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Abstract An inverse problem was considered to estimate electrical conductivity distribution for

the electrical resistance tomography. This technique allows to control the internal parameters by

reconstructing the distribution of electrical conductivity of liquid/solid suspension. As an analytical

tool, the quadrupole method was used to solve the forward problem in order to simulate the sensors

voltage evolution. The inverse problem is solved using the Levenberg–Marquardt method. A major

source of uncertainty in tomographic inversion is the data error. The effect of the measurement

errors on the stability of the solution was investigated. In order to find the current injection strategy

which gives more information about the electrical conductivity, sensitivity analysis was carried out.

The effect of Levenberg–Marquardt coefficient and initial value of the conductivity on the stabil-

ity of the scheme was analyzed. The developed algorithm can be employed to rebuild the electrical

conductivity which permits to go back to the physical parameters of the suspension.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Electrical resistance tomography (ERT) is a nonintrusive

technique that determines the conductivities of different
materials. The task of image reconstruction for ERT is to
estimate the electrical conductivity distribution from voltage

measurements.
Because of its advantages, Electrical tomography is widely

used in environmental applications where the direct current
(DC) resistivity surveying was applied to a number of example

sites (Dahlin, 1996; Dahlin and Zhou, 2004; Zhou and Dahlin,
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Nomenclature

A, B, C, D generalized quadrupole matrices

Ae area of electrode [m2]
d elements of the diagonal matrix X
e thickness [m]
F current flux density

H hessian matrix
i ith grid
i+, i� ith grid interfaces

I electrical current [A]
J jacobian matrix
K electrical conductivity diagonal matrix

L length [m]
M diagonal matrix
M measurement number
N nodes number with respect to z

n the vector normal to the surface
Ob objective function
R voltage vector in the diagonal basis

r elements of the voltage vector in the diagonal basis
T eigenvectors matrix
U voltage [V]

V potential [V]
x, z geometric variables [m]

z1 position of the source electrode

z2 position of the sink electrode
Dz space step [m]
r electrical conductivity [S/m]
ø current flux density [A/m2]

X diagonal matrix
II identity matrix
k Levenberg–Marquardt coefficient.

f relative error

Subscripts
cal calculated value
exact exact value

k kth element
m measured value
R relative to eigenvalue basis

Superscripts
0 initial value
l iteration number
t transpose of matrix
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2003; Sasaki, 1992). In geophysics, this technique is used to
represent changes in soil electrical resistivity (Dahlin, 2001).

The electrical tomographic methods applied in two-phase

flow measurement have become popular (Dong et al., 2003;
Wang, 2000; Ma et al., 2001; Lucas et al., 1999). In the same
field, Giguère et al. (2008a,b) has worked on image reconstruc-

tion for bi-dimensional ERT to visualize multiphase flow.
Wang et al. (1999) used an ERT system to measure the gas–

liquid mixture in a stirred vessel (Giguère et al., 2008a,b). Ma
et al. (2001) were interested in the application of ERT in hor-

izontal pipes of gas and liquid flow. Lucas et al. (1999) used
this technique to monitor conductivity in vertical pipes and
other inclined. Electrical resistance tomography has already

been applied for imaging of flotation process (Wang et al.,
1999; Nissinen et al., 2014; Cilliers et al., 1999; Kourunen
et al., 2008; Normi et al., 2009; Lehikoinen et al., 2011). This

technique measures solids concentration profile and stability
in the hydrocyclones (Williams et al., 1995; Reunanen et al.,
2011; Hua et al., 1987; Abdullah et al., 1993; Bond et al.,

1999). Binley et al. (1996) applied this technique in the environ-
mental field in order to detect leakage from nuclear waste stor-
age tanks. It was also used in multiplane imaging of mixers
(Mann et al., 1995). In the same field, it was applied in the

quantification of the homogeneity of mixing (Rosales et al.,
2012).

