Technologies, Milford, MA, 
USA) for annotating peaks. Chemical structures of metabolite were 
accurately recognized through obtaining precise precursor masses, 
fragmentation patterns, and isotopic distributions, referencing Human 
Metabolome Database (HMDB).(Wishart et al., 2022), METLIN MS/MS 
(https://www.metlin.scripps.edu), Massbank, LipidMap, LipidBlast, and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG). Exogenous 
compounds, including pharmaceuticals, nutritional additives, and 
environmental compounds, were omitted from final assembly.

3. Results

3.1. Metabolomics profiling in TBI-mice model

We identified 18,787 positive and 9,802 negative ionization modes, 
totaling 28,589 mass ion features. Due to missing values in over 80 % of 
samples, we focused on additional examination of 25,306 features (with 
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11.4 % missing values). The metabolomic pattern associated with TBI 
were assessed through orthogonal partial least squares-discriminant 
analysis (OPLS-DA) score plot test. Fig. 1A shows a clear-cut distinc-
tion in between the mice and TBI and the reference group (Q2 = 0.342, 
R2 = 0.993), indicating a statistical significance in metabolic expression 
between the groups.

Comparison between TBI mice and reference group shows significant 
alterations in 730 metabolites: 360 were upregulated and 370 down-
regulated in TBI mice (uncorrected p-value < 0.05, FC 2), as depicted in 
Fig. 1B’s volcano plot. Out of these, 389 metabolites were annotated 
using HMDB, Massbank, LipidMap, LipidBlast, KEGG, and METLIN MS/ 
MS databases. Subsequently, removing exogenous molecules (drugs, 
metabolites of drug, chemical compounds), 102 metabolites were 
identified in mice and were kept for further analyses. Among these, 59 
were upregulated and 43 downregulated in TBI mice compared to 
reference group. The upregulated and downregulated data can be found 
in Table 1 and 2 respectively.

3.2. Analysis of pathways of dysregulated metabolites in TBI-mice model

An analysis of notably dysregulated metabolites (n = 102) revealed 
that majorly influenced pathways are those involved in the metabolism 
of glycerophospholipids (GPL), linoleic acid (LA), glycine, serine, thre-
onine, pyrimidine, tryptophan, and nicotinate and nicotinamide (illus-
trated in Fig. 2).

3.3. Potential biomarkers in mice model with TBI

A multivariate exploratory ROC analysis was conducted using PLS- 
DA to classify and rank significantly dysregulated metabolites 
(n = 102) between TBI mice and the control group. By focusing on top 
highlighted ten metabolites, the exploratory ROC curves achieved a high 
differentiation and detection confidence for TBI mice than reference 
group, with an AUC of 0.995 (Fig. 3A). The frequency plot in Fig. 3B 
illustrates remarkable characteristics of metabolites that have been 
positively identified.

Significantly dysregulated biomarkers in TBI mice are shown in 
Fig. 4. For instance, Isoleucyl-asparagine and 2′-Deoxyinosine triphos-
phate (dITP) were up-regulated, with AUC values of 1 and 0.944 
respectively, as seen in Fig. 4A and 4B. Moreover, Diglycosyl diac-
ylglycerols (DGDG)(25:0/26:2) and Phosphatidylethanolamine (PE) 
(24:0/22:4) were downregulated, with AUC values of 1 and 0.819 
respectively, as shown in Fig. 4C and 4D.

