
Journal of King Saud University – Science (2017) 29, 191–205
King Saud University

Journal of King Saud University –

Science
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Fragmented protein sequence alignment using

two-layer particle swarm optimization (FTLPSO)
* Corresponding author. Tel.: +20 1116688052.

E-mail addresses: mrnaamm@hotmail.com, nour.alhuda762@gmail.

com (N. Moustafa), melhosseini@gmail.com (M. Elhosseini), t.h.

taha@gmail.com (T.H. Taha), dr_mofreh@mans.edu.eg (M. Salem).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksus.2016.04.007
1018-3647 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Nourelhuda Moustafa a,*, Moustafa Elhosseini a, Tarek Hosny Taha b,

Mofreh Salem a
aComputers Engineering & Control Systems Dept., Mansoura University, P.O. box: 35516, Egypt
bCity for Scientific Research and Technology Applications, Environmental Biotechnology, P.O. box: 21934, New Borg

El-Arab, Egypt
Received 25 November 2015; accepted 23 April 2016
Available online 3 May 2016
KEYWORDS

Multiple sequence alignment;

Particle swarm optimization;

Fragmentation;

Two-layer PSO
Abstract This paper presents a Fragmented protein sequence alignment using two-layer PSO

(FTLPSO) method to overcome the drawbacks of particle swarm optimization (PSO) and improve

its performance in solving multiple sequence alignment (MSA) problem. The standard PSO suffers

from the trapping in local optima, and its disability to do better alignment for longer sequences. To

overcome these problems, a fragmentation technique is first introduced to divide the longer datasets

to a number of fragments. Then a two-layer PSO algorithm is applied to align each fragment, which

has ability to deal with unconstrained optimization problems and increase diversity of particles. The

proposed method is tested on some Balibase benchmarks of different lengths. The numerical results

are compared with CLUSTAL Omega, CLUSTAL W2, TCOFFEE, KALIGN, and DIALIGN-

PFAM. It has been shown that better alignment scores have been achieved using the proposed tech-

nique FTLPSO. Further, studies on PSO update equation’s parameters and the parameters of the

used scoring functions are presented and discussed.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bioinformatics is an interdisciplinary field which studies com-
bining aspects of biology, mathematics, and computer science.
The bioinformatics can develop and improve methods for stor-

ing, retrieving, organizing and analyzing biological data
(Cohen, 2004). A major activity in bioinformatics is to develop
software tools to generate useful biological knowledge. One of

the very important areas in bioinformatics is sequence align-
ment. The first step of creating phylogenetic trees is comparing
sequences, grouping them according to their degree of similar-

ity using alignment. Determination of the consensus sequence

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2016.04.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mrnaamm@hotmail.com
mailto:nour.alhuda762@gmail.com
mailto:nour.alhuda762@gmail.com
mailto:melhosseini@gmail.com
mailto:t.h.taha@gmail.com
mailto:t.h.taha@gmail.com
mailto:dr_mofreh@mans.edu.eg
http://dx.doi.org/10.1016/j.jksus.2016.04.007
http://dx.doi.org/10.1016/j.jksus.2016.04.007
http://www.sciencedirect.com/science/journal/10183647
http://dx.doi.org/10.1016/j.jksus.2016.04.007
http://creativecommons.org/licenses/by-nc-nd/4.0/

192 N. Moustafa et al.
of several aligned sequences can help develop a finger print
sequence which allows the identification of members of dis-
tantly related protein family. Most recent protein secondary

structure prediction and analysis methods also use sequence
alignments to improve the prediction quality (Di Francesco
et al., 1996; Jagadamba et al., 2011).

Sequence alignment is used to arrange the sequences of
DNA, RNA, or protein to identify regions of similarity. When
regions of similarities between aligned sequences increase, it

gives information that there is a similarity between these
sequences in their function, their secondary and tertiary struc-
ture (Cohen, 2004). Solving the sequence alignment problem
depends on gap insertion (Katoh and Standley, 2016). The

gap should be inserted in correct places such that the align-
ment can achieve high residue matching and high scores Align-
ment problem may be applied on only two sequences, called

pairwise alignment, PWA (Agrawal and Huang, 2009; Sierk
et al., 2010), or on more than two sequences, called multiple
sequence alignment, MSA (Sievers et al., 2011; Subramanian

et al., 2008).
The optimization problem of the MSA is used to be solved

using dynamic programming (Needleman and Wunsch, 1970;

Smith and Waterman, 1981), and progressive methods (Al
Ait et al., 2013; Lalwani et al., 2015). However, problems of
high processing and high memory usage may be faced with
no guarantee that the system will reach the optimal solution.

The new trend is using iterative approach techniques due to
their simplicity, and ability to solve multidimensional opti-
mization problems in many fields (Das et al., 2008; Kiranyaz

et al., 2009). Particle swarm optimization (PSO) is a swarm
intelligent technique which proves its ability in solving MSA
problem. However, the PSO suffers from the trapping of par-

ticles in local optima. Moreover, the PSO algorithm can han-
dle short sequences in an efficient way, but increasing
sequence lengths lead to decreasing solution accuracy. The

main targets of this paper are to:

– Pave the way for PSO to deal with different sequence
lengths.

– Give PSO the ability to solve MSA problems and achieve
high scores.

– Make PSO safe from falling in a local optimal point as

possible.

To achieve these goals, fragmentation is proposed to

shorten the long sequences, and to let the swarm focus on find-
ing the optimal solution of the small fragment within a small
search space, which has a less number of local optimal solu-
tions. Then, a PSO variant is selected to align each fragment

alone. This variant is two-layer PSO (TLPSO). It is selected
due to its ability to solve unconstrained problems such as
MSA. These two layers contain many swarms: R swarms in

the first layer, and one swarm in the second layer. Particles
in every swarm are dealing with each other using Local-PSO
variant as a way to give the particles more ability to reach

the optimal solution without trapping in a local optima.
Finally, mutation is used to give more help to the swarm if it
has been trapped.