In the processing of suspension, the application of a nonin-

trusive technique is important since the particle volume-
fraction distribution has an effect on the rheological proper-
ties. Also the concentration is necessary for understanding

industrial processes. In this context, Kim et al. (2004) proposed
an algorithm of the Electrical Impedance Tomography (EIT)
for particle concentration distribution in suspension.
To control and optimize some industrial sedimentation pro-
cesses, Tossavainen et al. (2007) introduces a new computa-
tional method for sedimentation monitoring using electrical

impedance tomography (EIT).
Many industrial processes present a layered materials distri-

bution which needs to be solved in a rectangular configuration.

In this context, Ren et al. (2013) was interested in the problems
where the permittivity is piecewise constant.

One of the benefits of the electrical methods is that no
transparent processes tanks are needed to control the internal

phenomena (Tossavainen et al., 2007). Electrical tomography
techniques are known by its good portability, high speed,
and low cost.

The technique of ERT consists of applying a direct current
between two electrodes and measuring the electrical voltage
between two others. The voltage depends on the electrical con-

ductivity of the medium between the electrodes. In terms of
mathematics, the ERT image reconstruction is a non linear
inverse problem. It includes iteratively solving forward and

inverse problems (Kim et al., 2014).
Currently, the ERT forward problem solvers are mainly

based on finite element method (FEM), which requires a large
number of mesh elements (Xu and Dong, 2010; Hallaji and

Pour-Ghaz, 2014; Liu et al., 2014). Although FEM is the nat-
ural choice for several simulations (Tossavainen et al., 2007),
modeling of thin layers, involves serious compromise in accu-

racy and robustness (Das et al., 2006).
Brebbia et al. (1991) confirmed that FEM is inefficient to

use in many engineering applications. The Boundary Element

Method (BEM) (Xu et al., 2010; Khambampati et al., 2012;
Ren et al., 2013) is widely used to solve the forward problem
necessitating a simple inversion of a linear system. This



Figure 1 Electrodes Model.

362 F.O. Saad et al.
method transforms the domain into boundary problem (Xu
and Dong, 2010). It needs to discretize just the boundaries of
the domain, which save memory space and computation time.

BEM is applicable to complex engineering problems. However,
conventional BEM formulation suffers from accuracy if geo-
metric discontinuities are present along the boundary (Das

et al., 2006).
In the present study, a new method was proposed based on

the quadrupole technique applied to electrical fields for numer-

ical resolution of the forward problem Nevertheless; the
boundary-element method exhibits some similarities to the
quadrupole formalism, provided that for both techniques the
state variables and flux are calculated first on the boundaries,

and not necessarily on the entire domain (Khambampati et al.,
2012).

Generally, the quadrupole method has been used in heat

transfer modeling (Fudym et al., 2002, 2007; Pailhes et al.,
2012; Degiovanni, 1988). It represents an analytical tool which
consists in assembling multilayered slabs with different geo-

metrical and thermophysical properties. Fudym et al. (2002)
investigated the problem of finding a generalized intrinsic rela-
tionship between temperature and heat flux at the boundaries

of a heterogeneous medium with one-dimensional varying
properties in the layer direction. In this paper, quadrupole
method was adopted to simulate the sensor voltage evolutions
created by the current injection through electrodes placed

along the boundaries of a heterogeneous medium.
Solving the forward problem supports a sensitivity analysis

in order to know the most appropriate injection strategies. The

inverse problem for the ERT is solved in order to estimate the
electrical conductivity which is necessary to predict many
parameters such as volume fraction and suspension concentra-

tion. The inverse problem is non-linear, an image reconstruc-
tion algorithm is necessary (Batsale et al., 1994). The
Levenberg–Marquardt (LM) (Moré, 1978; Xie et al., 1995;

Fguiri et al., 2013) technique was adopted to solve the inverse
problem. It offers fast convergence attempting to find the local
minimum nearest to the starting point. The proposed method
in this study is evaluated with simulated measurement

obtained by adding an error to the calculated voltage. The sta-
bility of the LM method is analyzed. The influence of the injec-
tion electrode position (measurement strategies), the initial

value of the estimated conductivity, the relative error and the
LM parameter on the estimations are also investigated.

