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In the present paper, the nature of a plane piston moving with constant velocity in a gas with dust par-
ticles in the presence of weak gravitational field is analyzed by using a combination of two methods, viz.,
perturbation method and similarity transformation. In perturbation method the physical variables are
expanded as a series of small parameter. The zeroth order result represents the uniform flow which is
affected by dust particles of the mixture without gravity. The first order result shows the consequence
of applied gravity in a dusty gas. The effect of dust particles present in the gas and applied gravity on
the distribution of flow variables has been discussed for the case of weak and strong shock wave. The
structure of the shock wave front is also discussed.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dusty gas is the mixture of perfect gas and a large number of
spherically small solid particles. The solid particle motion in rocket
exhaust and dust flow in geophysical and astrophysical problems
are the most important physical phenomena in which considered
volume is mixture of gas and dust particles. Here, we consider that
solid particles are of uniform size and uniformly distributed in the
gas and volume of the small solid particles is considered to be very
less with comparison to the volume of the mixture (Chadha and
Jena, 2014, 2015). In case of the propagation of shock wave the
velocity of the mixture is very high so the dust particles present
in the mixture are assumed to be a pseudo fluid. The applied grav-
ity is dominated in stellar atmosphere that contains gas and a
small amount of dust particles. The unsteady motion in dusty gas
under the effect of weak gravitational field, which is discussed in
the present paper, have a great significance in the field of physical
sciences. The transient process in the solar atmosphere is an
important dynamical problem and is an unsteady process. The
impulsive motion of the piston in backward direction causes a
rarefaction wave and forward motion generates a compressive
wave moving into the gas. When a shock wave induced by the
motion of plane piston is propagated in a dusty gas the physical
parameters change across the shock, and have a significant differ-
ence from those which arise when the shock wave induced by pis-
ton passes through an ideal gas.

The propagation of shock wave induced by piston in compress-
ible fluid is formulated mathematically as a system of quasilinear
hyperbolic system of partial differential equations. The problem
of shock wave in a gaseous medium has drawn attention to a num-
ber of authors during the past decades. The most important break-
through was made by Friedrichs (1984), Whitham (1956), Sedov
(1959), Chisnell (1955), Chisnell and Yousaf (1982)to study the
shock wave for ideal isentropic gas dynamics. Pai (1977), Miura
and Glass (1983), Miura (1972), Carrier (1958), Pai et al. (1983,
1980), Vishwakarma and Nath (2009), Jena and Sharma (1999),
Vishwakarma et al. (2017), Singh et al. (2012), Anand (2014a,b)
have studied the shock wave in dusty gas. Arora and Siddiqui
(2013), Arora et al. (2012), Bira and Sekhar (2015)examined the
behaviour of shock wave in non ideal gas. Bira and Sekhar (2013)
have studied the nature of shock wave in magnetogasdynamics.
Sharma and Shyam (1981) discussed the growth and decay of weak
discontinuity in radiating gas dynamics. Singh and Jena (2016)
evaluated the behaviour of weak shock wave in non-ideal relaxing
gas. The presence of gravity in the transient process of astrophysics
play very important role, so the consideration of gravity is impor-
tant and relevant Wen-rui (1985), Singh et al. (2011), Nath and
Sahu (2016)studied the shock wave problem in the presence of
gravitational field. In the present paper, the effect of dust particles
on weak and strong shock wave between the region from the
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piston position to shock front is analysed by using perturbation
method and similarity transformation technique. The effect of dust
particles on the wave front is also discussed.