The rest of paper is organized as follows: the history of
alignment problem is mentioned in Section 2, followed by
the alignment scoring functions in Section 3. A description
of particle swarm optimization technique is illustrated in Sec-
tion 4. The proposed algorithm is introduced in Section 5.
Finally, the computed results with discussion, followed by
some parametric studies are presented in Section 6.
2. Related work

Many methods are presented to solve alignment method such

as dynamic programming, progressive, consistency-based, and
iterative methods.

Dynamic programming technique creates a matrix of n-

dimensions for n sequences. The matrix is filled with scores
by some calculations, and then the optimal path can be found.
The dynamic programming technique gives an optimal align-

ment score, but it depends on the number of sequences n.
Therefore, the computational time and memory usage will be
increased by increasing the n value. So, dynamic programming

can’t be used for more than two sequences practically although
it can align multiple sequences theoretically (Suresh and
Vijayalakshmi, 2013).

Progressive alignment is used to align multiple sequences,

by aligning each two sequences together, creating a guide tree
based on the similarity score of each two pairs, and aligning all
sequences one by one. One of the first and most famous pro-

gressive alignment methods is CLUSTAL W (Thompson
et al., 1994). One disadvantage of a progressive alignment is
that the algorithm is greedy. This means that the alignment

depends on the early aligned pair of sequences. Therefore,
any early happened mistake will affect the rest of the progres-
sive alignments. Also the time to perform such progressive
alignments is proportional to the number of sequences

(Lalwani et al., 2013b). To overcome the greedy problem,
CLUSTAL W2 (Larkin et al., 2007) does a progressive align-
ment many times using different gap penalty scores, and

accepts the best score. KALIGN (Lassmann and
Sonnhammer, 2005) also follows the standard progressive
alignment except it depends on Wu–Manber (Wu and

Manber, 1992) as a pairwise distance estimator instead of k-
tuple used by CLUSTAL.

Another approach is a consistency based approach, which

depends on the principle of maximizing the agreement of pair-
wise alignment. It looks for an agreement in which the created
tree gives high accuracy when used for further progressive
alignment. DIALIGN (Morgenstern et al., 1996), and TCOF-

FEE (Notredame et al., 2000) are two examples of consistency
based algorithm. DIALIGN combines local and global align-
ment features. It depends on discovering local homologies

among sequences, as discovering conserved (functional)
regions. Many variants of DIALIGN are presented including
Anchored DIALIGN (Morgenstern et al., 2006) and

DIALIGN-TX (Subramanian et al., 2008). The newest variant
depends on PFAM database (Finn et al., 2008) which collects
protein families, in which these families are represented by
multiple sequence alignment. This variant is called

DIALIGN-PFAM (Al Ait et al., 2013). TCOFFEE depends
on creating libraries of both global and local pairwise align-
ment as a step to do multiple sequence alignment.

Because dependency on consistency based approach alone
does not guarantee the accuracy of the alignment, post pro-
cessing using iterative refinement is used to improve the perfor-

mance of progressive alignment. MAFFT (Katoh et al., 2002),
and MUSCLE (Edgar, 2004) are two examples of progressive-

Fragmented protein sequence alignment 193
iterative approach. Every iteration they update the tree and re-
do MSA until there is no improvement in the score. Computa-
tional intelligence techniques also used to enhance the align-

ment results given by progressive alignment techniques
(Pankaj and Pankaj, 2013; Suresh and Vijayalakshmi, 2013).
Other approach is probabilistic consistency transformation

based strategy (using HMM), which is used from many tools
such as probcon (Do et al., 2005), probalign (Roshan and
Livesay, 2006), and CLUSTAL Omega (Sievers et al., 2011).

This approach is used to decide the probability of distribution
for every pairwise alignment done on the whole sequences of
the database before the creation of the tree.

While probabilistic consistency, and progressive-iterative

refinement approaches give accurate results, their computa-
tions are complex (Mount, 2004), and their memory usage is
high (Pais et al., 2014). On the other hand, iterative approach

based computational intelligence techniques overcome pro-
gressive approach, which gives equality in priority to all
sequences. Therefore, accurate alignment results can be

achieved using simple computations (Arulmani et al., 2012;
Lalwani et al., 2013b). Many papers tried to solve the problem
using iterative approach only, like simulated annealing (Kim

et al., 1994), Genetic algorithm (Botta and Negro, 2010;
Notredame and Higgins, 1996), and particle swarm optimiza-
tion (Xu and Chen, 2009; Long et al., 2009a, 2009b; Lalwani
et al., 2013b; Lalwani et al., 2015).

Simulated annealing was too slow but it works well as an
alignment improver. For small numbers of sequences, genetic
algorithm (GA) is a better alternative for finding the optimal

solution. However, as the number of sequences increases, it
can fall behind optimal solutions and exponential growth in
time may be observed. PSO proves its superiority in speed con-

vergence than simulated annealing, and its ability to align
number of sequences larger than genetic algorithm. In addi-
tion, PSO has a few numbers of parameters that need tuning

and parameter setting (Lalwani et al., 2013a). Standard PSO
performance in short sequences is better than long ones (Xu
and Chen, 2009; Long et al., 2009a; Long et al., 2009b). Then,
TLPSO with mutation is proposed for the first time by Chen

(2011), and tested on nine optimization problems, and proves
its ability to get the optimum solution. For MSA, TLPSO
(Lalwani et al., 2015) is tested with creation of new swarm

every iteration, as a way for mutation, and proves its superior-
ity than standard PSO. However, more enhancements on PSO
are still needed to reach the optimal solution especially for long

sequences.
In this paper, the FTLPSO is proposed. A fragmentation

technique based on k-tuple is applied to shorten the long
sequences to small sub-sequences, aiming to solve the prob-

lems of PSO. Then, TLPSO is applied as a suitable variant
for MSA problem.