2. Models

The ERT problem resolution aims to reconstruct the electrical
conductivity spatial distribution. This is accomplished by mea-

suring the electrode potentials at the boundaries of the object
under the influence of an applied current. The current is
applied between different pairs of electrodes and the resulting
electrical potential differences across the remaining pairs of

electrodes are measured. The reconstruction of the conductiv-
ity distribution from the applied current and measured volt-
ages requires a physical model named as forward problem

which describes the dependence of the potentials at the bound-
aries to the conductivity distribution.

In this numerical study, the quadrupole method is applied

to electrical fields in order to solve the forward problem.
Levenberg–Marquardt method is used as an inverse solver to
estimate the unknown electrical conductivity from the mea-
sured boundary voltages. Numerical and phantom experi-
ments are performed to validate the performance of the

proposed method.
As can be seen in Fig. 1, the computational domain is

restricted to the vertical plane of a cylindrical cell. 10 equidis-

tant electrodes are placed at the boundary of this plane, 5 by
each side. Each electrode from those numbered from 1 to 5 will
be considered as a cathode for the current injection. Electrodes

of the other side will be considered as anodes. The model is
characterized in two parts. The forward problem and the
inverse are presented below.

2.1. Forward problem

The forward problem of the ERT is solved in two-dimensional
configuration. It consists in finding the electrical potential dis-

tribution V with a known electrical conductivity distribution
(r) and current flow density I/Ae.

The governing equations are established assuming that:

- A bidimensional medium (L = 0.1 m, e = 0.3 m) was con-
sidered for different numerical tests.

- The electrical conductivity changes with respect to z.

The mathematical model of the ERT is defined by the
tomography equation which derives from Maxwell equations:

r � ðrðzÞrVðx; zÞÞ ¼ 0 ð1Þ
And the following boundary conditions

r@V=@n ¼ �I=Ae on the cathode; ð2Þ

r@V=@n ¼ I=Ae on the anode; ð3Þ

r@V=@n ¼ 0 on insulating surface ð4Þ
where n is the normal vector to the surface.

The quadrupole method is a well-known analytical tool
in heat transfer modeling in heterogeneous samples or non-
uniform convective heating in the context of Non-Destructive
thermal Evaluation. This method allows to assemble multilay-

ered slabs with different geometrical and thermophysical
properties (Fudym et al., 2002).
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The quadrupole general theory consists in finding a gener-
alized intrinsic relationship between potential and current flux
at the boundaries of the medium to study. This relationship is

defined by a matrix that relates the input and the output after
an integral space transform. The main advantage of this rela-
tionship is to make easy the representation of multilayered sys-

tem by multiplying the corresponding quadrupole matrices
(Fudym et al., 2002).

The forward problem is defined by the tomography

equation:

rðzÞ @
2Vðx; zÞ
@x2

þ @

@z
rðzÞ @Vðx; zÞ

@z

� �
¼ 0 ð5Þ

The boundary conditions are defined as:

� z ¼ 0 ) rð0Þ @V
@z

¼ 0 ð6Þ
@V
� z ¼ e ) rðeÞ
@z

¼ 0 ð7Þ
� x ¼ 0 ð8Þ
p
0 < z < z1 ) �rðzÞ @V

@x
¼ 0
@V
p
z ¼ z1 ) �rðz1Þ

@x
¼ I=Ae
@V
p
z1 < z < e ) �rðzÞ

@x
¼ 0
� x ¼ L ð9Þ
p
0 < z < z2 ) �rðzÞ @V

@x
¼ 0
@V
p
z ¼ z2 ) �rðz2Þ

@x
¼ �I=Ae
@V
p
z2 < z < e ) �rðzÞ

@x
¼ 0
To solve this set of obtained algebraic equations, space dis-
cretization of Eqs. ((5)–(9) is performed versus the z direction
(Fig. 2). N new variables are introduced as

