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In this paper the fractional order derivative of a Dirichlet series, Hurwitz zeta function
and Riemann zeta function is explicitly computed using the Caputo fractional derivative in the
Ortigueira sense. It is observed that the obtained results are a natural generalization of the integer
order derivative. Some interesting properties of the fractional derivative of the Riemann zeta func-
tion are also investigated to show that there is a chaotic decay to zero (in the Gaussian plane) and a

promising expression as a complex power series.
© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent years, fractional calculus has more and more become
one of the most suitable tools for research both in theory and
in applications, spreading over almost all fields of science and
technology. For instance, fundamental problems of fracture
mechanics, electromagnetism, speech signals, sound wave
propagation in rigid porous materials, fluid mechanics,
viscoelasticity, and edge detection, were easily solved and cor-
rectly explained using fractional calculus (Dalir and Bashour,
2010; Tarasov, 2008, 2006). In particular, because of the local
definition of differential operators, the local approach of
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fractional calculus has opened new perspectives in scientific
investigation with many interesting results (Bhrawy and
Abdelkawy, 2015; Liu et al., 2014; Yang et al., 2013a.,b;
Zhao et al., 2013).

A very interesting topic is the geometrical interpretation of
fractional operators. In fact, like the integer order derivative
that gives the linear approximation of smooth (differentiable)
functions, it should be expected that fractional derivative
might give the non-linear approximation of the local behavior
of non-differentiable functions (see e.g. Wang, 2012), thus
opening new perspectives in research, by the investigation of
fractional derivatives on non-differentiable sets, like the
Cantor sets (Liu et al., 2014; Yang et al., 2013a,b; Zhao
et al., 2013) or by investigating the non-differentiability of
some special functions.

Almost all special functions are functions of complex vari-
ables (Abramowitz and Stegun, 1964). For this reason, the
Ortiguera definition of fractional derivative of complex func-
tions (Li et al., 2009; Ortigueira, 2006) seems to be the most
suitable tool for studying complex functions. Using the
Ortiguera fractional derivative we will give, in the following,
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the explicit form of the fractional derivative of the Hurwitz and
Riemann {-function together with some properties thereof. The
famous Riemann {-function is a special case of the more general
Hurwitz {-function which is a Dirichlet series. So, we will com-
pute first the Ortiguera fractional derivative of the Hurwitz
{-function to obtain the fractional derivative of the Riemann
{-function as a special case (for preliminary results see also
Guariglia, 2015). There are several applications of the analysis
of Riemann (-function in physics, such as in the scattering
inverse methods where quantum potentials correspond to zer-
oes of the Riemann zeta (Schumayer et al., 0562; Sierra,
2010), or in the chaotic behavior of quantum energy levels
related to these zeroes (Pozdnyakov, 2012). To this goal we will
show in Section 4.1 that the fractional derivative of the
Riemann {-function also decays chaotically to zero. In particu-
lar, as application to a dynamical system we will show that zero
is an attractor for this fractional derivative. Our aim is to com-
pute the Caputo—Ortiguera fractional derivative of the Hurwitz
zeta function and show its main properties.

2. Preliminary remarks on Riemann and Hurwitz zeta function

2.1. Riemann {-function

The Riemann zeta function is defined as:

/:(s)"éfi% (neN, sec). 2.1)
n=1

It is a Dirichlet series (Apostol, 2010, chp. 11) which con-
verges absolutely to an analytical function for all complex
numbers s such that R(s) > 1. This function owns an integral
representation (Riemann, 1859; Guariglia, 2015; Edwards and
Riemann’s, 1974; Hardy, 1991), i.e.

) =r | Ao 22

being I'(s) the gamma function defined as:

00 \.s—1
I'(s) = / al dx,
0

ex

where the integral converges absolutely if R(s) > 0.
We recall that the Dirichlet series is defined as follows:

Definition 1 (Dirichlet series). A Dirichlet series is the series
(Apostol, 2010):

3l 23

where f(n) is an arithmetical function (Apostol, 2010, chp. 1),
ie. f: N — C and s a complex number.

Clearly the Riemann zeta function is a special Dirichlet ser-
ies, with f(n) = 1.