4. Discussion

In this study, metabolomics profiling using LC-MS analysis was used 
to explore the metabolomics alterations associated with TBI in the ani-
mal model and to obtain a comprehensive view about biochemical 
pathways entailed in the TBI progression. Our findings revealed 102 
dysregulated metabolites related to different biochemical pathways. 
This follows previous metabolomics and lipidomics clinical and exper-
imental animal models of TBI, which pointed to a complex pattern of 
alterations in various metabolites in TBI (Bahado-Singh et al., 2016.; 
Orešič et al., 2016; Thomas et al., 2022; Zhang et al., 2021). The 
outcome obtained in this research study about pathway analysis indi-
cated that TBI is associated with a dysregulation of lipids metabolisms, 
including GPL and LA pathways. In addition, levels of several lipids 
classes such as DGDG, PE, lysophosphatidylcholine (LPC), phosphati-
dylglycerol (PG), phosphatidylglycerol phosphate (PGP), triglyceride 
(TG) were dysregulated in our TBI model. It has been reported that the 
cellular events in TBI involve a massive influx of calcium into neuronal 
cells and, thus, activation of calcium-dependent phospholipases that 
degrade membrane lipids and release free fatty acid (FFA) and diac-
ylglycerol (DG) (Xiong et al., 2013). Moreover, choline, an essential 
lipid component of cell membrane phospholipids and precursor for the 
neurotransmitter acetylcholine, was reported to be significantly 
decreased in the TBI model, suggesting the repair of membranes and 
synaptic integrity in TBI (Chitturi et al., 2018). In addition, human 
studies indicated that choline phospholipids are some of the most 
powerful predictors of TBI outcomes in patients and inversely associated 
with TBI severity (Thomas et al., 2022).

Fig. 1. Metabolomics profiling of TBI mice model and reference groups. An orthogonal partial least squares-discriminant analysis (OPLS-DA) score plot 
demonstrating a clear segregation of the clusters between control (Ctrl) and TBI groups (Q2 = 0.342, R2 = 0.993) (A). A volcano plot demonstrated 730 metabolites 
of dysregulation, where 360 (upregulated), and 370 (downregulated) (Blue) metabolites were compared to reference group in TBI model (Cut-off: uncorrected p-value 
< 0.05, and FC 2) (B).
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A polyunsaturated fatty acid (PUFA) precursor to oxidize metabolites 
is termed as Linoleic acid (LA) (Hennebelle et al., 2017). It was shown to 
be involved in red blood cells and hemoglobin damage through oxida-
tive mechanisms (Yuan et al., 2015). In addition, studies that used TBI 
animal models indicated that LA and its oxidized derivatives have a role 
in response to ischemia-induced brain injury by regulating neurotrans-
mission in the brain. Our findings showed that several oxidized PUFAs 
were dysregulated in TBI mice. For example, the levels of hydroxylated 
fatty acids, including 3-Hydroxydodecanoic acid and 8-Hydroxy-5,6- 
octadienoic acid, were down-regulated in our TBI model. These find-
ings would provide insight into targeting GPL and LA metabolism 

pathways that might be relevant for TBI–diagnosis and treatment.
Moreover, our results indicated increased levels of oxidative energy 

and mitochondrial metabolism-related metabolites such as glycolic acid, 
oxoglutric acid, and 3-phospho-hydroxypyruvate in plasma samples of 
TB1 mice. On the contrary, Chitturi et al. reported decreased metabolic 
concentrations in brain extract samples of the TBI rat model using tar-
geted LC/MS analysis (Chitturi et al., 2018). It is worth mentioning that 
Chitturi et al., performed a targeted LC/MS approaches on brain tissue 
samples while we used untargeted LC/MS analysis of plasma samples of 
the TBI mice model.

Among our metabolomics profiling results were dipeptides (i.e 

Table 1 
Significantly up-regulated metabolites (n = 59)(P-value < 0.05, FC ≥ 2) in TBI mice(group B) compared to controls (group A).

