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The objective of this paper is to reconstruct the unknown time-dependent heat source terms numerically,
for the first time, in a two-dimensional parabolic equation in the rectangular domain with initial and
Neumann boundary conditions supplemented by the temperature data as over-determination conditions.
Although, the problem is ill-posed (in the sense of Hadamard) but has a unique solution. We apply the
forward time central space finite difference scheme along with the Tikhonov regularization to find a
stable and accurate numerical solution. The MATLAB subroutine lsqnonlin is used to solve the resulting
nonlinear minimization problem. The obtained results show that accurate and stable solutions are
achieved. Computational efficiency of the method is investigated by small values of CPU-time.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last few decades, inverse problems for the parabolic
equation have received great interest in research (Cannon, 1968;
Johansson and Lesnic, 2007a,b; Hazanee et al., 2013; Hussein
et al., 2018; Erdem et al., 2013; Hasanov and Pekta, 2014; Trong
et al., 2006; Wang et al., 2014; Li and Qian, 2012; Singh et al.,
2019). Farcas and Lesnic (2006) used the conditions of the direct
problem and over-determination while Johansson and Lesnic
(2007a,b) used the standard conditions of the direct and informa-
tion from one supplementary temperature measurement for inves-
tigating a space-dependent heat source term for the parabolic heat
equation. Li and Qian (2012) investigated the inverse problem of
determining the time-dependent heat source coefficient. Authors
of Hazanee et al. (2013) studied the inverse problem of finding
the timewise coefficient along with the temperature solution of
heat equation from nonlocal and integral conditions while in
Hazanee et al. (2015), they investigated the same with a non-
classical boundary and an integral over-determination conditions.
Hazanee and Lesnic (2013) investigated it with non-local boundary
and over-determination conditions. Huntul et al. (2018) studied
the inverse problem of identifying the time- and space-
dependent terms in the heat equation. Trong et al. (2006) consid-
ered the inverse problem of determining a two-dimensional heat
source to construct regularized solutions and obtained error esti-
mation explicitly. A method of reproducing kernel Hilbert space
was proposed by Wang et al. Wang et al. (2014) for the inverse
problem of a two-dimensional heat source. Kulbay et al. (2016)
uniquely determined the solution for heat source terms F xð Þ and
H tð Þ, respectively, under some regularity assumptions of inverse
problems of the variable coefficients advection–diffusion equation
with F xð ÞH tð Þ type separable sources from additional time-
dependent temperature measurement. Recently, Hussein et al.
(2018) examined the inverse problem of identifying a multi-
dimensional space-dependent heat source term from boundary
data. Although, the problem was linear but ill-posed. Chen et al.
(2020) established the stability of an inverse source problem. The
authors of Kian and Yamamoto, 2019 considered the inverse prob-
lem of recovering the time and spacewise source terms for diffu-
sion equation. Mierzwiczak and Kolodziej (2011) investigated an
inverse problem for determining unknown right-hand side in the
steady two-dimensional parabolic equation while Yang (1998)
and Yang et al. (2013) investigated for finding the time- and
space-dependent heat sources, respectively, from the heat flux at
chosen points on the boundary and final temperature measure-
ments. The authors of Huntul and Lesnic (2020) and Huntul
(2020) studied an inverse problem to reconstruct the thermal con-
ductivity from heat flux conditions in a two-dimensional heat
equations, respectively, while in Huntul (2021), author studied it
for thermal conductivity and free boundary coefficients.
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The inverse problem of reconstructing an unknown time or
space-dependent heat source term in the heat equation has been
the point of attention of many recent studies, e.g. Wang et al.
(2020), Damirchi et al. (2021), Ahmadabadi et al. (2009), Yan
et al. (2009), Yang and Fu (2010) and Yang et al. (2011). In these
studies, in addition to being mostly restricted to one-dimensional
computations, the supplementary information required to com-
pensate for the lack of knowledge of the space-dependent heat
source is a spacewise internal measurement of the temperature
or a time-average of it. In this work, we study the two-
dimensional parabolic problem to recover the time-dependent
heat source terms numerically, for the first time, in the prescribed
domain using the initial and Neumann boundary conditions, and
the additional temperature data as over-determination conditions.
The problem considered in this paper has already been shown to be
uniquely solvable in Pabyrivska and Pabyrivskyy (2018), but the
numerical reconstruction has not been studied yet. Therefore, the
preeminent goal of the present work is to undertake the numerical
aspect of this problem.