3. Scoring functions for MSA

The performance of the alignment process is measured by scor-
ing functions which reflect the accuracy of the alignment. The

most used two scoring functions are:

- Column Score (CS) score is used to increase the number of

matched columns:
For the aligned dataset of n sequences, and alignment
length AL, the scoring function is calculated for every column
of position x as:

CS ¼
XAL
x¼1

mt � ð1þ ðmt=nÞÞ ð1Þ

where mt is the number of matched residues.
– Sum of Pair (SOP) score is applied to increase the similarity
match between every two sequences:
For an aligned dataset of n sequences, the scoring function

is calculated for every two sequences Si; Sj as shown in Eq.

(2):

Pairwise alignment score ¼
XAL
x¼1

scoreðSiðxÞ; SjðxÞÞ ð2Þ

where: for every two characters at the same position x, the
score of ðSiðxÞ;SjðxÞÞ is calculated as follows:

scoreðSiðxÞ;SjðxÞÞ ¼
A ðmatch scoreÞ
B ðmismatch scoreÞ
C ðgap penaltyÞ

8><
>: ð3Þ

The alignment aims to increase the number of residue
matches and decrease the number of mismatches. In the previ-
ous equation, two residues at position x of sequences i; j are

compared. If they are similar, a score of value ðAÞ is added
as a reward. However, if there is a mismatch between these
two residues or if a residue is matched with a gap, a penalty
ðB or CÞ is subtracted as negative score, respectively. PAM

and BLOSUM are the most famous scoring matrices to give
the match and mismatch scores for protein sequence align-
ment. The most widely used gap penalty function is the affine

gap penalty (Gotoh, 1983). In the affine gap penalty model, a
gap series of length ‘ is given two weights. The first weight is
related to the first gap, which is the gap open penalty go.

The other weight ge is the weight to extend the gap with one
more space. The total penalty for a series of gaps of length ‘ is:

Gð‘Þ ¼ ðgoÞ þ ð‘� 1�geÞ ð4Þ
4. Particle swarm optimization

Kennedy and Eberhart (1995) first introduced particle swarm
optimization (PSO) in 1995. It mimics the social behaviour

of bird flocks or fish schools. Every time, each particle in the
swarm flies to its next position with a specific speed depending
on its achieved best position, and the global best position
reached by any particle in the swarm. The update rule of par-

ticle positions every iteration can be seen in the next two equa-
tions as follows:

vtmd ¼ wt:vt�1
md þ ½c1:r1:ðpbestmd � xt�1

md Þ� þ ½c2:r2:ðgbestd � xt�1
md Þ�
ð5Þ

xt
md ¼ xt�1

md þ vtmd ð6Þ
where:
� t is the iteration number, ranges from (1: tmax).

� m is the particle number, ranges from (1: M).
� d is the dimension number, ranges from (1: D).
� r1; r2 are random numbers between (0, 1).

194 N. Moustafa et al.
� c1; c2 are positive values called cognitive acceleration coef-

ficient, and social acceleration coefficient respectively.
� w is called inertia weight, introduced to accelerate the con-
vergence speed of the PSO, takes values between [0, 1].

� x is the matrix of size (M, D) where M is swarm size, and D
is the number of dimensions, to store the current positions
of each dimension of all particles.

� v is a matrix of the same size of x, which gives the change

rate of positions (velocity) of each dimension d for every
particle m.

� pbest (Particle best) is also a matrix of the same size of x to
store the best positions every particle reached from iteration
(1: t � 1):

pbestmd ¼ max½scoreðx1
mdÞ : scoreðxt�1

md Þ� ð7Þ
� gbest (Global best) of size (1, D) stores the pest N- dimen-
sional positions which gives the best score by any particle

from iterations (1: t � 1)

gbestd ¼ max½scoreðpbestmdÞ� ð8Þ
Figure 1 Match of two words of word length k= 8 and D = 3

mutations. Depending on pam250 matrix, score (V, L) = +2,

score (T, A) =+1, and score (V, I) = +4.
5. Proposed method FTLPSO

The proposed algorithm is divided into two main steps:

1- Fragmentation process, to shorten the longest
sequences, and Pave the way for PSO. In this paper, a

k-tuple method is selected as a fragmentation technique.
By the end of fragmentation process, an index table for
fragment position is created.

2- PSO algorithm, to perform the alignment process on
fragments. Two layers of swarms are created, as the
swarms in each layer will focus on one of the two scoring
functions of the MSA to appraise their performance. In

each swarm, local-PSO is used as a good solution to
achieve divergence. Also a mutation is applied on the
best particle every iteration to reduce the risk of falling

in a local optima.

5.1. Fragmentation: table of k-tuples

It is worth noting that PSO is performing well with short
sequences (Xu and Chen, 2009; Long et al., 2009a, 2009b). A

fragmentation technique is used to shorten the sequences of
the datasets. Additionally, if one fragment is mis-aligned, this
will not affect the other fragments. Fragmentation depends on
searching for conserved regions (also called motifs or blocks)

and aligning them, and then aligning the regions between these
blocks to make a complete alignment. The fragmentation tech-
nique used here is k-tuple. Fragmentation based on k-tuple or

k-word searches for a word of length k. This technique is pre-
viously used in one of the oldest and fastest pairwise alignment
methods: FASTA (Lipman and Pearson, 1985). Due to its sim-

plicity and speed, the k-tuple could be enough in molecular
phylogeny and taxonomy without the need for alignment in
the future (Zuo et al., 2014). As the word length (the k value)
increases, the accuracy of the match between the two words

also increases. The k-tuple can also have a number of mis-
matches that don’t exceed a value D (Fig. 1), where D muta-
tions give non-negative score in the substitution matrix. In
this case, these characters are not matched but they have a
degree of similarity in their chemical structure. This -tuple

technique with mutations is called Wu–Manber (Wu and
Manber, 1992).