Vi ¼ ViðxÞ ¼ 1

Dz

Z iþ

i�
Vðx; zÞdz
Figure 2 Discretization with respect to z.
where i defines the ith element of the potential vector V with

respect to z.
i+ and i� indicate the ith gird interfaces.
Thermal quadrupole formalism (Fudym et al., 2002) is

adopted (Fig. 3). The input and output variables in terms of
electrical potential and the electrical current flux are connected
by the following relationship:

V

ø

� �
0

¼ A B

C D

� �
V

ø

� �
L

where A, B, C and D are a matrix found using Quadrupole
formalism.

V(0) and V(L) are defined as the potential vectors (with
respect to z) at the positions x = 0 and x = L. As the same
ø(0) and ø(L) are the electrical current flux vectors (with
respect to z) at the positions x = 0 and x = L.

Eqs. (5)–(9) are then integrated relative to z:

riDz
@2Vi

@x2
þ ui� � uiþ ¼ 0 ð10Þ

where ri is the ith element of the vector r defined as:

r ¼ ½rðziÞ� ¼ ½ðriÞ�; i ¼ 1;N

and

ui� ¼ Pi� ½Vi�1 � Vi�

uiþ ¼ Piþ ½Vi � Viþ1�

Pi� ¼ Dz
2ri�1

þ Dz
2ri

� ��1

Piþ ¼ Dz
2ri

þ Dz
2riþ1

� ��1

riDz
@2Vi

@x2
þ Pi�Vi�1 � ½Piþ þ Pi� �Vi þ PiþViþ1 ¼ 0 ð11Þ

Both boundary conditions at z = 0 and z = e are expressed
in the same way in order to obtain the corresponding equa-
tions at node i = 1 and i = N.
Figure 3 ERT model.



364 F.O. Saad et al.
For the boundary conditions (z = 0) and (z = e), the equa-
tions are:

r1Dz
@2V1

@x2
þ P1þV1 � P1þV2 ¼ 0 ð12Þ

rNDz
@2VN

@x2
� PN�VN þ PN�VN�1 ¼ 0 ð13Þ

These Eqs. (11)–(13) can be written in matrix form as:

K�1MV� d2V

dx2
¼ 0 ð14Þ

where V is a vector of the N potentials at the position x.

V ¼ ½V1V2 . . .VN�t

K ¼ diag½r1Dz r2Dz . . .rNDz�

M¼

P1þ �P1þ 0

�P2� P2� þP2þ �P2þ

0 �P3� P3� þP3þ �P3þ 0

... ... ...

�Pi� Pi� þPiþ �Piþ

... ... ...

�PN� PN�

2
666666666664

3
777777777775

where the operator ‘‘diag” is used in order to build a diagonal

matrix from the corresponding vector.

The term K�1M is x independent, Eq. (14) can be solved
directly by the diagonalization of this matrix.

So its diagonalization gives:

K�1M ¼ TXT�1 ð15Þ
where O: diagonal matrix considering a change of variables

R ¼ T�1Vwhere R is the potential vector in the new basis.
Eq. (14) becomes

TXT�1V� d2V

dx2
¼ 0

Introducing the potential vector (R), the precedent equa-
tion can be written

TXR� T
d2R

dx2
¼ 0

XR� d2R

dx2
¼ 0 ð16Þ

It has seen that in the Eq.(16), only the unknown vector R

is x-dependent. The expression is a second order ordinary dif-
ferential diagonal system.

Each line of Eq. (16) is

d2rk

dx2
� dkrk ¼ 0

where rk is the kth element of the vector R. dk is the kth diag-
onal coefficient of the matrix X.