The paper is structured as follows. Section 2 formulated the
two-dimensional inverse time-dependent source problem for the
parabolic equation. Section 3 discretized the direct problem. The
minimization technique of the regularized objective function is
described in Section 4. Section 5 presents the computational
results. Finally, Section 6 highlights the conclusions.

2. Statement of the 2D heat source problem

In the rectangular domain XT ¼ x; y; tð Þ : 0 < x < l1;f 0 < y < l2;
0 < t < Tg, consider the inverse problem of identifying the time-
dependent heat source terms f ij tð Þ for i; j ¼ 0;1 in the two-
dimensional parabolic equation

ut ¼ uxx þ uyy þ
X1

i¼0

X1

j¼0
xiyjf ij tð Þ; x; y; tð Þ 2 XT ; ð1Þ

where u ¼ u x; y; tð Þ is the unknown temperature, subject to the ini-
tial condition

u x; y;0ð Þ ¼ w x; yð Þ; x; yð Þ 2 0; l1½ � � 0; l2½ �; ð2Þ
the Neumann boundary conditions

ux 0; y; tð Þ ¼ j1 y; tð Þ; ux l1; y; tð Þ ¼ j2 y; tð Þ; y; tð Þ 2 0; l2½ � � 0; T½ �; ð3Þ

uy x;0; tð Þ ¼ j3 x; tð Þ; uy x; l2; tð Þ ¼ j4 x; tð Þ; x; tð Þ 2 0; l1½ � � 0; T½ �; ð4Þ

and the over-determination conditions

u 0;0; tð Þ ¼ v00 tð Þ; u 0; l2; tð Þ ¼ v01 tð Þ; t 2 0; T½ �; ð5Þ

u l1;0; tð Þ ¼ v10 tð Þ; u l1; l2; tð Þ ¼ v11 tð Þ; t 2 0; T½ �; ð6Þ
Table 1
The exact (20) and approximated v ij tð Þ; i; j ¼ 0;1, with M1 ¼ M2 ¼ 5 and various N 2 120f

t 0.1 0.2 0.3 . . .

v00 tð Þ �12.4096
�12.4096
�12.4100

�12.8395
�12.8396
�12.8400

�13.2896
�13.2897
�13.2900

. . .

. . .

. . .

v01 tð Þ �9.4001
�9.4001
�9.4000

�9.8003
�9.8003
�9.8000

�10.2005
�10.2005
�10.2000

. . .

. . .

. . .

v10 tð Þ �9.4001
�9.4001
�9.4000

�9.8003
�9.8003
�9.8000

�10.2005
�10.2005
�10.2000

. . .

. . .

. . .

v11 tð Þ �6.3810
�6.3809
�6.3800

�6.7215
�6.7213
�6.7200

�7.0218
�7.0215
�7.0200

. . .

. . .

. . .
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where w x; yð Þ;j1 y; tð Þ;j2 y; tð Þ;j3 x; tð Þ;j4 x; tð Þ;v ij tð Þ; i; j ¼ 0;1 are
known functions. We assume that the functions in the above equa-
tions are sufficiently regular as required in the sequel and that the
input data (2)–(6) are compatible.

The uniqueness of the solution of the inverse problem (1)–(6)
has been established in Pabyrivska and Pabyrivskyy, 2018 and
reads as follows.

Theorem 1. Suppose that the following conditions are fulfilled:

A1ð Þ f 2 C 0;T½ �ð Þ4; w x;yð Þ2C2;2 0;l1½ �� 0;l2½ �;ji x;tð Þ2C2;1 0;l1½ �� 0;T½ �; i¼1;2;

jj y;tð Þ2C2;1 0;l2½ �� 0;T½ �; j¼3;4; v ij tð Þ2C1 0;T½ �; i;j¼0;1
�

;