2. Basic equations

The basic equations governing the motion of one dimensional
planar flow of a transient gas with dust particles in a local region
of stellar atmosphere may be written in the following form
(Wen-rui, 1985)

@.
@t

þ #
@.
@x

þ .
@#

@x
¼ 0; ð1Þ

@#
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þ #
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@#

@x
¼ 0; ð3Þ

where .; # and p are density, velocity and pressure of the dusty gas
in the local region respectively and t is the time and x is spatial
coordinate. In the present study the centre of the star is assumed
as origin and x-axis is taken in the direction of stellar radius. G
and M stand for the universal gravitational constant and stellar
mass respectively. The equation of state for dusty gas flow is given
by Pai (1977) as

p ¼ 1� kp
1� Z

.RT;

where R is gas constant. The entity a ¼ Cp= . 1� Zð Þð Þð Þ1=2 is the
speed of sound in the dusty gas, where Z ¼ Vsp=Vg , denotes the vol-
ume fraction of solid particles with Vsp and Vg are the volume of the
dust particles and the gas respectively. The specific heat of dusty
gas at constant pressure is given by cpd ¼ kpcsp þ 1� kp

� �
cp, where

cp and csp stands for specific heat of gas and specific heat of solid
particles respectively and kp ¼ msp=mg is the mass fraction of solid
particles with msp and mg are the masses of solid particles and gas
respectively. If cvd denotes the specific heat of dusty gas at constant
volume then the ratio of specific heats for dusty gas is given by Pai
(1977) C ¼ cpd

cvd
¼ cþbd

1þbd, where d ¼ kp= 1� kp
� �

; b ¼ csp=cp; c ¼ cp=cv
with cv as specific heat of gas at constant volume. The relation
between the parameters Z and kp is kp ¼ Z.sp=., where .sp stands
for the density of solid particles in dusty gas. Since mass fraction
of solid particles must be constant in the equilibrium flow therefore
Z=. = constant (say h). The entities Z and kp are also related by
Z ¼ kp= 1� kp

� �
Xþ kp

� �
, where X ¼ .sp=.g with .sp and .g are the

density of solid particles and gas respectively.
According to the theory of similarity and dimensional analysis

(Sedov, 1959) the dimension of velocity may be written as

n ¼ x
t
: ð4Þ

Since in our model the gravitational field is also present which leads
another quantity for velocity dimension given as (Wen-rui, 1985)

#g ¼
ffiffiffiffiffiffiffiffi
GM
x

r
: ð5Þ

In the presence of weak gravitational field, the gravitational velocity
(5) is lesser than both the sound and plasma velocity. To discuss the
basic flow properties, the following non dimensional parameters
are introduced

e# ¼ #

#�
; ea ¼ a

a�
; et ¼ t

t�
; ex ¼ x

x�
ð6Þ

and
e ¼ #2
g

#2
�
� 1: ð7Þ

where #� represents the typical velocity and x�; t� stands for the
space and time. For isentropic flow, the Eqs. (1)–(3) may be written
in terms of non-dimensional parameters defined by (6) and (7) and
suppressing the tilde sign as
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To construct the solution we introduce the following expansion of
flow variables in terms of small parameter e as

a ¼ a 0ð Þ þ ea 1ð Þ þ e2a 2ð Þ þ . . . . . . . . . ; ð10Þ

. ¼ . 0ð Þ þ e. 1ð Þ þ e2. 2ð Þ þ . . . . . . ::; ð11Þ

# ¼ # 0ð Þ þ e# 1ð Þ þ e2# 2ð Þ þ . . . . . . :: ð12Þ
Using the expansion (10)–(12) of the flow variables in Eqs. (8) and
(9) and collecting the terms of zero order, we have
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The Eqs. (13) and (14) may be transformed in terms of similarity
variable n in the following form

# 0ð Þ � n
� � @a 0ð Þ
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The Riemann invariants for the above system are given as

# 0ð Þ � 2 1� Z0ð Þ
C� 1

¼ const: ð17Þ

The solution of the problem is determined under consideration
that the velocity of the piston is constant and the flow variables
ahead of the shock is uniform i.e.