To find a word of length k in the dataset of n sequences, one

of these n sequences is assumed to be a query. Every k-tuple of
the query sequence is scanned with all the n� 1 left sequences.
If this word is found in all sequences, the positions of this word

in all sequences are inserted into a table. This step is repeated
for (L � k + 1) k-tuples for the query of length L.

After the table has been created, and an overall check has
been done to make sure that there is no conflict, two more

rows must be added. As illustrated in the example in Fig. 2,
all matched words of k ¼ 3 and D ¼ 0 are gathered in table
T1. The first and the last columns are added, which contain

the index of the first, and the last character in every sequence
as shown in table T2. The aim of this table is to find the k-tuple
words and connect between k-tuple search method and PSO.

The PSO will take every two successive rows and deal with
the segments in-between. Adding the first and the last two in
the table will let PSO deal with the first and the last two frag-

ments. Every time, PSO will deal with one fragment. To get the
boundaries of the ith fragment for the jth sequence, every two
successive rows ði; iþ 1Þ in the table T2 should be considered
following the equation:

Boundaryðj; iÞ ¼ ½tableði; jÞ þ tableði; nþ 1Þ�
: ½tableðiþ 1; jÞ � 1� ð9Þ

where tableði; nþ 1Þ indicates the k-tuple length to let the PSO

start taking the fragment after the k-tuple ended. The aligned
parts by the k-tuple method are not included in the PSO calcu-
lation and may be misaligned if the particle is trapped in local
optima.

5.2. Alignment: PSO

5.2.1. Particle creation

In the alignment problem, we need to find the best location of
gaps which will be added. So, particles here will carry the posi-

tions of these gaps in all sequences of the entered dataset. The
number of dimensions for the particle will be equal to the num-
ber of gaps needed to be inserted to the sequences. Fig. 3 gives

an example of a dataset of sequences filled with gaps.
In the example in Fig. 3, a particle m here is represented as:

m= [3,8,10,1,6,9,10] that carries the positions of gaps in the
dataset. Another variable l is needed here to show in which

sequence in the dataset the gaps will be added. Simply, l will
carry a number of gaps that will be added in each sequence.
To get the starting, and the ending positions of the gaps from

the particle m for sequence j using matrix l, next equations are
used:

Figure 2 Example illustrates how the table linking between fragmentation and PSO is created.

Figure 3 Numerical example on how a particle of gap positions

is created. m is a particle, and l is a matrix helping the particle to

decide to which sequence the gap belongs.

Fragmented protein sequence alignment 195
posstartðjÞ ¼
Xj�1

I¼0

lþ 1 ð10Þ

posendðjÞ ¼
Xj�1

I¼0

lþ lðjÞ þ 1 ð11Þ

And so, gaps will be added to sequence j are:

gapsðjÞ ¼ mðposstart : posendÞ ð12Þ
The values of the gaps should be controlled by the length of

the alignment (in Fig. 3), so m matrix should contain values
<11.

5.2.2. Local-PSO

The basic PSO discussed in the previous section is called global
PSO, as all particles in the swarm follows only one particle, the
one which gets the best score value. Dependency of all particles

on only one particle in updating global best term causes fast
convergence. If the gbest is trapped, that mostly causes trap-
ping of all other particles. One famous variant of PSO is

local-PSO (Eberhart et al., 1996). Its main benefit over
global-PSO is to keep the system divergent from trapping in
local minima/maxima. Here, the swarm is divided into many
sub-swarms, such that every particle calculates its local best

value (instead of global best one) by finding the best positions
of gaps which give the best score in the sub-swarm.

In local-PSO, every particle can choose its neighbours

according to geographical area (or for alignment problem, it
can selects particles of near scores), or randomly. In this paper,
particles follow randomly chosen method. As illustrated in
Fig. 4, random selection for neighbourhood can be only one

time or every loop. The paper follows the selection of new
neighbours every loop of DRN-PSO. It presents a form of
dynamic random neighbourhood, which enables each particle
to change its neighbourhood during searching for the optimal

solution as shown in Fig. 5. This feature helps in increasing the
swarm diversity (El-Hosseini et al., 2014). When the size of
gbest matrix in Eq. (5) is equal to the size of one particle only,

the size of lbest here will be equal to the size of the swarm. That
lets Eq. (5) transform to Eq. (13):

vtmd ¼ wt:vt�1
md þ ½c1:r1:ðpbestmd � xt�1

md Þ� þ ½c2:r2:ðlbestmd � xt�1
md Þ�
ð13Þ
5.2.3. Best particle mutation

Every iteration of the best particle mutation method, the best
particle gbest is selected to be mutated. After mutation is done,
the score is calculated and compared with the one before muta-

tion. If the particle after mutation gives a higher score, then
keep it and update the score value in the scoring matrix
(Long et al., 2009b). The algorithm of the best particle muta-

tion is illustrated in Fig. 6.

5.2.4. Two-layer PSO (TLPSO)

TLPSO consists of two layers. The first layer contains R

swarms as shown in Fig. 7, where all particles in one swarm
are communicating with themselves, using a specified scoring
function to get the optimal (or semi-optimal) solution for the

problem. Every swarm in the first layer produces gbest as an
output, so for R swarm, we can get R gbest particles. These
R particles will create the swarm in the second layer. Finally,

one gbest particle (Gbest L2) will be resulted from the second
layer.

All swarms in the first layer will use the CS scoring function
mentioned in Eq. (1), and the swarm in the second layer will

depend on the SOP scoring function mentioned in Eq. (2).
The pseudo code for FTLPSO is shown in Fig. 8.

Figure 4 Simple classification for selecting neighbourhood in PSO.

Figure 5 DRN-PSO algorithm.

Figure 6 Best particle mutation.