Number Compound name Retention Time Mass p value 
(B vs A)

FC 
(B vs A)

Log FC 
(B vs A)

1 (2R)-O-phospho-3-sulfolactic acid 0.71 294.95 0.00 2.08 1.06
2 11-Oxo-androsterone glucuronide 17.70 525.20 0.00 2.52 1.33
3 13-Oxocryptopine 3.40 811.26 0.01 2.88 1.53
4 1-Pyrrolidinecarboxaldehyde 3.96 197.13 0.02 2.17 1.12
5 2-aceto-2-hydroxy-butanoate 1.27 110.04 0.00 4.90 2.29
6 2′-Deoxyinosine triphosphate 0.91 528.93 0.00 3.50 1.81
7 3,3′,4,4′-Tetrachloroazobenzene 0.91 352.90 0.00 3.27 1.71
8 3,4-Dimethoxy-1,2-benzenedicarboxylic acid 1.72 136.01 0.04 2.36 1.24
9 3-Mercapto-2-butanone 0.88 267.07 0.00 2.96 1.56
10 3-Methoxy-4-Hydroxyphenylglycol sulfate 0.89 299.00 0.00 2.20 1.14
11 3-O-p-Coumaroylquinic acid 6.28 375.05 0.00 2.19 1.13
12 3-phospho-hydroxypyruvate 0.64 360.90 0.00 2.45 1.29
13 5,10-Pentadecadien-1-ol 13.47 269.21 0.00 2.03 1.02
14 5′-Hydroxypiroxicam 3.41 693.10 0.04 2.11 1.08
15 5-Megastigmen-7-yne-3,9-diol 3-glucoside 9.89 415.20 0.00 2.22 1.15
16 8-Acetoxypinoresinol 1.56 891.30 0.04 3.10 1.63
17 Achyranthoside C 5.86 1001.43 0.01 2.45 1.29
18 Aflatoxin G2a 3.40 737.13 0.00 2.21 1.14
19 Benzene-1,4-disulfonamide 0.91 270.96 0.00 2.67 1.42
20 Beta-Alanyl-CoA 3.41 873.12 0.01 2.12 1.08
21 beta-nicotinate D-ribonucleotide 3.92 397.04 0.03 2.00 1.00
22 Carbadox 2.07 307.04 0.01 2.49 1.31
23 CDP-DG(18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 1.15 366.18 0.01 2.66 1.41
24 cis-3-Chloro-2-propene-1-ol 2.56 156.02 0.03 7.13 2.83
25 Cob(I)yrinate a,c diamide 3.41 973.32 0.02 2.55 1.35
26 Cytosine 4.69 332.12 0.00 2.29 1.19
27 Dehydrocarpaine II 16.11 511.29 0.01 2.02 1.02
28 DG(15:0/18:3(6Z,9Z,12Z)/0:0) 14.33 541.46 0.01 2.19 1.13
29 FMNH2 4.35 252.05 0.05 2.09 1.06
30 gamma-Glutamylvaline 1.95 283.07 0.00 2.50 1.32
31 Ganoderic acid alpha 14.39 1147.63 0.00 2.19 1.13
32 Glycitin 3.40 491.12 0.01 2.32 1.21
33 Glycolic acid 1.95 151.02 0.00 2.78 1.47
34 Hesperetin 7-neohesperidoside 17.70 655.16 0.02 2.20 1.14
35 Hydroxyprolyl-Methionine 3.96 297.07 0.00 4.02 2.01
36 Isolariciresinol, 9′-O-alpha-L-arabinofuranoside 2.56 269.09 0.04 3.91 1.97
37 Isoleucyl-Asparagine 1.52 282.09 0.00 2.76 1.47
38 Kaempferol 3-O-feruloyl-caffeoyl-sophoroside-7-O-glucoside 12.02 1075.26 0.00 2.37 1.24
39 Lippioside I 1.20 292.07 0.05 2.35 1.23
40 L-Tryptophan 2.10 268.10 0.03 2.94 1.56
