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Tsunamis are strong waves, arisen from volcanic eruptions, landslides, or earthquakes sweeping across
oceans. The geophysical Korteweg-de Vries (gKdV) equation which governs the tsunami wave propaga-
tion in oceans is investigated in this work using an improved expð�FðgÞÞ-expansion method. Shooting
and adaptive moving approaches are taken into account. We retrieve several new solitary solutions for
the gKdV equation. The obtained solution from implementing shooting method is successfully used as
an initial value for the adaptive approach which is utilized to construct the numerical solution of the pro-
posed problem. The constructed exact solutions coincide with the obtained numerical solutions. The
accuracy of the presented numerical approximations is discussed. We apply Fourier concept to explore
the accuracy and stability of the numerical schemes which is unconditionally stable. A clear comparison
between the analytic and numerical outcomes is presented via some 2D and 3D sketches which are
depicted under special selections of some parameters. Moreover, we illustrate the relative error and
CPU time for the numerical technique. The proposed approaches can be easily utilized to deal with other
partial differential equations.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Research on partial differential equations (PDEs) and relevant
topics have been widely increased recently. It has become an active
topic in several spheres of engineering, physical and mathematical
sciences, particularly, in mechanical engineering, fluid mechanics,
traveling waves, plasma physics, fibers, nonlinear optics, signal
processing, control theory, and others. Exact and numerical solu-
tions play an essential role in investigating these phenomena. Over
the previous decades, several powerful approaches have been suc-
cessfully invoked to extract the analytic solutions of nonlinear
equations (NLEEs) for instance the homogeneous balance tech-
nique (Wang et al., 1996), the improved expð�FðxÞÞ-expansion
method (Chen et al., 2019), the improved Kudryashov approach
(Kumar et al., 2018), the first integral technique (Bekir and Unsal,
2012), the Adomian decomposition strategy (Adomain, 1994;
Wazwaz, 2002), etc. Soliton solutions may form different types of
shapes e.g. S-shaped soliton, kink wave, bell shape, lump wave,
M-shaped soliton, peakons, cuspons and some others (Rao et al.,
2019; Abdullah and Wang, 2019; Liu and Zhang, 2018; Alharbi
and Almatrafi, 2020; Alam and Tunç, 2020; Alharbi and
Almatrafi, 2020; Alharbi and Almatrafi, 2020; Özkan et al., 2020;
El-Shiekh and Gaballah, 2020; Khater et al., 2020; Almatrafi
et al., 2020; Alharbi et al., 2020; Alharbi et al., 2020; Akbar et al.,
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2021; Akinyemi et al., 2021; Zafar et al., 2022; Nisar et al., 2021;
Houwe et al., 2022; Martínez et al., 2021).

Korteweg-de Vries (KdV) like equations are widely used to
describe a massive number of applications in several branches of
nonlinear science and engineering. Historically, KdV problem was
found by Korteweg and De Vries in 1895 (Korteweg et al., 1895).
Then, researchers have introduced many modifications for this
equation. For example, Johnson (2002) described a specific
approach to find the Camassa-Holm problem in the context of
water waves and presented the connection with the KdV equation.
In Wazzan (2009), Wazzan successfully applied a modified tanh-
coth approach to extract new solutions for the KdV and
Korteweg-de Vries-Burgers’ problems. Moreover, Kudryashov
(2009) analyzed some exact solutions of KdV and KdV-Burgers
problems. The Hirota’s bilinear technique was used in Wazwaz
(2010) to investigate the solutions of the perturbed KdV equation.
Triki et al. (2017) applied auxiliary equation approach to extract
some soliton-like solutions for a second order wave equation of
KdV. The derivation of the gKdV equation was achieved in Geyer
and Quirchmayr (2017) using techniques from asymptotic analy-
sis. Some explicit traveling wave solutions for the gKdV equation
were presented in Geyer and Quirchmayr (2017) using Jacobi ellip-
tic functions. In Ak et al. (2020), the Coriolis effect on oceanic flows
was deeply investigated via the gKdV equation. The propagation of
some solitary solutions was produced in Ak et al. (2020). Moreover,
the authors implemented the finite element approach to construct
numerical simulations for the gKdV equation. The homotopy per-
turbation technique was used in Karunakar and Chakraverty
(2019) to deal with the gKdV equation and develop some analytic
solutions. Furthermore, Rizvi et al. (2020) used the Hirota bilinear
method to show some lump soliton solutions for gKdV equation.