A2ð Þv000 tð Þ¼uxx 0;0;tð Þþuyy 0;0;tð Þþ f 00 tð Þ;
A3ð Þv010 tð Þ¼uxx 0;l2;tð Þþuyy 0;l2;tð Þþ f 00 tð Þþ l2f 01 tð Þ;
A4ð Þv100 tð Þ¼uxx l1;0;tð Þþuyy l1;0;tð Þþ f 00 tð Þþ l1f 10 tð Þ;
A5ð Þv110 tð Þ¼uxx l1;l2;tð Þþuyy l1;l2;tð Þþ f 00 tð Þþ l2f 01 tð Þþ l1f 10 tð Þþ l1l2f 11 tð Þ;
A6ð Þw0 0;yð Þ¼j1 y;0ð Þ; w0 l1;yð Þ¼j2 y;0ð Þ; w0 x;0ð Þ¼j3 x;0ð Þ; w0 x;l2ð Þ¼j4 x;0ð Þ;

w 0;0ð Þ¼v00 0ð Þ; w l1;0ð Þ¼v10 0ð Þ; w 0;l2ð Þ¼v01 0ð Þ; w l1;l2ð Þ¼v11 0ð Þ:

Then, the inverse problem (1)–(6) has a unique solution in the class

f ij tð Þ;u x; y; tð Þ� � 2 C 0; T½ �ð Þ4 � C2;1 XT

� �
for i; j ¼ 0;1.
3. Solution of the direct problem

Now, consider the direct problem (1)–(4). When f ij tð Þ; i; j ¼
0;1;w;ji; i ¼ 1;4 are known and u x; y; tð Þ is to be found. Subdivide
the domain XT into intervals M1;M2 and N of equal widths
Dx¼ l1=M1;Dy¼ l2=M2, and Dt¼ T=N. We denote un

i;j :¼u xi;yj;tn
� �

,

where xi ¼ iDx;yj ¼ jDy;tn ¼ nDt; f n00 :¼ f 00 tnð Þ; f n01 :¼ f 01 tnð Þ; f n10 :¼
f 10 tnð Þ, and f n11 :¼ f 11 tnð Þ for i¼0;M1; j¼0;M2;n¼0;N.

We apply the forward time central space (FTCS) FDM to solve
the Eq. (1) which is conditionally stable, LeVeque, 2007. So we
obtain

unþ1
i;j � un

i;j

Dt
¼ un

i�1;j � 2un
i;j þ un

iþ1;j

Dxð Þ2
þ un

i;j�1 � 2un
i;j þ un

i;jþ1

Dyð Þ2
þ f n00

þ yjf
n
01 þ xif

n
10 þ xiyjf

n
11 ð7Þ

for i ¼ 1;M1 � 1; j ¼ 1;M2 � 1 and n ¼ 0;N. For obtaining explicit
expression, the Eq. (7) is rearranged as

unþ1
i;j ¼ un

i;j þ
Dt

Dxð Þ2
un
i�1;j � 2un

i;j þ un
iþ1;j

� �

þ Dt

Dyð Þ2
un
i;j�1 � 2un

i;j þ un
i;jþ1

� �
þ Dt f n00 þ yjf

n
01 þ xif

n
10 þ xiyjf

n
11

� �
: ð8Þ
;140g, for Example 1.

0.8 0.9 1 N

�15.8406
�15.8405
�15.8400

�16.4108
�16.4107
�16.4100

-s17.0010
�17.0009
�17.0000

120
140
Exact

�12.2016
�12.2014
�12.2000

�12.6018
�12.6015
�12.6000

�13.0020
�13.0017
�13.0000

120
140
Exact

�12.2016
�12.2014
�12.2000

�12.6018
�12.6015
�12.6000

�13.0020
�13.0017
�13.0000

120
140
Exact

�7.9229
�7.9225
�7.9200

�7.9831
�7.9826
�7.9800

�8.0033
�8.0028
�8.0000

120
140
Exact
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The initial condition (2) gives

u0
i;j ¼ w xi; yj

� �
; i ¼ 0;M1; j ¼ 0;M2; ð9Þ

the Neumann boundary conditions (3) and (4) give

un
�1;j � un

1;j

2 Dxð Þ ¼ j1 yj; tn
� �

;
un
M1þ1;j � un

M1�1;j

�2 Dxð Þ ¼ j2 yj; tn
� �

;

j ¼ 0;M2; n ¼ 1;N; ð10Þ

un
i;�1 � un

i;1

2 Dyð Þ ¼ j3 xi; tnð Þ; un
i;M2þ1 � un

i;M2�1

�2 Dyð Þ ¼ j4 xi; tnð Þ;

i ¼ 0;M1; n ¼ 1;N; ð11Þ
where un

�1;j;u
n
M1þ1;j; u

n
i;�1 and un

i;M2þ1 are fictitious values situated out-
side the domain. These values can be obtained as follows:

un
�1;j ¼ un

1;j þ 2 Dxð Þj1 yj; tn
� �

; un
M1þ1;j ¼ un

M1�1;j � 2 Dxð Þj2 yj; tn
� �

;

j ¼ 0;M2; n ¼ 1;N;

un
i;�1 ¼ un

i;1 þ 2 Dyð Þj3 xi; tnð Þ; un
i;M2þ1 ¼ un

i;M2�1 � 2 Dyð Þj4 xi; tnð Þ;
i ¼ 0;M1; n ¼ 1;N:
Fig. 1. The u x; y;1ð Þ and absolute errors with M1