196 N. Moustafa et al.
6. Numerical results

According to the scoring functions: the scoring matrix used is

PAM 250, and the gap penalty used is affine gap penalty with a
gap open penalty go = �10, gap extension penalty ge = �0.3,
Figure 7 TLPS
and gap-gap penalty = 0. Concerning k-tuple search: the value
of k is chosen to be =8, with maximum number of mutations
D = 3, as a suitable selection for the tested datasets, which is

not too long that the k-tuple method can’t find it, nor too short
which causes conflicts (Lassmann and Sonnhammer, 2005).

According to the PSO: The number of neighbourhoods for

local PSO = 3, and best particle mutation is considered in
every iteration. The values of acceleration coefficients c1 and
c2 are c1 ¼ c2 = 1.49618 (Eberhart and Shi, 2000). The veloc-

ity matrix v is bounded between two values (vmin; vmax) accord-
ing to next equations:

vmax ¼ h � ðxmax
ðdÞ � xmin

ðdÞ Þ;
vmin ¼ �vmax

ð14Þ

v ¼ vmax if v P vmax

vmin if v < vmin

�
ð15Þ

where xmax
ðdÞ and xmin

ðdÞ are the maximum and minimum positions

in the dth dimension, and h is a parameter defined by user to
control steps (Clerc and Kennedy, 2002). Here, h is set to be

=0.08 of the sequence length (AL).
Further, w is exponentially decreased according to

equation:

w ¼ wo � wf

� expðt=tmaxÞ
� �

ð16Þ
O structure.

Figure 8 FTLPSO code.

Fragmented protein sequence alignment 197

Figure 9 Compare the results of standard, two layers before and

after fragmentation (standard PSO vs TLPSO vs FTLPSO).

198 N. Moustafa et al.
where t is the current iteration number, tmax is the maximum
number of iterations, and, wo; wf are the two boundaries of

w, with wo = 0.9, and wf = 0.4.

For two layers: number of swarms of the first layer R = 10,
with 10 particles in each swarm, and the best 10 particles in
layer1 will create the swarm in layer2.
Figure 10 Rate of convergence f
The suggested algorithm has been implemented using
MATLAB Ver. 8.2.0.701 (R2013b). The algorithm is applied
on some Balibase (Bahr et al., 2001) benchmark datasets of dif-

ferent alignment lengths, and compared with five famous MSA
tools: CLUSTAL Omega, CLUSTAL W2, TCOFFEE,
KALIGN, and DIALIGN-PFAM (www.ebi.ac.uk; www.

clustal.org; http://dialign-pfam). The comparative analysis
with these tools is presented in Section 6.1. Next, Section 6.2
gives an answer for why the used parameters have been set

as they are. The parameters of the velocity update equation
(Eq. (13)), and sum of pair score (SOP) equation (Eq. (4))
are studied. In the numerical study for each parameter, only
the value of the studied parameter is changed, and the others

are kept fixed according to their values mentioned above.

6.1. Comparative analysis

Fig. 9 compares the results of standard PSO, TLPSO without
fragmentation, and TLPSO with fragmentation (FTLPSO).
The datasets are sorted according to their lengths. The figure

represents that the standard PSO and the TLPSO have the
ability to deal with short sequences. That appears in the first
sequence (1fmb) where the SOP scores for standard PSO,

TLPSO and FTLPSO are very close to each other. The stan-
dard PSO fails to do alignment for the rest of the datasets.
TLPSO overcomes the standard PSO. However, it also gave
poorer results, and failed to reach the optimal solution.
or standard PSO and TLPSO.

http://www.ebi.ac.uk;
http://www.clustal.org;
http://www.clustal.org;
http://dialign-pfam

Table 1 SOP score results for FTLPSO compared with other five MSA tools. The left column contains list of datasets, and the length

of the longest sequence is mentioned in brackets. The highest score is in bold, and the second is underlined.

Dataset Mean of 5 runs (FTLPSO) CLUSTAL OMEGA CLUSTAL W2 TCOFFEE KALIGN DIALIGN-PFAM

1fmb (104) 1495 1465.5 1453.5 1471.5 1465.5 1407.5

1ppn (220) 5256.1 5156.1 5170.9 5243.5 5230.9 5156.1

1tis (295) 7224.5 7225.1 7147.7 7156.8 7126.9 7100.5

1ezm (308) 8211.8 8102.9 8151 h 8141.7 8233.4 8119.7

1ad3 (447) 5632.7 5487.1 5603 5600.6 5681 5570.3

3pmg (567) 8079.8 7930.2 7955.9 8036.2 8032 7654.7

Mean 5982.85 5894.48 5913.67 5941.72 5961.6 5834.8

Figure 11 Mean of SPS scores for every MSA tool.

Fragmented protein sequence alignment 199
FTLPSO succeeded to reach optimal (or semi-optimal) solu-
tions, and overcome both standard PSO and TLPSO.

Fig. 10 gives more details regarding the performance of
standard PSO, and TLPSO for 3 datasets. For the shortest,
and simplest dataset, 1fmb, Fig. 10a shows how the standard

PSO reached a semi-optimal solution. However, TLPSO was
able to reach the optimal solution, and with less numbers of
iterations. With the increase in dataset length, and complexity,

particles with 1ppn dataset tried to achieve good solution
along 2000 iterations. TLPSO outperformed standard PSO.
However, system couldn’t reach the optimal solution. It is
worth to mention the role of best-particle mutation, which

helps the system to move again after it has trapped in a local
minima, as it is obvious at standard PSO in (Fig. 10b). 1tis suf-
fered from an early trapping in local minima although TLPSO

outrun standard PSO.
The results in Table 1 shows the ability of the proposed

method to align long sequences, and the PSO is not affected

with the length of the datasets. That is clearly seen in
(3pmg), the longest tested dataset, that the FTLPSO over-
comes the other MSA tools. That proves that the FTLPSO
is the best tool which tries to keep the scores high in all the

tested datasets. But for the other tools, if they get a high score
with one dataset, it may fall in the other. The average score for
the tested datasets in Fig. 11 also shows the success of the pro-

posed method. That is because:

(1) The fragmentation gives the ability to the swarm to

search for the optimal solution within a smaller and
bounded search space.