In this work, we discuss a novel and reputed PDE known as geo-
physical Korteweg-de Vries equation (Geyer and Quirchmayr,
2017) which is given by

wt � lwx þ
3
2
wwx þ

1
6
wxxx ¼ 0; ð1Þ

where w ¼ wðx; tÞ denotes the free surface advancement and l rep-
resents Coriolis effect parameter which depends on the water
depth. Eq. (1) is used as a model for shallow water waves and tsu-
nami wave propagation (Geyer and Quirchmayr, 2017). According
to Karunakar and Chakraverty (2019), l is proportional to the
height of the wave and inversely proportional to wavelength. This
implies that the existence of Coriolis constant has a significant
impact on the shape of the solutions. The essential aims of this
paper are to extract novel exact solutions and acceptable numerical
approximations for the considered problem by employing the
improved expð�FðgÞÞ-expansion method and the adaptive
technique, respectively. The shooting method is successfully
applied for the proposed equation and its solution is utilized to
generate the initial condition of the adaptive moving mesh
method. Then, we compare the constructed results with each other
to show the validity of the used methods. Moreover, we develop the
stability and accuracy of the numerical scheme. Several 3D and 2D
sketches are illustrated to exhibit the behavior of the solutions. We
also present the error which is resulted from the used numerical
method.

The outline of this work is explained in this paragraph. Section 2
presents a summary for the improved expð�FðgÞÞ-expansion tech-
nique. In Section 3, we analyze some new solutions for the gKdV
problem. In Section 4, we discuss the numerical solution of the rel-
evant equation while Section 5 presents the finite difference, the
stability and the accuracy of the numerical approximation. More-
over, Section 6 is added to highlight the outcomes accomplished
in this study. Ultimately, Section 7 concludes this article.
2

2. Methodology

This part is devoted to introduce the improved expð�FðgÞÞ-
expansion approach, as given in Chen et al. (2019). Assume that

Qðh; hx; ht; hxx; hxxx; . . .Þ ¼ 0; ð2Þ
is a given PDE in the unknown functions h ¼ hðx; tÞ; hx; ht; . . . ;. Then,
insert the transformations

hðx; tÞ ¼ VðnÞ; n ¼ x� ht ; ð3Þ
into Eq. (2) to reduce Eq. (2) into an ordinary differential equation
(ODE) expressed as

HðV ;V 0;V 00;V 000; . . .Þ ¼ 0; ð4Þ
where 0 ¼ d

dn. Next, Eq. (4) is integrated term by term and we take
the integral constants by zero. According to this technique, the solu-
tions of Eq. (4) are expressed as

VðnÞ ¼
XNþ1

i¼1

ai�1 expð�ði� 1ÞFðnÞÞ; ð5Þ

where,

F2
n ¼ b2ðr0 expð�2FðnÞÞ þ r1 þ r2 expð2FðnÞÞÞ: ð6Þ
The constants b; r0; r1; r2 and ai ði ¼ 1; 2; . . . ; N þ 1Þ are

obtained later. In order to calculate the value of N, we apply the
homogeneous balance. we use some Jacobi elliptic function solu-
tions presented in Chen et al. (2019) for Eq. (5). Next, we plug
Eqs. (5) and (6) into Eq. (4) and equate the coefficients of
expð�FðnÞÞ to zero to end up with an algebraic system solved by
using Mathematica or Maple. The values of the above-mentioned
constants are contained in the solutions of this system. Substitut-
ing the values of these constants into Eq. (5) yields the exact
solutions.

3. Exact solutions

This section explores the solitary wave solutions of the consid-
ered problem. Using Eq. (3), we can express Eq. (1) by

2V 00 þ 9V2 � 12ðdþ lÞV ¼ 0: ð7Þ
We now balance terms to have N ¼ 2. Hence, from Eq. (5), we

have

VðnÞ ¼ a0 þ a1 expð�FðnÞÞ þ a2 expð�2FðnÞÞ: ð8Þ
Next, we substitute Eq. (8) into Eq. (7) to end up with algebraic

equations whose solutions are given by

a0 ¼ 4
9b

2 �r1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
;

a1 ¼ 0;

a2 ¼ � 4b2r0
3 ;

d ¼ 1
3 �3l� 2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
:

Now, when m�!1, we can obviously develop several exact
solutions given as follows. If r0 ¼ 1; r1 ¼ �1�m2 and r2 ¼ m2.
Then, the exact traveling wave solution is given by

w1 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �

� 4b2r0
3

coth2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

If r0 ¼ 1�m2; r1 ¼ �1þ 2m2 and r2 ¼ �m2. Then, the exact
traveling wave solutions are given by
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w2 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �

� 4b2r0
3

sech2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

If r0 ¼ m2; r1 ¼ �1�m2 and r2 ¼ 1. Then, the exact traveling
wave solutions are given by

w3 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �

� 4b2r0
3

tanh2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

If r0 ¼ �m2; r1 ¼ 2m2 � 1 and r2 ¼ �1�m2. Then, the exact
traveling wave solutions are given by

w4 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �

� 4b2r0
3

cosh2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

If r0 ¼ 1; r1 ¼ 2�m2 and r2 ¼ �1�m2. Then, the exact travel-
ing wave solutions are given by

w5 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �

� 4b2r0
3

sinh2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

If r0 ¼ 1�m2; r1 ¼ 2�m2 and r2 ¼ 1. Then, the exact traveling
wave solutions are given by

w6 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �

� 4b2r0
3

csch2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

Now, whenm�!0, we can clearly obtain several exact solutions
given as follows. If r0 ¼ 1; r1 ¼ �1�m2 and r2 ¼ m2. Then, the
exact traveling wave solution is given by

w1 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �

� 4b2r0
3

csc2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

If r0 ¼ 1�m2; r1 ¼ �1þ 2m2 and r2 ¼ �m2. Then, the exact
traveling wave solutions are given by

w2 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
� 4b2r0

3

� cos2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

If r0 ¼ m2; r1 ¼ �1�m2 and r2 ¼ 1. Then, the exact traveling
wave solutions are given by

w3 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
� 4b2r0

3

� sin2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

If r0 ¼ �m2; r1 ¼ 2m2 � 1 and r2 ¼ �1�m2. Then, the exact
traveling wave solutions are given by

w4 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
� 4b2r0

3

� sec2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

3

If r0 ¼ 1; r1 ¼ 2�m2 and r2 ¼ �1�m2. Then, the exact travel-
ing wave solutions are given by

w5 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
� 4b2r0

3

� tan2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

If r0 ¼ 1�m2; r1 ¼ 2�m2 and r2 ¼ 1. Then, the exact traveling
wave solutions are given by

w6 ¼ 4
9
b2 �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �

� 4b2r0
3

cot2 b x� 1
3

�3l� 2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 3r0r2

q� �
t

� �� �
:

4. Numerical solution

We now investigate the numerical solution of Eq. (7) by imple-
menting the nonlinear shooting method. We only take an initial
value at x0 and then we choose an initial guess for the first deriva-
tive at x0. It is worth known that we use MATLAB sub-routine
ODE15s (Shampine and Reichelt, 1994) and modify the parameter
until the second boundary condition is satisfied. Moreover, we use
the solution obtained by shooting method as an initial condition
for the adaptive moving mesh approach which is straightforwardly
employed to obtain the numerical solution of the proposed prob-
lem. Eq. (7) can be written as

f ðVÞ ¼ 0; f ðVÞ ¼ 2V 00 þ 9V2 � 12ðdþ lÞV : ð9Þ
It is notable that Eq. (9) is discretized by utilizing the finite

difference notations on a fixed mesh resulting in a nonlinear
equations system. We solve the resulting system using MATLAB
sub-routine FSOLVE (Shampine and Reichelt, 1994) which applies
the Quasi-Newton method.

5. Finite difference semi-discretization scheme

In this section, we construct a semi-discretization scheme by
executing the adaptive moving mesh process with a finite differ-
ence for the numerical solutions of the gKdV equation. This method
applies a transformation coordinate from a computational domain
½0;1�, to a physical one ½a; b�. That is
x ¼ xðg; tÞ : ½0;1� ! ½a; b�; t 2 ½0; Te�;
where g 2 ½0;1� is a computational coordinate and Te is a fixed time.
Thus, the solution w is now dependent on a moving mesh coordi-
nate xðg; tÞ. The moving mesh coordinate associated with w is given
by

xiðgÞ ¼ xiðgi; tÞ; i ¼ 0;1;2; . . . ;Nx;

x0 ¼ a; xNx ¼ b;

xiðgi;0Þ ¼ i b�a
Nx

;