3

The stability condition of the explicit expression (8) is given as
(Morton and Mayers, 2005)

Dt

Dxð Þ2
þ Dt

Dyð Þ2
6 1

2
: ð12Þ
4. Inverse solution of the 2D heat source problem

Our aim is to obtain simultaneously stable reconstructions of
the heat source terms f ij tð Þ for i; j ¼ 0;1 and the temperature
u x; y; tð Þ, satisfying Eqs. (1)–(6). The inverse problem is formulated
as minimizing the regularized function

F f 00;f 01;f 10;f 11ð Þ¼ku 0;0;tð Þ�v00 tð Þk2L2 0;T½ �þku 0;l2;tð Þ�v01 tð Þk2L2 0;T½ �

þku l1;0;tð Þ�v10 tð Þk2L2 0;T½ �þku l1;l2;tð Þ�v11 tð Þk2L2 0;T½ �

þk jjf 00 tð Þjj2L2 0;T½ �þjjf 01 tð Þjj2L2 0;T½ �þjjf 10 tð Þjj2L2 0;T½ �þjjf 11 tð Þjj2L2 0;T½ �

� �
;

ð13Þ

where u x; y; tð Þ solves the direct problem (1)–(4) for given
f00; f01; f10; f11ð Þ, respectively, and k P 0 is regularization parameter
used to stabilize the approximated results. The discrete form of F
(13) is
¼ M2 ¼ 5 for: (a) N ¼ 120 and (b) N ¼ 140.



Fig. 2. The exact (22) and numerical solutions for: (a) f 00 tð Þ, (b) f 01 tð Þ, (c) f 10 tð Þ and (d) f 11 tð Þ, with p ¼ 0 and k ¼ 0, for Example 1.
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F f00; f01; f10; f11ð Þ ¼
XN
n¼1

u 0; 0; tnð Þ � v00 tnð Þ½ �2

þ
XN
n¼1

u 0; l2; tnð Þ � v01 tnð Þ½ �2

þ
XN
n¼1

u l1;0; tnð Þ � v10 tnð Þ½ �2

þ
XN
n¼1

u l1; l2; tnð Þ � v11 tnð Þ½ �2

þ k
XN
n¼1

f 200n þ
XN
n¼1

f 201n þ
XN
n¼1

f 210n þ
XN
n¼1

f 211n

 !
:

ð14Þ
The MATLAB subroutine lsqnonlin (Mathworks, 2016) is

employed to minimize the objective function (14). The inverse
problem given by (1)–(6) is solved subject to both exact and noisy
measurements (5) and (6). The noisy data is numerically formu-
lated, as follows:

v�ijij tnð Þ ¼ v ij tnð Þ þ �ijn ; i; j ¼ 0;1; n ¼ 0;N; ð15Þ
4

where �ijn are random variables with mean zero and standard
deviations

rij ¼ p�max
t2 0;T½ �

jv i;j tð Þj; i; j ¼ 0;1; ð16Þ

where p denotes the percentage of noise. We utilize the MATLAB
function normrnd for generating �ij ¼ �ijn

� �
n¼1;N; i; j ¼ 0;1, as

follows:

�ij ¼ normrnd 0;rij;N
� �

; i; j ¼ 0;1: ð17Þ

In the case of noisy data (15), we replace v ij tnð Þ by v�ijij tnð Þ in (14)

for i; j ¼ 0;1.

5. Results and discussion

The solutions for f ij tð Þ; i; j ¼ 0;1 and u x; y; tð Þ are presented for
analytical and perturbed (noisy) data (15). The accuracy is mea-
sured by

RMSE f ij
� � ¼ T

N

XN
n¼1

f numerical
ij tnð Þ � f exactij tnð Þ

� �2" #1=2
; i; j ¼ 0;1: ð18Þ
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We take l1 ¼ l2 ¼ T ¼ 1, for simplicity. The lower and upper
bounds for the coefficients f ij tð Þ; i; j ¼ 0;1 are taken as �103 and

103, respectively.