The general solution of this equation has the form

rk ¼ G1E1ðxÞ þG2E2ðxÞ ð17Þ
where E1 ¼ coshð ffiffiffiffiffi

dk

p
xÞ and E2 ¼ sinhð ffiffiffiffiffi

dk

p
xÞ
G1 and G2 are constants, these constants are calculated
using the boundary conditions at x = 0 and x = L:

G1 ¼ rkð0Þ
and

G2 ¼ ½rkðLÞ � rkð0Þcoshð
ffiffiffiffiffi
dk

p
LÞ� 1

sinhð ffiffiffiffiffi
dk

p
LÞ

In order to find a linear relationship between the potential
and current flux (Fudym et al., 2002), scalar quadrupole formal-
ism is developed by introducing the integration constants G1

andG2 in Eq. (16). Introducing the flux in the eigenvalues basis:

fk ¼ � drk
dx

The scalar quadrupole at x = 0 and x = L location is writ-

ten as:

rk

fk

� �
0

¼ Ak Bk

Ck Dk

� �
rk

fk

� �
L

ð18Þ

where Ak, Bk, Ck, Dk are scalar terms of the quadrupole

Ak ¼ coshð
ffiffiffiffiffi
dk

p
LÞ

Bk ¼ sinhð
ffiffiffiffiffi
dk

p
LÞð

ffiffiffiffi
L

p
Þ�1

Ck ¼ ð
ffiffiffiffi
L

p
Þ sinhð

ffiffiffiffiffi
dk

p
LÞ

Dk ¼ cos hð
ffiffiffiffiffi
dk

p
LÞ

In the vector form the quadrupole can be implemented
using vector R of (rk) and introducing the flux FR as

FR ¼ � dR

dx

This can be written

R

FR

� �
0

¼ AR BR

CR DR

� �
R

FR

� �
L

ð19Þ

AR;BR;CRandDR are diagonal matrices built with the scalar
terms corresponding to Eq. (18)

AR ¼ coshð
ffiffiffiffi
X

p
LÞ

BR ¼ sinhð
ffiffiffiffi
X

p
LÞð

ffiffiffiffi
X

p
Þ�1

CR ¼ ð
ffiffiffiffi
X

p
Þ sinhð

ffiffiffiffi
X

p
lLÞ

DR ¼ coshð
ffiffiffiffi
X

p
LÞ

The current flux density vector ø is written as

ø ¼ �K
dV

dx

The relationship between FR and ø is:

ø ¼ KTFR

The Eq. (19) is a generalized quadrupole in terms of the

potential and the current flux density such as:

T�1V

ðKTÞ�1
ø

" #
0

¼ AR BR

CR DR

� �
T�1V

ðKTÞ�1
ø

" #
L

ð20Þ
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So

V

ø

� �
0

¼ A B

C D

� �
V

ø

� �
L

ð21Þ

where

A ¼ TART
�1

B ¼ TBRðKT�1Þ

C ¼ KTCRT
�1

D ¼ KTDRðKTÞ�1

In our problem the current flux density øð0Þ at x = 0 and
øðLÞ at x ¼ L are known, it can deduced Vð0Þ andVðLÞ from
the generalized quadrupole:

VðLÞ ¼ C�1øð0Þ � C�1DøðLÞ ð22Þ

Vð0Þ ¼ AVðLÞ þ BøðLÞ ð23Þ
2.2. Inverse problem

Solving the inverse problem consists in minimizing the differ-
ence between the numerical simulated voltages and the physi-

cal reality represented by the experimental ones defined in an
objective function (Ob).

It is to identify the vector of parameters r that minimizes
the sum of squares function written as:

ObðrÞ ¼ ðUm �UcalðrÞÞTðUm �UcalðrÞÞ ð24Þ
where r is the electrical conductivity which depends on z, and

U is the vector of electrical voltages. Subscripts m and cal rep-
resent measured and calculated values. For the measurements,
the simulated experimentations were used.

The problem is non-linear, which requires a method of iter-
ative programing. The Levenberg–Marquardt method was
applied.