(2) One fragment will contain less number of local optimal

points, which helps the particle to face less numbers of
local optimal points.

(3) For each fragment, the swarm will concentrate on find-
ing the optimal solution by dealing with less number of

gaps, which should be added in this fragment.
(4) If the PSO can’t find the optimal solution in one frag-

ment, the other fragments will not be affected, and the

overall score will remain high.
Besides the role of fragmentation process, the high perfor-
mance of PSO lies in:

(1) The PSO does not discriminate one sequence over
another, and it is one of the most important benefits
for PSO as an iterative tool, compared to other progres-
sive tools.

(2) The cooperation between particles with each other’s to
reach the optimal point of the highest score.
(3) Local PSO increases the swarm diversity, and lets the

particles explore more points in the search space.
(4) Mutation which is applied on the gbest particle also

gives help if the gbest has trapped in a local optima.

Figs. 12 and 13 give two examples to show the performance of
the PSO on two fragments from 1ezm and 1ppn datasets. The

selected fragment from 1ezm is of length 44, and 1ppn fragment
is of length 104. For each fragment, every swarm in the first layer
and the swarm in the second layer contain 10 particles, and each
swarm runs for 100 iterations. For each fragment, the 10 swarms

in the first layer run, and theCS score given by the best particle in
layer 1 every iteration is presented in (12-a, 13-a).
Figs. 12b and 13b show the progress of the swarm in the second

layer. Rate of convergence for both layers have been normalized
in (12-c, 13c) to show the effectiveness of the best particles from
swarms in the first layer on the second layer’s swarm.

6.2. Parametric study

This section starts with a study for parameters in PSO velocity

update equation, with focus on two parameters (velocity
clamping, and inertia weight), in Section 6.2.1. In Section 6.2.2,

Figure 12 Results of running 100 iterations using 10 particles on 1ezm fragment of length 44.

200 N. Moustafa et al.
the effectiveness of changing parameters in objective functions

is also studied.

6.2.1. PSO parametric study: exploration, and exploitation

PSO, as an optimization technique, is based mainly on two

concepts: Exploration, and Exploitation. Exploration is to
search within the search space for new optimal solution in
the places which have not been visited before. Exploitation is

to search for better solution in the places that have been
already visited before. Exploration and exploitation are oppo-
site, as increasing exploration will limit the exploitation.

Unbalancing between these two concepts may lead the parti-
cles to trap in local optima (Chen, and Montgomery, 2013).
To achieve good balancing, and avoid premature convergence
towards a local optimum, some choices should be decided well,

including (Ahmed and Glasgow, 2012):

a- Selection for the suitable values of acceleration coeffi-

cient (c1, c2).
b- Limiting the particles velocity (velocity clamping).
c- Good selection for inertia weight value.

6.2.1.1. Acceleration coefficients. Acceleration coefficients
c1; c2 define the ratio of dependency for every particle m in

its decision for next position (x) on its best position reached
(pbest) and the globally best position ðgbestÞ, respectively,
where:
- If c1 > c2: it means that particle m will be more biased to
its historical best position pbest, to keep diversity of the
swarm.

- If c1 < c2: it means that particle m will be more biased to
the global best position gbest, which helps fast convergence
of the swarm (Zhan et al., 2009).

Some experiments by Kennedy (1998) on some typical
applications suggest the values of acceleration coefficients c1

and c2 to be in the range [0, 4], for achieving more control
on the search process, where: c1 + c2 6 4. Further experi-
ments found the best values for c1, c2 to be:
c1 ¼ c2 = 1.49618 (Eberhart and Shi, 2000).

6.2.1.2. Velocity. Velocity v depends on the difference between
the current position of the particle and its previous best posi-

tion pbest, seen in the second (called cognitive) term of Eq.
(13), and the difference between the current position of the
particle x and its best position reached by the swarm gbest,

seen in the third (social) term of the same equation. So, ini-
tially, the large difference at the beginning of the iterations
leads to larger velocity and more trends towards exploration.

As iterations increase, the velocity h will be decreased with
more trends towards exploitation (Chen and Montgomery,
2013).

In the initial iterations, if the current position x is very large

than both pbest and gbest (x � pbest & x � gbest), that makes
the velocity to be largely �ve. In contrast, If the current posi-

Figure 13 Results of running 100 iterations using 10 particles on 1ppn fragment of length 104.

Table 2 SOP scores for velocity clamping with different h
values. Bold font refer to maximum score for each dataset.

Dataset h= 0.8 h= 0.3 h = 0.08 h= 0.03 h= 0.008

1fmb 1460 1495 1495 1495 1323.4

1ppn 5035.5 5224.9 5256.1 4886.3 4298.9

1tis 6450.4 7058.7 7224.5 6676 4994.7

1ezm 8077.1 8173.0 8211.8 7283.3 6814.9

1ad3 5373 5409.4 5632.7 5429.6 4975.3

3pmg 7261.6 7856.7 8079.8 7909.2 7081.4

Figure 14 Alignment scores of velocity clamping using different

h values.

Fragmented protein sequence alignment 201
tion x is smaller than both pbest and gbest (x� pbest &
x � gbest), that makes the velocity to be largely +ve. These

two large values in velocity may lead to what is called ‘‘particle
explosion”. That is due to control loss of the velocity magni-
tude (|v|) which makes the particles leave the search space

due to huge steps. To control this problem, velocity clamping
is a better solution, which is mentioned in Eqs. (14) and (15).

The parameter h in Eq. (14) takes values between [0, 1]. If h
is large (near to 1), the velocity will be less-controlled, which
will lead to particle explosion. Decreasing the value of h will
lead to more control for the particles. However, if the h is
set to be very small, that will lead the particle to move very

slowly. The slow movement of particles (gaps) allows to
explore the search space efficiently, but it takes a long time.
Five values of h are run on six Balibase benchmarks. These

values are 0.008, 0.03, 0.08, 0.3, and 0.8. Results in Table 2 and
Fig. 14 show that the velocity clamping with (h= 0.08) gave
the best score. As increase in the h value than 0.08, or decreas-
ing it, the scores get worse. That is because while increasing the

value of h, the system moves towards throwing the gaps at the
boundaries of the sequences, and then the system will be
trapped. While decreasing the h value, the gaps move very

slowly, and the swarm takes much more time to converge.