# 0ð Þ ¼ const:; a 0ð Þ ¼ const: ð18Þ
Collecting the terms of first–order from the expansion of Eqs.

(10)–(12), we have
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and similarly for all higher order terms. In this method, all relations
of higher order, excluding the zeroth order relation, are linear. So,
the effect of the gravity on the transient process in astrophysics
and space science for all higher order equations is linear. By dimen-
sional methods, the solution of the first order relations may be
taken as

# 1ð Þ n; tð Þ ¼ t�mf nð Þ; a 1ð Þ n; tð Þ ¼ t�ng nð Þ: ð21Þ
Using Eq. (21) in Eqs. (19) and (20), we have

m ¼ n ¼ 1:
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If we consider the typical velocity #� as the plane piston velocity #p ,
which is assumed to be a constant, the initial velocity becomes

# 0ð Þ ¼ 1;

and the boundary condition at the plane piston will be

f 1ð Þ ¼ 0: ð22Þ
Let n ¼ x=t

#�
, then Eqs. (19) and (20) may be written in terms of n and

say it is equivalent to £1 and £2 as

£1 f ; gð Þ � 1� nð Þ @g nð Þ
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@n
� g nð Þ ¼ 0; ð23Þ
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þ 2 1�Z0ð Þ
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� f nð Þ¼1=n2: ð24Þ
3. Jump conditions for weak shocks

The Rankine–Hugoniot jump conditions for dusty gas may be
written as (Anand, 2014a,b)

. ¼ C� 1þ 2Z0

Cþ 1
þ 2 1� Z0ð Þ

Cþ 1
a0
s

� �2� ��1

.0; ð25Þ
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1

s
; ð26Þ

p ¼ p0 þ
2 1� Z0ð Þ
Cþ 1

s2 � a20
	 


.0; ð27Þ

where the subscript ‘‘0” denotes the quantity evaluated in undis-
turbed region and s is the shock speed. Also p; #; . are the pressure,
velocity and density in the disturbed region. Expanding the vari-
ables p and s in terms of e similar to the Eqs. (10)–(12), the zero
order Rankine–Hugoniot jump relations may be express as

. 0ð Þ ¼ C� 1þ 2Z0

Cþ 1
þ 2 1� Z0ð Þ

Cþ 1
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s 0ð Þ2 � a20
h i

.0: ð30Þ

Also the first order Rankine–Hugoniot jump relations may be
expressed as
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where the subscript ‘‘s” stands for the value evaluated at the shock
n ¼ ns. With the help of (10–12), the zeroth order speed of sound
may be written as

a 0ð Þ ¼ Cp 0ð Þ= . 0ð Þ 1� h. 0ð Þ� �� �� �1=2
: ð34Þ

Also the first order sound speed may be written as

a 1ð Þ ¼ a 0ð Þ

2
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p 0ð Þ � d
. 1ð Þ

. 0ð Þ

� �
; ð35Þ
with d ¼ 1� 2h. 0ð Þ� �
= 1� h. 0ð Þ� �

. From Eqs. (32) and (33), the speed
of sound at the shock is given by
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From Eqs. (34) and (36), we have a relation between f nsð Þ and g nsð Þ
as

f nsð Þ ¼ ag nsð Þ; ð37Þ
where the constant a is given by the following relation

1
a
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1�Z0ð Þ.0s
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24 35
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0

 !
:

ð38Þ
With the help of Eqs. (22) and (36), perturbation state Eqs. (23) and
(24) may be solved for the region 1 6 n 6 s 0ð Þ=#p.

The solution of the piston problem in the mixture of gas and
dust particles may be reduced in two elementary solutions as
(Wen-rui, 1985)

£1 f 1; g1ð Þ ¼ 0; £2 f 1; g1ð Þ ¼ � 1
n2

; f 1 1ð Þ ¼ 0; g1 1ð Þ ¼ 0

and

£1 f 2; g2ð Þ ¼ 0; £2 f 2; g2ð Þ ¼ 0; f 2 1ð Þ ¼ 0; g2 1ð Þ ¼ 1:

Since the Eqs. (23) and (24) and relation (37) are linear, so the solu-
tion of plane piston problem in dusty gas may be given as

f nð Þ ¼ f 1 nð Þ þ Af2 nð Þ; g nð Þ ¼ g1 nð Þ þ Ag2 nð Þ;
where Ais arbitrary constant, which is determined with the help of
Eq. (37) as