Thanks to its integral representation (2.2) it can be shown
(Cattani, 2010) that:

{(s) =p6]l<l —%)l (2.4)

where P is the set of prime numbers (Hardy and Wright, 2008).
The function (2.1) has a unique analytic continuation to the

entire complex plane unless at the point s = 1, where there
exists a simple pole (Guariglia, 2015) so that (Mathews and
Howell, 1997):

lim(s — 1){(s) = 1

Thus, the Riemann zeta function is a holomorphic function for
any complex value s # 1. Moreover, this function is zero for
the negative even integers, i.e. for s = -2, —4, —6...(Hardy
and Littlewood, 1921) which are known as trivial zeroes.
From Eq. (2.4) there follows that there are no zeroes in the
plane regions where R(s) > 1, thus the only non-trivial zeroes
must belong to the strip 0 < R(s) < 1, named critical strip.

Based on the above considerations, Hardy conjectured that
the zeroes not only lie on the line R(s) =1 but also there exist
infinitely many non-trivial zeroes on this critical line (Beliakov
and Matiyasevich, 2014; Hardy, 1914; Hardy and Littlewood,
1921; Derbyshire, 2004).

2.2. Hurwitz {-function

The Hurwitz zeta function is defined as:

- 1

{(s,a) = ’; ntay (2.5)
with R(s) > 1, a € R:0 < a < 1. Obviously, for a = 1,{(s, a)
reduces to {(s), i.e. {(s,1) = {(s). Like the Riemann zeta func-
tion, also the Hurwitz zeta function can be extended analyti-
cally for all complex numbers s # 1; moreover in s=1 it
owns a simple pole (Apostol, 2010, chp. 12).

Also this function admits an integral representation
(Apostol, 2010, chp. 12):

1 0 efatxsfl
W=y | e

with Re(s) > 1. So, this function can be easily expressed in
terms of the Mellin transform (Whittaker and Watson, 1927).

The Hurwitz zeta function was first introduced in the prob-
lem of analytic continuation of the Dirichlet L-function
(Mollin, 2008, 2010), i.e. a function defined by a Dirichlet L-
series. In fact, if y is a Dirichlet character modulo k, it can
be shown that (Apostol, 2010, p. 249):

L(s.7) = k‘xzf;x(r)é(& o)

so that the Hurwitz Zeta functions are a sum of L-functions
(Boyadzhiev, 2008).

3. Remarks on fractional calculus

Let us start with the Cauchy formula of repeated integration:

where f is a continuous function on the interval [a,b] with
a < x < b (Lazarevic, 2014). This formula suggests us a suit-
able generalization to a repeated integral of any real order o.
By replacing the factorials with Gamma function, being
I'(n—1)=mn!, neZ*, and the integer order n of the above
with some real value « € R we have the following:

T)ES T (x) =
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Definition 2 (Fractional (order) integral). Given o€ R",
t € R, the fractional integral of order « of a continuous
function f'is the operator J*:

T )
W/o (t — x)*f(x)dx.

The fractional derivative in the Caputo sense (Caputo,
1967) is defined through a fractional integral, as follows:

S) =

Definition 3 (Caputo fractional derivative). The fractional

derivative of order «, of a C"-differentiable function f(x) is

defined as:

DA ) =i [ =0 s )
ar’’  T(m—a) J, '

withm—1<a<meZ.

This definition holds true for all real powers (Boyadjiev
et al., 2005), including negative or null values. In fact, for
a<0, it is D*=f{t)=J7%(t) while for o=0 it is
D{t) = f(¢). Thus, in the fractional calculus, the two opera-
tors integration and differentiation are unified as one single
operator, sometime called differintegral (Lazarevic, 2014; de
Oliveira and Tenreiro, 2014).

As a consequence of its definition we have:

Theorem 3.1. For a given o, § € R > 0, and any function f such
that its fractional integral exists it is:

)y JJh =gt =gy
@) 7f (x) =T f (%),

Proof. It follows directly from the definition of fractional
integral operator (see e.g. Kamata and Nakamula, 2002;
Lazarevic, 2014). =

For other properties about the differintegral defined
from the Riemann—Liouville and Caputo approaches, see
also (Kamata and Nakamula, 2002; Lazarevi¢, 2014; Bagley,
2010).