Table 3 Effectiveness of velocity clamping using different values of h on the alignment process.

Figure 15 Two small datasets: DS1, DS2, that will be used in

parameters study.

202 N. Moustafa et al.
More illustrated example is seen in Table 3. Table 3 gives
results for the alignment of dataset DS1 (which is given in

Fig. 15) using three values of h (0.8, 0.08, and 0.008). At
h= 0.8, gaps are being quickly thrown to the boundaries of
the search space. By iteration 5, the system has been trapped.

At h = 0.08, the system reached the optimal solution after a
few number of iterations (around 25 iterations). With a very
small number of h= 0.008, positions of particles are updated

very slowly, as by iteration 100, the best particle score was only
89.1. Truly, this system can reach the optimal solution. How-
ever, it will need more number of iterations.

Table 4 SOP scores for different weight schemes. Bold font

refer to maximum score for each dataset.

Dataset Linearly

decreased

(0.9:0.4)

Nonlinearly

decreased

(0.9:0.4)

Exponentially

decreased (0.9:0.4)

1fmb 1467.8 1407.7 1495

1ppn 5245.9 4937.3 5256.1

1tis 6994.7 6292.5 7224.5

1ezm 8106.8 7737.3 8211.8

1ad3 5549 5399.7 5632.7

3pmg 8089.9 7471.7 8079.8

Figure 16 Alignment scores of different weight schemes.

Figure 17 Optimal alignment on DS1 using different gap open

penalty scores.

Figure 18 Optimal alignment on DS2 using different gap

extension penalty scores.

Fragmented protein sequence alignment 203
6.2.1.3. Inertia weight. Inertia weight, w, introduced to acceler-
ate the convergence speed of the PSO. It is another way to con-

trol the velocity. Probabilities of w can be classified to:

– If w P 1: the velocity step will be big, and it is hard for the

particle to update its direction.
– If 0 < w < 1: it means only a small percentage of the previ-

ous velocity vt�1 is kept for calculation of the new velocity
vt, with quick ability for particle to change its direction.

– If w ¼ 0: the first term in Eq. (13) will be deleted, and so, the

second and third terms will be equal to zero when calculat-
ing the new velocity of the gbest particle, and so, the particle
will not be updated, as gbest ¼ pbest ¼ x.

Changing inertia weight has been tested on many optimiza-
tion problems and proves its superiority (Kumar et al., 2008).
The value of w can be changed by either increasing or decreas-

ing its value every iteration. However, dynamically changing
the velocity by decreasing it is better in order to control the
balancing between exploration and exploitation (as to start

with big to increase exploration, and decrease it till be very
small at the end of searching process to increase exploitation).
Three weight schemes are tested in this study, which are:

decreasing linearly, decreasing nonlinearly, and decreasing
exponentially. Exponentially decreased w is previously men-
tioned in Eq. (16). Decreasing w linearly follows the next
equations:

step ¼ wo � wf

tmax

ð17Þ

w ¼ wo � ðstep � tÞ ð18Þ
And nonlinearly decreased value of w follows Eq. (19) as

follows:
w ¼ wf þ wo � wf

t

� �
ð19Þ

In this experiment, w is decreased from wo = 0.9, to
wf = 0.4 for all three weighting schemes.

Table 4 and Fig. 16 show that exponentially decreased w
was able to reach higher scores than the others two schemes.
Only linearly decreased scheme won the exponentially

decreased scheme in one dataset with a very little difference.

6.2.2. Objective functions parametric study

In this paper, two scoring functions are used. The first is (CS)
score (Eq. (1)), which doesn’t contain parameter to be tuned.
So, this section will focus on the second objective function
(SOP), especially on the selection of gap penalty scores.

There are different conventions regarding the gap penalty
such as linear gap penalty, and affine gap penalty. In linear
gap penalty, each gap is given a penalty such that all gaps

are equal in punishment value either this gap is an open of
the gap series ‘, or not. This makes no control on the place
of the gaps. However, biologically, the possibility of having

a single long gap ‘ in the protein sequence is more likely to
occur than the multiple small series of gaps (Gotoh, 1983).
That is because if a deletion for an amino acid is created once,
it is easy to be extended. For that reason, this paper used the

affine gap penalty (Eq. (4)) generated by Gotoh (1983).

204 N. Moustafa et al.
Increasing the value of gap open penalty go will lead to a
reduction in the numbers of opening gaps, and the system will
move towards increasing the length of a gap ‘. Dataset DS1

(shown in Fig. 15) is aligned three times using different gap
open penalty values (�2, �6, and �10), as in Fig. 17. Although
a low value of a gap open penalty may lead to more matches, it

is in contrary to the biological information. Biologically, the
probability that the amino acid R (in bold) was H, and has
been mutated is more likely to happen. Also, it is the case with

(V) in bold as it once was (I) and has been mutated. That is
why this paper used a gap open penalty go of �10.

According to gap extension penalty ge, its value affects the
number of gaps in the alignment. Dataset DS2 (in Fig. 15) is

aligned using a fixed go, with different values. As shown in
Fig. 18, when for example ge is set to be �3, the relatively high
value of ge forced the system to use more numbers of gaps, and

forbade the system from achieving more matches. However,
with a low value of �1, more gaps were added, with more
matches.