A ¼ f 1 nsð Þ � ag1 nsð Þ
ag2 nsð Þ � f 2 nsð Þ :

In figures, continuous and broken lines denote the function f nð Þ
and g nð Þ respectively. Since the strength of the shock wave
depends on # 1ð Þ

s i.e. f nsð Þ, therefore f nsð Þ � 0 shows that the
strength of shock wave in dusty gas changes due to applied gravity.
An increasing nature of f nð Þ near the piston shows that the kinetic
energy of dusty gas increases near the piston and decreasing nat-
ure of f nð Þ at the shock n ¼ ns shows that the kinetic energy of
dusty gas decreases at the shock. The monotonic decreasing nature
of g nð Þ shows that the internal energy between piston and shock
wave of the dusty gas will exhaust to overcome the applied gravity.
An increment in any one parameter among kp; b and X causes to
decrease the internal energy of dusty gas between piston and
shock wave. From Fig. 1. it is clear that an increase in the value
of kp at constant X and b causes to increase the kinetic energy of
dusty gas near the piston and to decrease at the shock wave. From
Fig. 2. we infer that the increasing values of b at constant X and kp
causes to increase the kinetic energy of dusty gas near the piston
and decrease at the shock wave. From Fig. 3. it may be noted that
the increasing values of X at constant kp and b results in an
increase in the kinetic energy of dusty gas near the piston and to
decrease at the shock wave.



Table 1
a/s = 0.50.

kp b c X d s
#p

a0
#p

a0
#p

a

0.0 0.5 1.66666 1000 0.00000 1.77778 1.2814 0.888889 2.0842
0.2 0.5 1.66666 1000 0.25000 1.70157 1.17808 0.850787 2.47471
0.4 0.5 1.66666 1000 0.66666 1.62013 1.06718 0.810063 3.10873

Table 2
a/s = 0.75.

kp b c X d s
#p

a 0ð Þ
#p

a0
#p

a

0.0 0.5 1.66666 1000 0.00000 3.04762 2.63114 2.28571 2.72098
0.2 0.5 1.66666 1000 0.25000 2.91698 2.47418 2.18774 3.27565
0.4 0.5 1.66666 1000 0.66666 2.77736 2.3064 2.08302 4.19054

Table 3
a/s = 0.50.

kp b c X d s
#p

a 0ð Þ
#p

a0
#p

a

0.1 0.0 1.66666 1000 0.111111 1.77797 1.28172 0.888987 2.08294
0.1 0.5 1.66666 1000 0.111111 1.74031 1.23064 0.870153 2.25878
0.1 1.0 1.66666 1000 0.111111 1.70852 1.18745 0.854261 2.43343

Table 4
a/s = 0.75.

kp b c X d s
#p

a 0ð Þ
#p

a0
#p

a

0.1 0.0 1.66666 1000 0.111111 3.04796 2.63158 2.28597 2.7194
0.1 0.5 1.66666 1000 0.111111 2.98338 2.55396 2.23754 2.96798
0.1 1.0 1.66666 1000 0.111111 2.9289 2.48846 2.19667 3.21638

Table 5
a/s = 0.50.

kp b c X d s
#p

a 0ð Þ
#p

a0
#p

a

0.1 0.5 1.66666 10 0.111111 1.75945 1.26246 0.879724 2.12154
0.1 0.5 1.66666 100 0.111111 1.74205 1.23353 0.871023 2.24557
0.1 0.5 1.66666 1000 0.111111 1.74031 1.23064 0.870153 2.25878

Table 6
a/s = 0.75.

kp b c X d s
#p

a 0ð Þ
#p

a0
#p

a

0.1 0.5 1.66666 10 0.111111 3.30162 2.59621 2.26215 2.79453
0.1 0.5 1.66666 100 0.111111 2.98636 2.5578 2.23977 2.95133
0.1 0.5 1.66666 1000 0.111111 2.98338 2.55396 2.23754 2.96798
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4. Strong shock wave approximation