8><
>:
where a and b represent the boundaries of the domain. A computa-
tional coordinate is represented as

gi ¼ i 1
Nx
; i ¼ 0;1;2; . . . ;Nx;

g0 ¼ 0; gNx
¼ 1:

(

By applying the chain rule, Eq. (1) is given by

_w ¼ Gg
xg
þ wg

xg
_x;

G ¼ l wg
xg
� 3

4
ðw2Þg
xg

� 1
6xg

wg
xg

� �
g
:

8><
>: ð10Þ
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In order to establish a new equidistributing mesh, we require to
solve the most common moving mesh partial differential equation
(MMPDE) given by

sxt ¼ qxg
� �

g; ð11Þ

where s 2 ð0;1Þ indicates a relaxation parameter, and q is a mesh
density function. This moving mesh equation was originally pre-
sented in Adjerid (1986). Eq. (11) is known as MMPDE6 (Huang
et al., 1994). Suppose that a solution wn ¼ wðxn; tnÞ, and a mesh
xn ¼ xðtnÞ are identified at time t ¼ tn. Then, the basic procedure
of the considered method to develop the numerical solution of Eq.
(10) is implemented in several steps.

1. We compute the mesh density function qn at t ¼ tn using xn and
wn.

2. We discretize the moving mesh PDE (MMPDE) in a computa-
tional coordinate using the central finite differences. Then, we
integrate the resulting system over ½tn; tnþ1� to obtain a new
equidistributing mesh coordinate xnþ1. The computation is done
by using the function qn. Observe that the solution wn is not
developed during this computation.

3. Linear interpolation is used to match the new mesh xnþ1 with
the previous solution wn.

4. The physical PDE (Eq. (10)) is discretized in the new mesh.
Then, we integrate the resulting system using an ODE MATLAB
solver to obtain the solution wnþ1. Here, we use ODE15i. ODE15i
solver is a MATLAB solver based on the backward-
differentiation formulas (BDFs) of the highest order up to 5. This
solver is intended to be utilized with fully implicit differential
equations (DEs) and differential–algebraic equations (DAEs).
In this estimate, we use
_xi ¼ xnþ1
i � xni

ht
:

5. Repeat these steps starting from the first step.

In this study, the central finite differences method is invoked to
fully discretize the derivatives of the MMPDE6.

sðxnþ1
i � xni Þ ¼ a qn

iþ1
þqn

i
2 xnþ1

iþ1 � xnþ1
i

� �� qn
i�1þqn

i
2 xnþ1

i � xnþ1
i�1

� �� �
;

ð12Þ
subject to

x0 ¼ a; xNx ¼ b;

with the initial condition

xiðgi;0Þ ¼ i
b� a
Nx

;

where a ¼ ht
sqn

i
Dg. The resulting system, given in Eq. (12), is integrated

to obtain the new equidistributing coordinate transformation
xðg; tÞ. Furthermore, Eq. (10) is transformed into a semi-
discretization for the spatial derivative which can be expressed in
the computational coordinate as follows:

wnþ1
i

�wn
i

ht
¼ Gnþ1

i �Gnþ1
i�1

xnþ1
iþ1

�xnþ1
i�1

þ Gn
i �Gn

i�1
xn
iþ1

�xn
i�1

þ 0:5
wnþ1
iþ1

�wnþ1
i�1

xnþ1
iþ1

�xnþ1
i�1

þ wn
iþ1�wn

i�1
xn
iþ1

�xn
i�1

� �
_x;

Gn
i ¼ lwn

i � 0:75w2jni � 1
3ðxn

iþ1
�xn

i�1
Þ

wn
iþ1�wn

i
xn
iþ1

�xn
i
� wn

i �wn
i�1

xn
i
�xn

i�1

� �
:

8>><
>>: ð13Þ

Systems (12) and (13) lead to a tridiagonal coefficient matrices
which consist of three diagonals and the remaining entries are
zeros. Therefore, we use the Crout factorization method to reduce
the number of operations and obtain the results at a higher speed.
4

The advantage of this method is to avoid finding the inverse of the
coefficient matrices and only uses the backward substitution. Here,
we use MATLAB to obtain the numerical results.