41 LysoPE(20:1(11Z)/0:0) 15.12 1059.66 0.00 2.14 1.10
42 N(tele)-methylhistaminium 5.96 171.10 0.00 2.16 1.11
43 N-Acetylhistidine 1.61 232.05 0.01 2.04 1.03
44 N-Acetyl-L-glutamyl 5-phosphate 4.97 305.98 0.02 2.44 1.29
45 N-Succinyl-2-amino-6-ketopimelate 1.56 866.23 0.05 2.81 1.49
46 Oxoadipic acid 1.15 379.09 0.01 2.20 1.14
47 Oxoglutaric acid 7.00 337.04 0.03 2.12 1.08
48 PC(20:3(8Z,11Z,14Z)/P-18:0) 16.71 830.59 0.02 2.67 1.42
49 PC(P-18:0/20:3(5Z,8Z,11Z)) 15.83 830.58 0.02 2.88 1.53
50 PE(18:0/20:2(11Z,14Z)) 14.72 816.57 0.01 2.30 1.20
51 Physcion 8-gentiobioside 17.02 653.15 0.01 2.04 1.03
52 Pyranocyanin B 19.98 1019.25 0.02 2.05 1.03
53 Pyridine 6.28 203.08 0.01 2.42 1.27
54 Pyrophosphate 0.65 414.90 0.00 2.06 1.04
55 Selenohomocysteine 0.69 362.94 0.00 2.18 1.12
56 TG(18:0/20:0/20:1(11Z)) 0.72 979.84 0.01 2.10 1.07
57 Trans-2-all-cis-6,9,12,15,18,21-tetracosaheptaenoyl-CoA 17.58 1148.33 0.01 2.44 1.29
58 Trypanothione disulfide 14.39 766.28 0.00 2.05 1.03
59 Vestitone 7-glucoside 0.76 867.32 0.00 2.40 1.26
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isoleucyl-asparagine, cysteinyl- glutamine, and gamma-glutamylvaline) 
and amino acids (i.e tryptophan), and amino acids-related metabolites 
(i.e N-Acetyl-L-glutamyl 5-phosphate and N-Acetylhistidine). In addi-
tion, some amino acid pathways were significantly disrupted in the TBI 
mice model, including pathways for glycine, serine, threonine, and 
tryptophan metabolisms. Free amino acids and amino group-containing 
drug component play an essential metabolic roles in different brain 
physiological role, particularly in neuronal growth and circuitry devel-
opment, cellular energy metabolism, and controlling neurotransmission 
(Amorini et al., 2017; He and Wu, 2020). Clinical studies have investi-
gated the levels of amino acids in different bio-fluids as possible TBI 
diagnostic and monitoring biomarkers. For instance, the excitatory 
amino acids concentrations, including glutamate, aspartate in CSF, were 
elevated in severe TBI patients as compare to healthy controls (reference 
group) (Hong et al., 2001). Together with glutamine, the concentration 
of glycine, serine, and histidine in CSF were notably increased in TBI 
affected individual with subarachnoid hemorrhage as compared to 
reference group (Jung et al., 2013).