5.1. Example 1

Consider the inverse problem (1)–(6) with unknown
f 00 tð Þ; f 01 tð Þ; f 10 tð Þ; f 11 tð Þ, and with the input data
w;ji; i ¼ 1;4;v ij; i; j ¼ 0;1,

w x; yð Þ ¼ �4� �2þ xð Þ2 � �2þ yð Þ2; j1 y; tð Þ ¼ 4þ t2 þ t2y;

j2 y; tð Þ ¼ 2þ t2 þ t2y; j3 x; tð Þ ¼ 4þ t2 þ t2x;

j4 x; tð Þ ¼ 2þ t2 þ t2x; ð19Þ

v00 tð Þ ¼ �8� �2� tð Þ2; v01 tð Þ ¼ �5� �2� tð Þ2 þ t2;

v10 tð Þ ¼ �5� �2� tð Þ2 þ t2; v11 tð Þ ¼ �2� �2� tð Þ2 þ 3t2: ð20Þ
It can easily be checked that with this data, the conditions A1ð Þ–

A6ð Þ of Theorem 1 are fulfilled, hence the uniqueness of the solu-
tion is guaranteed. The analytical solution is given by

u x; y; tð Þ ¼ � �2þ xð Þ2 � �2þ yð Þ2 � �2� tð Þ2

þ x 1þ yð Þ þ yð Þt2; ð21Þ

f 00 tð Þ ¼ �2t; f 01 tð Þ ¼ 2t; f 10 tð Þ ¼ 2t; f 11 tð Þ ¼ 2t: ð22Þ
First of all, the accuracy of the direct problem (1)–(4) is assessed

with the data (19), when f ij tð Þ; i; j ¼ 0;1 are known and given by
(22), using the FTCS-FDM described in Section 3. Table 1 demon-
strates that the exact and approximate solutions for (5) and (6),
which exactly is given by (20), obtained with M1 ¼ M2 ¼ 5 and
N 2 120;140f g, are in excellent agreement. The exact (21) and
approximate u x; y; tð Þ are depicted in Fig. 1.

In the inverse problem (1)–(6), we take the initial guesses for
f00; f01; f10 and f11 as:

f 000 tnð Þ ¼ f 00 0ð Þ ¼ 0; f 001 tnð Þ ¼ f 01 0ð Þ ¼ 0;

f 010 tnð Þ ¼ f 10 0ð Þ ¼ 0; f 011 tnð Þ ¼ f 11 0ð Þ ¼ 0; n ¼ 1;N: ð23Þ
Fig. 3. The objective function F (14) with k: (a) 0, and

5

Next, we examine the inverse problem. We take a mesh size
with M1 ¼ M2 ¼ 5 and N ¼ 120 satisfying the stability condition
(12). We solve the inverse problem (1)–(6) of finding the heat
source terms f ij tð Þ; i; j ¼ 0;1 and u x; y; tð Þ with p ¼ 0 in

v ij tð Þ; i; j ¼ 0;1. Although not illustrated, it is reported that a rapid
monotonic decreasing convergence of the objective function (14)

to a very small minimum value of O 10�28
� �

is achieved in about

8 iterations. Fig. 2 depicts the obtained timewise heat source terms
with p ¼ 0 and k ¼ 0. An excellent agreement among the analytical
(22) and computational heat sources can be noticed with
RMSE f 00ð Þ=3.3E-3, RMSE f 01ð Þ = 8.3E�3, RMSE f 10ð Þ = 8.3E�3 and
RMSE f 11ð Þ = 8.3E�3.