5.1. Accuracy

This part discusses the accuracy of the numerical schemes (12)
and (13). The approximation solution wn

i is replaced by wðxi; tnÞ at
the point ðxi; tnÞ. The mesh density function is assumed to be
qi ¼ 1;8i ¼ 1: . . . ;Nx. Now, we use Taylor series expansion to
expand xnþ1

iþ1 and xnþ1
i�1 as follows:

xnþ1
iþ1 ¼ xnþ1

i þ Dgxgjnþ1
i þ 1

2!
Dg2 xggjnþ1

i þ 1
3!
Dg3 xgggjnþ1

i

þ 1
4!
Dg4 xggggjnþ1

i þ . . . ; xnþ1
i�1

¼ xnþ1
i � Dgxg þ 1

2!
Dg2 xggjnþ1

i � 1
3!
Dg3 xgggjnþ1

i

þ 1
4!
Dg4 xggggjnþ1

i � . . . :

Adding the above expressions and simplifying the results yield

xnþ1
iþ1

�2 xnþ1
i

þxnþ1
i�1

Dg2 � xgg ¼ 1
12Dg

2 xggggjnþ1
i þ 1

360Dg
4 xggggggjnþ1

i þ . . . ;

where Dg is the step size of the computational coordinates. Simi-
larly, one can have

s xnþ1
i

�xn
i

ht
� sxt ¼ 1

2ht; xttjni þ 1
6h

2
t xtttjni þ . . . :

Thus, the truncation error of scheme (12) is

Tn
i ¼ s xnþ1

i
�xn

i
ht

� xnþ1
iþ1

�2 xnþ1
i

þxnþ1
i�1

Dg2 � ðsxt � xggÞ:

Hence,

Tn
i ¼ OðhtÞ þ OðDg2Þ:
Similarly, we derive the accuracy of Eq. (13) by using Taylor ser-

ies expansion to expand wnþ1
i and wn

i . We consider a half of the time
step size ht=2, as follow:

wnþ1
i ¼ wjnþ1=2

i þ ht

2
wt jnþ1=2

i þ h2
t

8
wtt jnþ1=2

i þ h3
t

48
wtttjnþ1=2

i

þ h4
t

348
wttttjnþ1=2

i þ . . . ;wn
i

¼ wjnþ1=2
i � ht

2
wt jnþ1=2

i þ h2
t

8
wtt jnþ1=2

i � h3
t

48
wtttjnþ1=2

i

þ h4
t

348
wttttjnþ1=2

i þ . . . :

Subtracting the above equations and simplifying the results
lead to

wnþ1
i

�wn
i

ht
� wt ¼ h2t

24wtttjnþ1=2
i þ h4t

1920wtttttjnþ1=2
i þ . . . :

We now expand the spatial derivatives for w by using the aver-
age of finite differences at tn and tnþ1 as follows:

wnþ1
iþ1 ¼ wnþ1

i þ Dxiþ1wxjnþ1
i þ 1

2!
ðDxiþ1Þ2wxxjnþ1

i þ 1
3!

ðDxiþ1Þ3wð3Þjnþ1
i

þ 1
4!

ðDxiþ1Þ4wð4Þjnþ1
i þ . . . ;wnþ1

i�1

¼ wnþ1
i � Dxiwxjnþ1

i þ 1
2
ðDxiÞ2wxxjnþ1

i � 1
3!

ðDxiÞ3wð3Þjnþ1
i

þ 1
4!

ðDxiÞ4wð4Þjnþ1
i � . . . :
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Let hx ¼ maxðDxiþ1;DxiÞ. Then, we subtract the above expan-
sions and simplifying the results to have

wnþ1
iþ1

�wnþ1
i�1

2hx
� wxjnþ1

j ¼ 1
6 h

2
xw

ð3ÞðnÞjnþ1
i ;

where n 2 ½xi�1; xiþ1�. Similarly, we deal with the second derivative
as follows:

1
hx

wnþ1
iþ1

�wnþ1
i

hx
� wnþ1

i
�wnþ1

i�1
hx

� �
� wxxjnþ1

i ¼ 1
24h

2
xw

ð4ÞðnÞ:

In a similar way, we can easily find the approximation of wx and
wxx at the time level tn. Therefore, the truncation error of the adap-
tive moving mesh Eq. (13) is given by

Tnþ1=2
i ¼ O h2

t

� �
þ O h2

x

� �
:

From this observations it could be simply concluded that the
accuracy of the adaptive moving mesh method is much better than
the accuracy which is from second-order because the spatial step
size is much small in regions where the solution changes. There-
fore, the truncation error can be expressed as

Tnþ1=2
i ¼ O h2

t

� �
þ O Dx2jnþ1

i

� �
:

5.2. Stability

We devote this part for the investigation of the stability of the
numerical approximation (12) by using the Von Neumann analysis.
The boundary conditions are ignored and we consider ðtn;gmÞ with
tn ¼ nht , and gi ¼ iDg; i ¼ 0; . . . ;Nx. Eq. (12) can be written as

xni ¼ �axnþ1
iþ1 þ ð1þ 2aÞxnþ1

i � axnþ1
i�1 ; ð14Þ

where a ¼ ht
sDg2 > 0. In order to apply the Von Neumann technique,

we assume that

xni ¼ kn expðımDg iÞ; ð15Þ
where m is an arbitrary constant. Plugging Eq. (15) into Eq. (14) gives

1 ¼ 1� ðexpðımDg Þ � 2þ expð�ımDg Þð Þk:
Since

expðımDgÞ � 2þ expð�ımDg Þ ¼ �4 sin2ð0:5mDgÞ;
one can obtain

kj j ¼ 1
1þ4 a sin2ð0:5mDgÞj j 6 1:
Fig. 1. A 3D surface sketching a single wave for the analytic so

5

Hence, 0 6 k 6 1. As a result, Eq. (12) is unconditionally stable.
Next, we examine the stability of scheme (13) by assuming that
the mesh is uniform with an equal step size. Thus, the system is
given by

wnþ1
i þ rc wnþ1

iþ1 � wnþ1
i�1

� �þ 1
3 c wxxjnþ1

iþ1 � wxxjnþ1
i

� �
¼ wn

i þ
rc wn

iþ1 � wn
i�1

� �� 1
3 c wxxjniþ1 � wxxjni

� �
;

ð16Þ

where r ¼ 0:75wn
i � l and c ¼ ht

4Dx. Let

wn
i ¼ kn eı mDxi: ð17Þ
Substituting Eq. (17) into scheme (16) leads to

k 4
Dx2 c sin

2ð0:5mDxÞð1� eıDxÞ þ 6rcı sinðmDxÞ þ 3
� �

wn
i ¼

� 4
Dx2 c sin

2ð0:5mDxÞð1� eıDxÞ þ 6rcı sinðmDxÞ � 3
� �

wn
i

ð18Þ

Solving system (18) gives

jkj ¼
4

Dx2
c sin2ð0:5mDxÞð1�eıDxÞþ6rcı sinðmDxÞ�3

			 			
4

Dx2
c sin2ð0:5mDxÞð1�eıDxÞþ6rcı sinðmDxÞþ3

			 			 6 1:

Since jkj 6 1, the scheme is unconditionally stable.

6. Results

We now highlight the significant results achieved in this work.
The improved expð�FðgÞÞ-expansion approach is successfully exe-
cuted to extract various hyperbolic and trigonometric exact solu-
tions for Eq. (1). Some solitary wave solutions are plotted in
Figures 1, 2 and when b ¼ d ¼ 1 and N ¼ 400. The shooting
approach is effectively applied to solve the proposed problem.
The obtained solution is used as an initial condition for the adap-
tive moving mesh technique which is implemented to construct
the numerical results of Eq. (1). In Fig. 3, we plot the exact solitary
traveling wave solution, the solution of the shooting method, and
the solution of the boundary value problem method. As can be
observed in this figure, the solutions are compatible and move
together. This strongly indicates that the used method are reliable,
valid, and effective.

Moreover, we specifically invoke Taylor series expansion to
analyze the accuracy of the scheme. The accuracy is found from
the second order. However, the accuracy of the proposed numeri-
cal approach is nearly from the third order, as can be seen in the
slope of Fig. 7 which is roughly equal to 2:953. Therefore, the accu-
racy of the adaptive approach is much better than the accuracy of
lution w3ðx; tÞ under the values b ¼ 1; d ¼ 1, and N ¼ 400.



Fig. 2. The solitary wave solution of w3ðx; tÞ when b ¼ 1; d ¼ 1, and N ¼ 400.