The iterative procedure of the Levenberg–Marquardt
method is given by:

frglþ1 ¼ frgl � ð½Hþ k:II��1Þl ðJlÞtðUm �UcalðrlÞÞ
n o

ð25Þ

where J is the jacobian matrix containing the partial deriva-

tives of Ucal;i (i = 1, M) with respect of the parameters to be

estimated. The coefficient of the Jacobian matrix is defined as

Jij ¼ Ucal;iðr1;r2; :::;rj þ @r; :::;rNÞ �Ucal;iðr1; :::;rj; :::;rNÞ
rj@r

k is a damping parameter (Marquardt parameter) added to the

diagonal of the approximated hessian matrix (H = JtJ) in
order to control the stability of the algorithm.

Ucal;i is the ith element of the calculated voltage vector Ucal

defined as:

Ucal ¼ ½Ucal;1Ucal;2 . . . . . .Ucal;M�
and Um;i is the ith element of the measured voltage vector Um

defined as:

Um ¼ ½Um;1Um;2 . . . . . .Um;M�
Iterations are generally started with large values of the
damping parameter. Then this parameter is gradually reduced
as the solution approaches the converged result.

3. Electrical injection strategies

For all types of geometry, ERT systems are designed such that

the current is injected into the object through a pair of elec-
trodes and voltages are measured using other pairs. An electri-
cal current source requires switches that choose electrodes for

current injection.
In most applications, the ERT is used to reconstruct the

conductivity spatial distribution in a disk. Generally, the adja-

cent strategy is used for ERT data acquisition (Seagar et al.,
1987; Dickin and Wang, 1996; Giguère et al., 2008a,b;
Nissinen et al., 2014). In the adjacent strategy, current distri-

bution is non-uniform due to most of the current travels near
the peripheral electrodes (Xu and Dong, 2010). This will cause
high interference of measurement error and noise due to the
lower current density at the center of the vessel. However, this

method is widely used for ERT data acquisition in a disk, due
to its minimal hardware capacity. Besides, image reconstruc-
tion can be done relatively fast.

Compared to the adjacent strategy used in disks, diagonal
method has the benefit of better sensitivity over the entire disk
and is not sensitive to measurement error and thus produces

better quality but has a disadvantage of lower sensitivity in
the periphery.

In this paper, the reconstruction of electrical conductivity
distribution is made in the vertical plane of a cylindrical cell.

Different injection strategies, applied to a rectangular configu-
ration, are compared. Such an electrode configuration may be
desirable for using electrical resistance tomography in the case

where physical parameters are changing with respect to z in
cylindrical vessels.

In order to establish a sensitivity analysis of the model, a

comparison between 3 different configurations of current injec-
tion was considered to determine the most sensitive.

As shown in Figs. 1 and 10 electrodes are placed in the ver-

tical plan, 5 by each side. The electrical conductivity was
assumed constant in a horizontal plan.

The adjacent strategy (Fig. 4), consists in applying the cur-
rent through two neighboring electrodes and the voltage is

measured successively from all other adjacent electrode pairs
[26]. Current (I) is then applied through the next pair of elec-
trodes and the voltage measurements are repeated.

First, the current is injected between the electrodes 1 and 2,
voltages (U) are measured successively between all other pairs
of adjacent electrodes (3–4), (4–5), (5–10), (10–9), (9–8), (8–7),

and (7–6), and then the current is injected between 3 and 4.
Voltages are measured between the pairs of electrodes (1–2),
(2–5), (5–10), (10–9), (9–8), (8–7), and (7–6). The procedure
is repeated until all the independent measurements have been

made. The number of independent measured voltages is 35.
The second configuration (shown in Fig. 5) corresponds to

the opposite strategy. The current is applied through two

opposed electrodes. The other pairs of opposite electrodes
are used to measure the voltage. The next set of data is
obtained by switching the current to the next pair of

electrodes.