Based on the Caputo derivatives we give now a suitable
generalization of fractional derivative of complex functions
(Guariglia, 2015; Li et al., 2009; Ortigueira, 2006).

Definition 4 (Ortigueira fractional derivative). The Ortigueira
a-derivative of a given complex function f{s), is defined as
(Cattani, 2010; Guariglia, 2015):

e}(n 0)(—m) 0o g f(xejl) +5)

def’
1 Dl m m .
Dfts) A T T(m—a) J, ds"

xoc—m+1

(3.2)

withm — 1 <a<meZ",0 € [0,2n], and ,D” is the Ortigueira
derivative operator, given by:

m

D A !
Df(s) = W/ xm[xejo“ Z

k=

e/k() k:| .

Using this definition, we can obtain the fractional a-deriva-
tive of a complex function along the 0-direction of the complex
plane. This is a natural generalization of the Caputo deriva-
tive, because for a real function, i.e. 0 = m, we re-obtain (3.1)
(Li et al., 2009).

4. Fractional derivatives of the Dirichlet Series and of the
Hurwitz zeta function

In this section, the fractional derivative of a function defined
by a Dirichlet series (Apostol, 2010, chp. 11), is given. As a
consequence we can easily define both the fractional derivative
of the Hurwitz zeta function and as a special case of the
Riemann zeta function.

Theorem 4.1. The fractional derivatives of the Dirichlet series
(2.3) and of the Hurwitz zeta function (2.5) are given by:

"D“F(S) _ (7 1 )meiﬂ(a—m) if(”) M

ns

"= (4.1)

00

me/nac mz IOgnJ’_a

D*(s,a) = CE

n=1
where D% (+) is the Ortigueira derivative (3.2),s € C,0 € [0,2xn][
andm—1<a<meZ".

Proof. Let us start with the general form of a Dirichlet series
given by (2.3). Using (3.2), we have (Apostol, 2010, chp. 11):

emn 0)(o—m)
(,DXF(S) / m

e/(nie)(aim) dn - 7 -8 ~ *A(‘() m o—
- I'(m—a) WZI(H)H A ></0 (n / l)d‘c
Y on=l1

— el —
) xel’—s m o— l)dx

The last integral on the RHS of this equality has been already
given in Guariglia (2015), as

/ (n—xL/” m—ot—l>dx — e/'(l(m—a) (log n)a—nlr(m _ 0()
0

where, m — o > 0. There follows that:

el (m—f)a—m) gm 2

ds™m
x =2 =a] (1og )~

DUF(s) = f(n)n*x

" Tim—a]

= ¢imla—m) Z f(n) (log n)*™™ x
n=1
am
=

Since it is (Guariglia, 2015)

"
T ) = (1)

*(logn)™”
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then

DF(s) = (—1)mel™@mm) x

XZf I~ (logmy ™

=(~1 eﬁr(oc m) Z f(n

The computation of the fractional derivative of the
Dirichlet series enables us to easily compute also the cor-
responding derivative of the Hurwitz zeta function. In
fact, in the previous equation, by writing f(s) = {(s,a),
we get:

(log n)”

log n)*

. ej(n—H)(oc—m) 00 0o s _—
D C(s,a):mx/o W;((n—i-a) X X )dx
e/(n 0)(a—m) a" 0 L /oo o
= n+a) n+a) -
T(m—o) ds ;( ) | (n+a)

x X" 1 dx.

If we call I the last integral of the RHS, we have that:

I—/ (n+a)z—j9m a—}/malﬂdz

oo
_ —j9m @ / e ? log(n+a) m—oa— 1dz
0

00
:—jema/ —rmozlx
0

<log(n+ a)) Ko m

= ¢9m=) (log(n 4+ a))* ™ (m —a) .