In contrast, limited pre-clinical trials have examined amino acid 
levels in TBI animal models. A multivariate systematic survey was 
conducted on an animal model using a combination of plasma amino 
acids to estimate a robust and sensitive biomarker for acute TBI diag-
nosis, and glycine, taurine, and ornithine were reported to be optimal for 
TBI diagnosis (Hajiaghamemar et al., 2020). A recent study utilized an 

Table 2 
Significantly down-regulated metabolites (n = 43)(P-value < 0.05, FC ≥ 2) in TBI mice (group B) compared to controls (group A).

Number Compound name Retention Time Mass p value 
(B vs A)

FC 
(B vs A)

Log FC 
(B vs A)

1 (15Z)-tetracosenoate 15.07 729.67 0.00 2.46 − 1.30
2 (9Z)-9-Octadecenamide 18.45 621.56 0.00 2.36 − 1.24
3 (R)-2′,4′,7-Trihydroxy-3′,8-diprenylisoflavan 10.01 431.16 0.05 2.10 − 1.07
4 (R)-3-Hydroxydodecanoic acid 11.07 181.16 0.00 2.12 − 1.08
5 (S)-3-Hydroxytetradecanoyl-CoA 18.40 1038.27 0.02 3.05 − 1.61
6 11-Dodecenoic acid 11.05 163.15 0.00 2.04 − 1.03
7 11Z,14Z,17Z-eicosatrienoyl-CoA 19.92 1100.34 0.01 3.33 − 1.74
8 3-Dehydroquinic acid 6.57 107.02 0.03 2.19 − 1.13
9 8-Hydroxy-5,6-octadienoic acid 1.15 121.06 0.03 2.28 − 1.19
10 9-Hexadecenoylcholine 14.45 404.33 0.02 2.15 − 1.10
11 Alkaloid RC 17.65 595.19 0.02 2.26 − 1.18
12 Alpha-hydroxyalprazolam 6.51 369.05 0.05 2.89 − 1.53
13 Betavulgaroside VII 7.08 775.38 0.00 2.38 − 1.25
14 Chrysophanol 1-tetraglucoside 1.15 867.25 0.01 3.27 − 1.71
15 Cysteinyl-Glutamine 15.54 557.17 0.01 2.18 − 1.12
16 D-4′-Phosphopantothenate 15.35 657.16 0.01 2.42 − 1.28
17 DG(15:0/16:0/0:0) 14.94 1107.99 0.04 2.01 − 1.01
18 DG(22:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) 16.43 788.61 0.04 2.62 − 1.39
19 DGDG(25:0/26:2) 19.48 1199.85 0.00 2.07 − 1.05
20 Dinonylnaphthalene 14.22 1140.04 0.00 2.26 − 1.17
21 dTDP 11.92 438.97 0.00 2.59 − 1.37
22 dTDP-4-acetamido-4,6-dideoxy-D-galactose 14.87 1177.20 0.01 2.34 − 1.23
23 dUMP 7.33 344.99 0.01 5.82 − 2.54
24 Ganglioside GQ1c (d18:1/24:0) 12.39 849.75 0.03 2.42 − 1.27
25 Guanidoacetic acid 6.51 162.02 0.03 2.57 − 1.36
26 Hexyl 3-mercaptobutanoate 0.74 249.12 0.00 2.88 − 1.53
27 Hydroxyprolyl-Arginine 6.47 619.31 0.02 2.94 − 1.56
28 LysoPC(22:5(4Z,7Z,10Z,13Z,16Z)/0:0) 16.18 1183.69 0.00 2.19 − 1.13
29 Malvidin 3,5-diglucoside 16.80 655.15 0.00 2.57 − 1.36
30 Menthone 1,3-glyceryl ketal 11.35 193.16 0.00 2.25 − 1.17
31 N-[(4E,8Z)-1,3-dihydroxyoctadeca-4,8-dien-2-yl]hexadecanamide 1-glucoside 17.33 662.54 0.00 2.02 − 1.01
32 Oxepahyperforin 16.87 517.37 0.00 2.12 − 1.09
33 PE(24:0/22:4(7Z,10Z,13Z,16Z)) 13.77 924.65 0.02 2.43 − 1.28
34 PG(16:0/18:3(9Z,12Z,15Z)) 19.71 789.46 0.01 2.70 − 1.44
35 PGP(18:3(9Z,12Z,15Z)/18:0) 0.81 887.47 0.03 2.03 − 1.02
36 Polystyrene sulfonate 5.65 413.04 0.05 2.49 − 1.31
37 Pseudoecgonyl-CoA 13.68 969.18 0.01 2.59 − 1.37
38 Stearidonoyl CoA 18.42 1089.32 0.00 2.92 − 1.55
39 Tetracosapentaenoic acid (24:5n-6) 0.79 1073.86 0.03 2.34 − 1.23
40 Tetragastrin 1.16 641.22 0.04 2.68 − 1.42
41 Tetrahydro-6-(2-hydroxy-16,19-dimethylhexacosyl)-4-methyl-2H-pyran-2-one 14.65 559.45 0.04 2.30 − 1.20
42 Trihexosylceramide (d18:1/24:0) 17.62 1199.81 0.00 2.08 − 1.05
43 Vaccinoside 9.74 1131.32 0.00 2.23 − 1.16