Figure 4 Strategy of adjacent electrodes.
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The current is applied between the electrodes 1 and 6, volt-
ages are measured successively between all other pairs of oppo-

site electrodes (2–7), (3–8), (4–9) and (5–10). Then the current
is injected between 2 and 7. Voltages are measured between the
pairs of electrodes (1–6), (3–8), (4–9) and (5–10). The proce-

dure is repeated until all the opposite electrodes have been used
as a source of current.

The third considered configuration (shown in Fig. 6) is the
diagonal strategy, where the current is applied through two

diagonal electrodes at the peripheries of the plan. The elec-
trode adjacent to the current-injecting one is used as the volt-
age reference. So, for a particular pair of current-injecting

electrodes, the voltages are measured with respect to the refer-
ence at all the electrodes except the current-injecting ones.

The current-injecting pair of electrodes is (1–10), then the

electrode number 2 is used as reference for voltage measure-
ments (2–3), (2–4), (2–5), (2–6), (2–7), (2–8) and (2–9). Then
the current is injected between 2 and 9. The adjacent electrode
Figure 5 Strategy of opposite electrodes.
(3) is then used as the voltage reference. Voltages are measured
between the pairs of electrodes (3–1), (3–4), (3–5), (3–6), (3–7),
(3–8) and (3–10). The procedure is repeated until all the oppo-

site electrodes have been used as a source of current. So, 35
measured voltages were obtained.

4. Sensitivity analysis

Before starting the identification, a sensitivity analysis should
be carried out in order to choose the current injection strategy

that gives more information on the electrical conductivity dis-
tribution in rectangular configuration. The elements of the
Jacobian matrix known as sensitivity coefficients are defined

as the first derivative of the variable to be calculated according
to the unknown parameters:

Jij ¼ @Ucal;iðrjÞ
@rj

i ¼ 1 . . .M

j ¼ 1 . . .N

The sensitivity coefficients are calculated by the Direct Dif-
ference Method.

5. Results and discussion

5.1. Resolution of the forward problem

The resolution of the tomography equation using the quadru-
pole method applied to electric fields allowed to determine the

distribution of electrical voltage in the suspension.
The spatial variation of the electrical potential at the

boundaries was traced for different electrical conductivity

value by fixing the current flow. According to Fig. 7, it is
observed that these two parameters are inversely proportional.
The potential, in absolute value, is even higher when the con-

ductivity is lower. Also it has been noticed that this influence
decreases for the most conductive environments.
Figure 6 Strategy of diagonal electrodes.
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The analysis of the sensitivity for different electrical con-
ductivities (r(z)) was evaluated. In Fig. 8, the spatial distribu-
tion of the sensitivity coefficients for different configurations

was illustrated.
The adjacent strategy has a non-uniform current distribu-

tion since most of the current density travels near the periph-

eral electrodes. Therefore, the current density at the center is
relatively low which makes the strategy very sensitive to mea-
surement error and noise (Tapp, 2000).

Also for the second strategy of measurement (opposite
injection), the most current density travels between the oppo-
site electrodes, which makes the value of the sensitivity coeffi-
cient low for most conductivities. Compared to that of the

adjacent electrodes, this strategy has a higher sensitivity.
It can be seen that, using the strategy of diagonal elec-

trodes, the model is very sensitive to the electrical conductivity

variation in a rectangular configuration.
A comparison between three strategies of current injection

for different electrical conductivities was performed. Fig. 8-a,

b, c illustrate the evolutions of the sensitivity to electrical con-
ductivity of, respectively, the second vertical plane (r2), the
first plane (r1) and the fifth plane (r5). For different electrical

conductivities, the highest values of reduced sensitivity (in
absolute values) are achieved with the diagonal injection strat-
egy. Therefore, the evolution of the relative sensitivity is
affected by the position measurement of the voltage and the

position of the current injection electrodes. It can be concluded
that the third case of current injection (between two diagonal
electrodes) has the best current distribution in the rectangular

configuration. Also the number of measurements has an influ-
ence on the sensitivity of the model.