Fig. 3. The exact solution of Vðx; tÞ obtained by employing the improved expð�FðgÞÞ-expansion technique, the solution obtained by shooting method and the numerical
solution are compatible together. This figure is plotted under the values b ¼ 1; d ¼ 1; N ¼ 400.

Fig. 4. Time development for the analytic and numerical solutions for �10 < x < 8. It shows an appropriate match between the exact and numerical solutions for various
times. We use the values b ¼ 1; d ¼ 1;N ¼ 400; t ¼ 0 : 0:5 : 2, and t ¼ 2 to sketch these figures.
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Fig. 5. The exact traveling wave solution is shown in (a) while the numerical solution is presented in (b). The solutions are plotted under the values
b ¼ 1; d ¼ 1; N ¼ 400; t ¼ 0 : 0:5 : 2; t ¼ 0 ! 3.

Fig. 6. A single traveling wave solution is depicted in (a) for the exact solution while (b) demonstrates one traveling wave for the numerical solution. The solutions are
illustrated under the values b ¼ 1; d ¼ 1; N ¼ 400; t ¼ 0 : 0:5 : 2; t ¼ 0 ! 18.

Fig. 7. Relative error for wðx; tÞ which is found by the numerical method against the grid of points Nx with b ¼ 1; d ¼ 1; t ¼ 10.
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Table 1
L2 error and the consuming CPU time until t ¼ 5.

Nx L2 error CPU (minutes)

200 3:51� 10�4 5:23� 10�2 m
400 6:11� 10�5 4:04� 10�1 m
800 8:60� 10�6 6:50� 10þ00 m
1000 4:69� 10�6 1:58� 10þ1 m
1600 1:11� 10�6 1:14� 10þ2 m
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the second order. Furthermore, the Von Neumann analysis is well
used to prove that the numerical scheme is unconditionally stable.
In Fig. 4, we draw the time evolution for the exact and numerical
results for �10 < x < 8. Fig. 4(a) indicates that the constructed
exact traveling solutions agree with the numerical solutions where
b ¼ 1; d ¼ 1, and N ¼ 400. Various times are considered in this fig-
ure. In Fig. 4(b), we describe the time evolution of the used mesh
x ¼ xðg; tÞ.

Fig. 5(a, b) show 3D plots for the obtained exact solitary travel-
ing wave solutions and numerical solutions from t ¼ 0 ! 3. Then,
we increase time to be from t ¼ 0 ! 18, as can be seen in Fig. 6
(a, b). As can be easily observed from these figures, the exact solu-
tions have nearly the same behaviors of the numerical solutions. In
addition, the effectiveness of the used methods is clearly shown in
Table 1 and Fig. 7. In this table, we demonstrate L2 error and CPU
time consumed to reach t ¼ 5 using the adaptive technique. We
start with N ¼ 200 points and found that L2 error is virtually
approaching 3:51� 10�4 which is normally acceptable. The error
decreases sharply when we increase the number of the points.
Nevertheless, the CPU time increases somewhat when the number
of the points is increased. For instance, when N ¼ 1600; L2 error
arrives at 1:11� 10�6 during 1:14� 10þ2 minutes. The slight incre-
ment in the CPU time is for the reason that the used functions are
computed with the process. Further, Fig. 7 presents that the rela-
tive error for wðx; t ¼ 10Þ dramatically drops for large values of
the points. The error rapidly declines because the adaptive process
supplies the places with high error by adequate and sufficient
points. Consequently, the adaptive technique is more computa-
tionally powerful and applicable in solving nonlinear partial differ-
ential equations.

7. Conclusions

This paper has implemented the improved expð�FðgÞÞ-
expansion method on the gKdV equation to extract new forms of
solitary wave solutions. The obtained solutions have been pre-
sented as hyperbolic and trigonometric functions. The shooting
method has been used to construct the solution of the gKdV prob-
lem. Then, we used this solution as an initial condition for the
adaptive moving mesh technique which has been successfully used
to obtain the numerical solution of the proposed problem. The val-
idation of the constructed solutions has been well achieved by
making a comprehensive comparison between the analytic and
numerical outcomes. The solutions have nearly the same behavior.
The accuracy of the adaptive method is much better and is from
the third order. The numerical scheme is found unconditional
stable. Moreover, a large number of points reduces the relative
error. The used techniques are computationally efficient to be
employed on other nonlinear partial differential problems.
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