X

The last equation was obtained by changing variables twice:
first ¥ = z, and second zlog(n + a) = x, so that:

—ﬂ)a m) gqm

ds™

DY(s, (n+a)°x

x e (log(n + )" Tim—<a)

o
= eimla—m) z log(n +a))* ™ x
n=1

m

X (n+a)™®)

and, since

tb d((n+a)’)=—(n+a) " log(n+a)
L ((n+a)™) = (=1)’(n+a)"(log(n + a))’

o ((n+a)7) = (=1)"(n + )" (log(n + a))"

we finally get

(log(n + a))a_ﬂ

M8

DY (s,a) = (—1)mej”(a_m)

i
L

x (n+a)”*(loglr—+a))™

_(_1 e]ﬂ(amz logn—l—a)

n+a
n=1

These two results (4.1) generalize, in a coherent way, what
has been already considered in Guariglia (2015) for the frac-
tional derivative of Riemann zeta function, so that the frac-
tional derivative of the Riemann zeta function can be seen in
a more general scheme. In fact, if in .D*F(s) we put f(n) = 1,
we have .D*{(s), which is coherent because {(s) is a Dirichlet
series with f(n) = 1. Analogously for the Hurwitz zeta func-
tion: with ¢ =1 in .D*{(s,a), we obtain .D*((s), which is
coherent because {(s, 1) = {(s).

It should be noticed that the Ortigueira fractional deriva-
tive gives a natural generalization of the already known (inte-
ger order) derivative of the Riemann zeta function. In fact, a
known result is that the derivative of integer order k € Z; of
the Riemann zeta function is (Apostol, 2010, chp. 12)

k) kz logn

which coincides with the Egs. (4.1), by putting an integer order
factor, {(s) = ((s,1) = and {(s) = F(s;f(n) = 1).

4.1. Some properties of the fractional derivatives (4.1)
Let us consider Eq. (4.1); with f(n) =1, i.e.

S

n=1

D ()} /() =

we set m=1 and the
equal to 1: thus, we obtain the

Moreover, without restricts,
constant factor e~
following function

105,00 (c(9)}om = e = (-1 B
- (_1)§:[(10g nyn="". (4.2)

n=1
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Figure 3  Parametric plot of the complex function (4.2) with x = 0, = 0.6, the upper limit of the sum n = 60 and the upper bound of

y=130.

In the case when the variable s is a pure real number
s = —x, the partial sum (for a fixed n) is a function with rapid
decay to zero. For a pure complex number, i.e. s = —jy then
we have a complex function whose real part (4.2) R[y(s, )]
(see Fig. 1) is a slow decay even function while the complex
part 3[y(s, o)] it is a slow decay odd function (Fig. 2).

If we plot the real and imaginary part of the function (4.2)
in the same plane, then we have the parametric plot of the
complex (4.2) with x = 0 of Fig. 3.

We can say that the parametric plot of the fractional
derivatives (4.2) of the Riemann zeta function is a spiral having
the origin as an asymptotic attractor. However, if we zoom in
around the origin we can see that the spiral becomes a self-
intersecting non-differentiable function.

Moreover, from (4.2) by the series expansions we have

00

log(n+1) =Y (=1)" 25

k=0
o0
Ky - 1 k[ K/~
/= E (8]
k=0

being

)7 L (s — ) (s — 200) ... (s — (k — 1)a)

the so-called generalized Pochammer symbol.
Since it is

Zlogn = Zlog(n +1)

n=1 n=0

and, for every s # 0, being

gns/a — <2nv/1) _ Os/x _ gnv/a

we get from (4.2)

o0

3(5.2) = (~)> [(logmu~]' = (~1)3 [(log(n+ 1))~

n=1 n=0

00 ] . k41 e 1 ' —zx *
=(1)Z[<Z(l)/:+l) X;h!cx”n,[s]h/ } , s#0

n=0 k=0

Thus, for every complex number s # 0, it is:

k+h+1

(CORIC)Y [Z(l)"mmm}

n=0 [hk=0

There follows that, apart a constant factor, the Ortigueira
fractional derivative of the Riemann zeta function can be also
expressed as a complex power series (by the Pochammer
symbol).

5. Conclusion

In this paper the integer order derivative of the Riemann zeta
function has been generalized to fractional order derivative.
This generalization has been obtained using the Ortigueira def-
inition of fractional derivative of complex function which has
been applied to the Hurwitz zeta function and to a Dirichlet
series. The fractional derivative of the Riemann zeta function
has been studied to show some interesting properties, such as
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a chaotic decay to zero (in the Gaussian plane) and a promis-
ing expression as a complex power series. The chaotic decay
might suggest that the fractional derivative of the Riemann
zeta function is non-differentiable function around zero.
Thus opening new perspectives in the applications to the the-
ory of dynamical systems.
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