5.2. Identification

The identification of the electrical conductivity based on the
results of the forward problem was presented, and the effect

of some parameters on the identification was studied. For
the measurements needed in the identification, in the first case,
the exact voltages (Uexact) which are defined as voltages calcu-
lated from the forward problem using the exact values of the

electrical conductivity (rexact = 5 S/m), was used.
In the second section, for the measurements values (Um),
noisy simulated voltages were obtained by adding a relative
error f to exact tensions

Um ¼ Uexact þ f:Uexact

5.2.1. Identification with exact voltage

Fig. 9 represents the identification of electrical conductivities
(r1 . . . r5) using exact voltage in the case of heterogeneous

medium. It is clear that for different chosen initial value of
the electrical conductivity (r0), the convergence of the Leven-
berg–Marquardt method was obtained. According to the ini-
tial value, the conductivity increases or decreases until to

reach the exact value. This was confirmed with different con-
ductivities. This study highlights the estimation of conductivity
which changes with respect to z.
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5.2.2. Identification with noisy simulated voltage

The stability of the scheme with respect to the amount of noise

added into the data (En Hong et al., 2015) is analyzed. As
shown in Fig. 10, the identification of the electrical conductiv-
ity during iterations for different values of relative error f is

represented. As illustrated in Table 1, an error of 21% is
detected in the conductivity identification when the relative
error f is 50% whereas it is 0.01% for an error f equal to 0.1%.

The effect of the measurements noise level on the identifica-
tion precision was also studied in the case of heterogeneous
medium. Estimation of different conductivities is illustrated
in Table 2. It is clear that the identification is better for lower

values of f. The estimation error is even higher when the mea-
surement noise is higher for homogeneous and heterogeneous
conductivity distribution.

The average (Fig. 11) and variance of the estimation
errors are analyzed to prove the robustness and accuracy of
the proposed method. The variance is calculated using the

sum of squared deviations between the relative errors and
the average E:
Table 1 Effect of the noise level of the measurements on the

precision of the identification.

f (%) 50 10 1 0.1 0

r1 (S/m) 6.1392 4.5455 4.9505 4.9995 5

r2 (S/m) 6.0151 4.5455 4.9505 4.9995 5

r3 (S/m) 6.12 4.5455 4.9505 4.9995 5

r4 (S/m) 5.9925 4.5454 4.9505 4.9995 5

r5 (S/m) 6.066 4.5455 4.9505 4.9995 5

Error (%) 20–23 9 1 0.01 0

Table 2 Effect of the noise level of the measurements on the

precision of the identification for heterogeneous medium.

f (%) 50 10 1 0.1 0

r1 (S/m) 3.2391 4.5455 4.9505 4.995 5

r2 (S/m) 0.7365 0.9091 0.9901 0.999 1

r3 (S/m) 1.3352 1.8182 1.9802 1.998 2

r4 (S/m) 3.9474 5.4545 5.9406 5.994 6

r5 (S/m) 6.7779 9.0909 9.901 9.99 10

Error (%) 26–35 9 1 0.1 0
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VarðerrorÞ ¼ 1

n

X
ðerror� EÞ2

As shown in Fig. 12, at the end of iterations, the variance

achieved zero which indicates that all values are identical.
Small changes in variance are noted in the middle, which sign
that the values are close to each other.

6. Conclusion

An inverse method for electrical resistance tomography has

been developed. The Levenberg–Marquardt method was used
to solve the inverse problem, with the aim of identifying the
electrical conductivity distribution necessary to determine the

concentration and the fraction of the suspension. The resolu-
tion of the Laplace equation using the quadrupole method
applied to the electrical fields, allowed to determine the electri-
cal tension distribution. A sensitivity analysis was performed,

which allowed to locate the positions and the measurement
strategy containing the best information on the electrical prop-
erty, and the identification of injection electrode position. The

convergence of the Levenberg–Marquardt method depends
mainly on the initial estimate parameter and the Levenberg–
Marquardt parameter. The robustness of the developed algo-

rithm was investigated by the identification of the conductivity
with noisy simulated measures.
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