Fig. 2. Pathway assessment for important metabolites (n = 102) dysregulated 
in mice model of TBI. The plot of pathways analysis demonstrates primary 
metabolic pathway involved in the differences derived on 102 significantly 
dysregulated metabolites.
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isocratic high pressure liquid chromatography along with electro-
chemical detection technique to measure various free amino acids and 
neurotransmitters following TBI in rats. The concentrations of free 
amino acids decreased after 4 h of TBI in both the cortex and hippo-
campus, and the levels of neurotransmitters did not change (Norris et al., 
2023). On the other hand, plasma concentrations of non-essential amino 
acids including glutamine (Gln), arginine (Arg), alanine (Ala), proline 
(Pro), tyrosine (Tyr), phenylalanine (Phe), and Branched-chain amino 
acids (BCAA) were significantly increased in the TBI animal model on 3 
to 7 days after injury (To et al., 2023). It is worth reemphasizing that the 
measured levels of an amino acid in the brain tissue and CSF might differ 
from those measured in serum or plasma, as the former depends on the 
amino acid transporting mechanism across blood–brain barrier (BBB).

Our data also provided an important insight into cellular and, 
particularly, nuclear-related events in TBI. It showed a significant dys-
regulation in pyrimidine, nicotinate, and nicotinamide metabolism 
pathways. Pyrimidines (uracil, cytosine, and thymine) are nitrogen- 
containing carbon ring structures and are essential precursors for ribo-
nucleotide and deoxyribonucleotide bases in RNA and DNA, respec-
tively. Uridine 5′-monophosphate (UMP), the initial metabolite 
produced in the de novo pyrimidine biosynthetic pathway, undergoes 
further transformation into various pyrimidine nucleosides (Wang et al., 
2021). Our results reported a significant down-regulation in dUMP and 
deoxythymidine triphosphate (dTDP) levels in TBI mice.

Moreover, the frequency plot analysis showed a high frequency of 
dUMP dysregulation in the TBI versus the control group. Recent work 
has pointed to the neuroprotective effect of both thymidine and 2′- 
deoxyuridine for inducing brain injury by using an experimental model. 
It has been shown that these pyrimidine nucleotides decreased activa-
tion of microglial and damage due to oxidative stress through altering 
glycolytic pathway (Liu et al., 2022). Therefore, the dysregulation in the 
pyrimidine pathway, associated with reduced levels of dUMP and dTDP, 
previously mentioned in our study, is consistent with these recent 
findings. Moreover, Bahado Singh et al., found that adenosine mono-
phosphate, nicotinamide adenine dinucleotide (NAD + ), adenosine 
diphosphate (ADP), and inosine monophosphate (IMP) were major 
distinguishing metabolites in the brain tissue between TBI and control. 
Also, the same research group reported variant TBI effects on the me-
tabolites in cerebral tissue against those in serum (Bahado-Singh et al., 
n.d.). Our findings indicated that 2′-Deoxyinosine triphosphate (dITP) 

achieved outstanding functioning for screening of TBI with an AUC =
0.944. Therefore, it would be a potential putative biomarker dis-
tinguishing TBI.

The primary limitation of this study was small sample size of animal 
(n = 12). In addition, the investigated metabolomics changes are related 
to the observed acute brain injury induced in the animal model, thus 
limiting our speculations about secondary injury development observed 
in humans. On the other hand, using an animal model in TBI research 
would provide a relatively homogeneous type of head injury while 
controlling the presence of confounding factors that cannot be excluded 
in clinical settings.

5. Conclusion

This metabolomics study pointed to the biochemical and metab-
olomics changes in the serum of the TBI-induced animal model. Several 
dysregulated metabolites with different biological functions were 
identified in this study. In addition, significantly affected biochemical 
pathways were determined. These findings provide a potential clinical 
insight into the TBI research, particularly in developing potential bio-
markers for diagnosis and assessing the progress of TBI.
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