In case of strong shock wave, the flow region becomes narrow
and n� 1 6 ns � 1 � 1, as a result Eqs. (23) and (24) may be writ-
ten as Table 7

C� 1þ 2Z0

2 1� Z0ð Þ a 0ð Þf 0 nð Þ � g nð Þ ¼ 0; ð39Þ

2 1� Z0ð Þ
C� 1þ 2Z0

a 0ð Þg0 nð Þ � f nð Þ ¼ � 1
n2

: ð40Þ

From Eqs. (39) and (40), we have

@2f

@n2
þ 1

n
@f
@n

� 1
a 0ð Þ2n2

f ¼ � 1
a 0ð Þ2n4

: ð41Þ
The general solution of Eq. (41) may be written as

f nð Þ ¼ c1n
x þ c2n

�x þ x2

x2 � 4ð Þ
1
n2

: ð42Þ

Using above equation in Eq. (39), we have

g nð Þ ¼ C� 1þ 2Z0ð Þ
2 1� Z0ð Þn c1n

x þ c2n
�x � 2x

x2 � 4ð Þ
1
n2

� �
; ð43Þ

where x ¼ 1=a 0ð Þ and c1; c2 are constants, which are determined
with the help of Eqs. (22) and (37) as

c1 ¼ x
4�x2ð Þ

x C�1þ2Z0
2 aþ 1�Z0ð Þns

	 

n�xs � C�1þ2Z0ð Þaþ 1�Z0ð Þxns½ 	n�2

s
C�1þ2Z0

2 a� 1�Z0ð Þns
	 


nxs þ C�1þ2Z0
2 aþ 1�Z0ð Þns

	 

n�xs

" #
;

ð44Þ



Table 7
Value of function f nsð Þ for varying parameters of dust particles.

kp b X f nsð Þ
0.0 0.5 1000 �0.497847
0.2 0.5 1000 �0.623254
0.4 0.5 1000 �0.841998
0.1 0.0 1000 �0.499713
0.1 0.5 1000 �0.553561
0.1 1.0 1000 �0.606005
0.1 0.5 10 �1.0468
0.1 0.5 100 �0.577153
0.1 0.5 1000 �0.553561

Fig. 1. Profile of functions f and g for Tables 1 and 2.

Fig. 3. Profile of functions f and g for Tables 5 and 6.

Fig. 2. Profile of functions f and g for Tables 3 and 4.
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c2 ¼ x
4�x2ð Þ

x C�1þ2Z0
2 a� 1�Z0ð Þns

	 

nxs � C�1þ2Z0ð Þaþ 1�Z0ð Þxns½ 	n�2

s
C�1þ2Z0

2 a� 1�Z0ð Þns
	 


nxs þ C�1þ2Z0
2 aþ 1�Z0ð Þns

	 

n�xs

" #
:

ð45Þ
Using above results in (21) the first order solutions are given as,

# 1ð Þ ¼ 1
x

c1
x
t

� �1þx
þ c2

x
t

� �1�x
þ x2

x2 � 4ð Þ
t
x

� �2
" #

; ð46Þ

a 1ð Þ ¼ C� 1þ 2Z0ð Þ
2 1� Z0ð Þx c1

x
t

� �x
� c2

x
t

� ��x
� 2x

x2 � 4ð Þ
t
x

� �2
" #

: ð47Þ



Fig. 4. Profile of functions f and g for different values of kp .

Fig. 5. Profile of functions f and g for different values of b.