Now, the stability of the computational solution is examined
with respect to perturbed data. We add p ¼ 0:1% noise generated
by Eq. (17) to simulate the input noisy data, via Eq. (15) for
v ij tð Þ; i; j ¼ 0;1. Fig. 3 shows the objective function (14) versus
the number of iterations, with

k 2 0;10�6;10�5;10�4;10�3;10�2
n o

, where a monotonically

decreasing convergence is obtained. The identification of the terms
f ij tð Þ; i; j ¼ 0;1 is shown in Fig. 4, where the unstable (oscillation)
results are obtained, if no regularization, i.e. k ¼ 0, is imposed with
RMSE f 00ð Þ ¼ 3:1329;RMSE f 01ð Þ ¼ 3:5603;RMSE f 10ð Þ ¼ 3:6040 and
RMSE f 11ð Þ ¼ 4:2657, respectively. In order to stabilize these coeffi-
cients, we employ regularization with k ¼ 10�3, obtaining
RMSE f 00; f 01; f 10; f 11ð Þ 2 0:4111;0:3222;0:3087;0:1970f g. Also,
from Table 2 and Fig. 4 it can be noticed that the effect of k > 0
is decreasing the unbounded behaviour (oscillatery) of the heat
source terms. Therefore, the numerical results achieved with
k ¼ 10�3 are stable and accurate. The CPU-time is calculated to
analyze the performance of the method. One can notice from
Table 2 that the CPU-time is very less.

5.2. Example 2

In Example 1, we reconstructed the smooth heat source terms
f ij tð Þ; i; j ¼ 0;1 as given in (22). Now, for compliance, we examine
the method to recover a nonlinear test:

f 00 tð Þ ¼ 4þ 4p cos 2ptð Þ; f 01 tð Þ ¼ 2p cos 2ptð Þ;
(b) 10�4 and 10�3, for p ¼ 0:1%, for Example 1.



Fig. 4. The exact (22) and numerical solutions for: f 00 tð Þ; f 01 tð Þ; f 10 tð Þ and f 11 tð Þ, with p ¼ 0:1% and k 2 0;10�4;10�3
n o

, for Example 1.
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Table 2
The RMSE (18) for p 2 0;0:1%f g, with different regularizations, for Example 1.

p k RMSE f 00ð Þ RMSE f 01ð Þ RMSE f 10ð Þ RMSE f 11ð Þ CPU time
(Mins)

0 0 3.3E�3 8.3E�3 8.3E�3 8.3E�3 3.34

0:1% 0

10�6

10�5

10�4

10�3

10�2

3.1329
2.8121
1.8183
0.7362
0.4111
0.8798

3.5603
3.0771
1.6971
0.5410
0.3222
0.7182

3.6040
3.0994
1.6573
0.4929
0.3087
0.7146

4.2657
3.5082
1.5006
0.3672
0.1970
0.6320

17.23
7.01
8.11
9.21
9.45
10.49

Fig. 5. The exact (24) and numerical solutions for: (a) f 00 tð Þ, (b) f 01 tð Þ, (c) f 10 tð Þ and (d) f 11 tð Þ, with p ¼ 0 and k ¼ 0, for Example 2.
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f 10 tð Þ ¼ 2p cos 2ptð Þ; f 11 tð Þ ¼ 2p cos 2ptð Þ; ð24Þ
and the input data w;ji; i ¼ 1;4 and v ij; i; j ¼ 0;1:
7

w x;yð Þ¼2� �2þxð Þ2� �2þyð Þ2;j1 y;tð Þ¼4þ 1þyð Þsin 2ptð Þ;
j2 y;tð Þ¼2þ 1þyð Þsin 2ptð Þ;j3 x;tð Þ¼4þ 1þxð Þsin 2ptð Þ;
j4 x;tð Þ¼2þ 1þxð Þsin 2ptð Þ;

ð25Þ



Fig. 6. The exact (24) and numerical solutions for: f 00 tð Þ; f 01 tð Þ; f 10 tð Þ and f 11 tð Þ, with p ¼ 0:1% and k 2 0;10�5;10�4
n o

, for Example 2.
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v00 tð Þ ¼ �6þ 2 sin 2ptð Þ; v01 tð Þ ¼ �3þ 3 sin 2ptð Þ;
v10 tð Þ ¼ �3þ 3 sin 2ptð Þ; v11 tð Þ ¼ 5 sin 2ptð Þ: ð26Þ
8

Also, the conditions A1ð Þ– A6ð Þ of Theorem 1 are satisfied and
therefore, the solvability of the solution is guaranteed. The analyt-
ical solution of (1)–(4) is



Fig. 7. The exact (24) and numerical solutions for: f 00 tð Þ; f 01 tð Þ; f 10 tð Þ and f 11 tð Þ, with p ¼ 1% and k 2 0;10�4;10�3
n o

, for Example 2.
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u x; y; tð Þ ¼ 2� �2þ xð Þ2 � �2þ yð Þ2 þ 2þ xþ yþ xyð Þ sin 2ptð Þ:
We take the initial guesses for f00; f01; f10, and f11 as
9

f 000 tnð Þ ¼ f 00 0ð Þ ¼ 4þ 4p; f 001 tnð Þ ¼ f 01 0ð Þ ¼ 2p;
f 010 tnð Þ ¼ f 10 0ð Þ ¼ 2p; f 011 tnð Þ ¼ f 11 0ð Þ ¼ 2p; n ¼ 1;N:

ð28Þ



Table 3
The RMSE (18) for p 2 0;0:1%;1%f g, for Example 2.

p k RMSE f 00ð Þ RMSE f 01ð Þ RMSE f 10ð Þ RMSE f 11ð Þ CPU time
(Mins)

0 0 8.1E�3 9.1E�3 9.1E�3 9.1E�3 4.94

0:1% 0

10�6

10�5

10�4

10�3

1.6971
1.4640
0.8894
0.6815
1.6373

1.9709
1.6129
0.8109
0.3890
0.7038

2.0596
1.6946
0.8554
0.3645
0.6933

2.3671
1.8327
0.7671
0.5980
1.3568

18.26
7.81
8.37
9.28
9.54

1% 0

10�5

10�4

10�3

10�2

16.8578
8.4550
2.9819
1.7343
3.4669

19.6828
7.9392
2.2630
0.8316
1.1545

20.5685
8.4390
2.2954
0.7640
1.1702

23.6539
7.4939
1.8396
1.3496
2.1615

29.34
13.89
14.72
15.48
16.91
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We take M1 ¼ M2 ¼ 5 and N ¼ 140, which together with the
upper bound 103 for the source terms f 00; f 01; f 10 and f 11 satisfying
the stability condition (12).

As in Example 1, first consider the case where we include no
noise in v ij tð Þ; i; j ¼ 0;1. Although not illustrated, it is reported that

the F (14) decreases fastly to a low tolerance of O 10�29
� �

is

reported in 17 iterations. The analytical (24) and approximate
source terms f 00 tð Þ; f 01 tð Þ; f 10 tð Þ and f 11 tð Þ are plotted in Fig. 5,
where the reconstructed source terms are in excellent agreement
with the exact solutions.

Next, we include p 2 0:1%;1%f g noise in the input data
v ij tð Þ; i; j ¼ 0;1, as in (15). The corresponding exact (24) and
numerical solutions for the unknown coefficients are presented in
Figs. 6 and 7 for various regularizations, respectively. When k ¼ 0,
we obtain inaccurate and unstable approximations, with RMSE val-
ues (18) of 1:6971;1:9709;2:0596;2:3671f g, for p ¼ 0:1%, and
16:8578;19:6828;20:5685;23:6539f g, for p ¼ 1%. We apply the
Tikhonov regularization method to overcome this instability. We
deduce that k ¼ 10�4 for p ¼ 0:1%, and k ¼ 10�3 for p ¼ 1% provides
a stable and accurate numerical solutions for the unknown heat
sources having the RMSE values (18) of 0:6815;0:3890;f
0:3645;0:5980g and 1:7343;0:8316;0:7640;1:3496f g, respectively.
Also, from Figs. 6, 7 and Table 3 it is observed that when p decreas-
ing from 1% to 0:1% and then to zero, accuracy and stability of the
approximated results increased. Finally, Figs. 6, 7 and Table 3 have
the same source terms as Fig. 4 and Table 2, and we can draw the
similar conclusions about the stable reconstructions for the heat
source terms. It is clear from Table 3 that the CPU-time is very less.
6. Conclusions

The inverse problem relating to the reconstruction of the time-
dependent heat source terms f ij tð Þ; i; j ¼ 0;1 and the temperature
u x; y; tð Þ in a two-dimensional parabolic equation from the over-
determination conditions has been numerically studied for the first
time. The direct problem has been discretized using the FTCS-FDM.
The RMSE values for noise with and without regularization for
Example 1 and 2 are compared. The numerical results for the
inverse problem are presented and discussed. It has been con-
cluded that k ¼ 10�4 for p ¼ 0:1%, and k ¼ 10�3 for p ¼ 1% pro-
vides a stable and accurate solution for the unknown heat source
terms. Finally, the generalization of the proposed method to recon-
struct the heat source coefficients in the three-dimensional para-
bolic problem is an interesting topic for future research.
10
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