Fig. 6. Profile of functions f and g for different values of X.
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From the above table it is clear that f nsð Þ is negative for dusty
gas in which volume fraction of dust particles is less than five
percentage of the total volume of gas. Hence strength of shock
wave becomes weak. it is also observed here that by increasing
the value of any one parameter among b; kp and X causes to
further weaken the strength of shock wave. From Eq. (43), we
have g0 nð Þ < 0 therefore g nð Þ is monotonic decreasing function
of n, hence internal energy will exhaust. Also it is observed that
in case of strong shock wave the effect of presence of dust par-
ticles in the gas have similar behaviour as in case of weak shock
wave. From Eq. (39), we have
f 0 1ð Þ ¼ 2 1� Z0ð Þ
C� 1þ 2Z0ð Þa 0ð Þ g 1ð Þ;

which shows that the effect of presence of dust particles is to accel-
erate the wave motion if the sign of g 1ð Þ is positive and deceleration
will occur if g 1ð Þ is negative.

From Eq. (40), we have

g0 1ð Þ ¼ � C� 1þ 2Z0ð Þ
2 1� Z0ð Þa 0ð Þ 1� f 1ð Þð Þ:
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Negative sign of g0 1ð Þ shows that the internal energy of dusty gas
will exhaust and an increment in the value of any one parameters
among b; kp and X will contribute in rapid decrease of internal
energy of dusty gas.

5. Discussion

In the present section we discuss the structure of the shock
wave front. The characteristic lines for the system of equations
(1)–(3) are given as

dx
dt

¼ #� a; #; #þ a: ð48Þ

Substituting the value of # and a from Eqs. (9) and (11), we have

dx
dt

¼ # 0ð Þ � a 0ð Þ þ e # 1ð Þ � a 1ð Þ� �
; ð49Þ

dx
dt

¼ # 0ð Þ þ e# 1ð Þ; ð50Þ

dx
dt

¼ # 0ð Þ þ a 0ð Þ þ e # 1ð Þ þ a 1ð Þ� �
: ð51Þ

From the Eqs. (49)–(51)it is clear that the characteristics are not
straight lines in the presence of applied gravity. The inclination of
second and third characteristics near the piston increases in case of
without gravity whereas tendency of first characteristics is oppo-
site to second and third characteristics.

We now discuss the effect of presence of dust particles in the
gas on the nature of shock front. In the presence of weak gravita-
tional field in dusty gas, the position of shock front is given as

x
t
¼ sþ es0; ð52Þ

which shows that the inclination of shock front decreases due to
presence of gravitational field because the strength of shock wave
becomes weak due to applied gravity. Since increment in the dust
particle parameters will participate in the strength of shock wave
and causes to weaken it, so increment in the dust particle parame-
ter will contribute in decreasing the inclination of shock front. To
discuss the piston problem in dusty gas with boundary conditions
at the piston

# n¼1 ¼ #p; a n¼1 ¼ ap;






which requires the perturbation state boundary conditions given as

f 1ð Þ ¼ 0; g 1ð Þ ¼ 0: ð53Þ
The solution profiles of equations (23) and (24) together with
boundary condition (53) are shown in Figs. 4–6. The result shows
that the internal energy of shock wave front in dusty gas will
exhaust more rapidly with an increase in the value of kp; b and X
and shock wave becomes weak due to applied gravity.

6. Conclusion

In the present work, the motion of plane piston in dusty gas
under the influence of weak gravitational field is discussed and fol-
lowing conclusion may be drawn from the above discussion.

1. In case of weak shock wave, the internal energy of dusty gas
between piston and shock wave decreases. An increment in
the value of any one parameter among kp; b and X causes to
decrease the internal energy of the dusty gas between piston
and shock wave.

2. In case of weak shock wave, the kinetic energy of the dusty gas
increases near the piston and decreases at the shock wave.
3. In case of weak shock wave, an increment in the value of any
one parameter among kp; b andX causes to increase the kinetic
energy of the dusty gas near the piston and to decrease at the
shock.

4. An increment in the value of any one parameter among kp; b
and X results to further weaken the strong shock wave.

5. Internal energy of strong shock wave will exhaust due to
applied gravity and an increment among any one parameter
kp; b and X will contribute in rapid decrease in internal energy
of dusty gas.

6. it is observed that the solution of The plane piston problem
with weak gravitational field in a dusty gas reduces to the solu-
tion presented by Wen-rui (1985) for h ¼ 0.
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