7. Conclusion

This paper proposed FTLPSO algorithm as a contribution for

solving the MSA problem. The algorithm has two main steps:
the first is fragmentation of long sequences, and the second is
aligning each fragment alone using two-layer PSO (TLPSO)

structure. Fragmentation helps the PSO to deal with short
sequences. TLPSO is a good selection for solving MSA as
unconstrained problems. Solving MSA problem requires max-
imization of column score (CS), as maximizing sum of pair

score (SOP). The first layer in TLPSO structure contains a
number of swarms, which deals with the CS scoring function.
The swarm in the second layer is dealing with SOP scoring

function. In every swarm, local PSO and best particle mutation
are applied to keep particles far from trapping in a local
optima as possible. FTLPSO is run on 6 datasets from balibase

reference, and the results are compared with five state-of-the-
art tools: CLUSTAL Omega, CLUSTAL W2, TCOFFEE,
KALIGN, and DIALIGN-PFAM. FTLPSO overcame other

tools and could keep the score high in all tested datasets. It
also achieved the best average score among them. After com-
paring the proposed method with other tools, a parametric
study is applied which proofs the efficiency of the used values

in the updating equation for PSO as in the objective function
used.

As a future path of this work is to focus on studying the

efficiency of different fragmentation techniques instead of k-
tuple, decreasing the memory usage, CPU usage, and increas-
ing the processing time are the main interest as future works.

References

Agrawal, Ankit, Huang, Xiaoqiu, 2009. PSIBLAST_PairwiseStatSig:

reordering PSI-BLAST hits using pairwise statistical significance.

Bioinformatics 25 (8), 1082–1083. http://dx.doi.org/10.1093/bioin-

formatics/btp089.

Ahmed, Hazem, Glasgow, Janice, 2012. Swarm Intelligence: Concepts,

Models and Applications. Technical Report, School of Computing,

Queen’s University.

Al Ait, L., Yamak, Z., Morgenstern, B., 2013. DIALIGN at GOBICS–

multiple sequence alignment using various sources of external

information. Nucl. Acids Res. 41, W3–W7.
Arulmani, K., Guru Prasad, M., Hariharan, R., Sivasankaran, N.,

2012. A refined MSAPSO algorithm for improving alignment

score. Res. J. Appl. Sci., Eng. Technol. 4 (21), 4404–4407.

Bahr, A., Thompson, J.D., Thierry, J.-C., Poch, O., 2001. BAliBASE

(Benchmark Alignment dataBASE): enhancements for repeats,

transmembrane sequences and circular permutations. Nucl. Acids

Res. 29 (1), 323–326. http://dx.doi.org/10.1093/nar/29.1.323.

Botta, Marco, Negro, Guido, 2010. Multiple sequence alignment with

genetic algorithms. Comput. Intell. Meth. Bioinf. Biostat. 6160,

206–214.

Chen, C.C., 2011. Two-layer particle swarm optimization for

unconstrained optimization problems. Appl. Soft Comput. 11,

295–304.

Chen, S., Montgomery, J., 2013. Particle Swarm Optimization with

Threshold Convergence. Evolutionary Computation (CEC), 2013

IEEE Congress, pp. 510–516. ISBN: 978-1-4799-0452-5.

Clerc, M., Kennedy, J., 2002. The particle swarm -explosion, stability,

and convergence in a multidimensional complex space. IEEE

Trans. Evol. Comput. 6 (1), 58–73.

Cohen, J., 2004. Bioinformatics—an introduction for computer

scientists. ACM Comput. Surv. 36 (2), 122–158. http://dx.doi.org/

10.1145/1031120.1031122.

Das, S., Abraham, A., Konar, A., 2008. Swarm intelligence algorithms

in bioinformatics. Stud. Comput. Intell. 94, 113–147.

Di Francesco, V., Garnier, J., Munson, P.J., 1996. Improving protein

secondary structure prediction with aligned homologous sequences.

Protein Sci. 5 (1), 106–113. http://dx.doi.org/10.1002/

pro.5560050113.

Do, C., Mahabhashyam, M., Brudno, M., Batzoglou, S., 2005.

ProbCons: probabilistic consistency based multiple sequence

alignment. Genome Res. 15, 330–340.

Eberhart, R., Shi, Y., 2000. Comparing inertia weights and constric-

tion factors in particle swarm optimization. Evolutionary Compu-

tation, Proceedings of the 2000 Congress, vol. 1, pp. 84–88.

Eberhart, R., Simpson, P., Dobbins, R., 1996. Computational Intel-

ligence-PC Tools. Academic Press Professional Inc, ISBN 0-12-

228630-8.

Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high

accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797.

El-Hosseini, M.A., El-Sehiemy, R.A., Haikal, A.Y., 2014. Multiob-

jective optimization algorithm for secure economical/emission

dispatch problems. J. Eng. Appl. Sci., Faculty Eng., Cairo

University 61 (1), 83–103.

Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., et al, 2008.

The Pfam protein families database. Nucl. Acids Res. 36,

281–288.

Gotoh, O., 1983. An improved algorithm for matching biological

sequences. J. Mol. Biol. 162 (3), 705–708. http://dx.doi.org/

10.1016/0022-2836(82)90398-9.

Jagadamba, P.V.S.L., Babu, M.S.P., Rao, A.A., Rao, P.K.S., 2011.

An improved algorithm for multiple sequence alignment using

particle swarm optimization. In: Proceedings of IEEE Second

International Conference on Software Engineering and Service

Science, pp. 544–547. doi: 10.1109/ICSESS.2011.5982374.

Katoh, Kazutaka, Standley, Daron M., 2016. A simple method to

control over-alignment in the MAFFT multiple sequence alignment

program. Bioinformatics, doi:0.1093/bioinformatics/btw108.

Katoh, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel

method for rapid multiple sequence alignment based on fast

Fourier transform. Nucl. Acids Res. 30, 3059–3066.

Kennedy, J., 1998. The behaviour of particles. In: Proceedings of the

7th International Conference on Evolutionary Programming VII,

vol. 1447. Springer-Verlag, London, UK, pp. 579–589.

Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. IEEE

Int. Conf. Neural Netw. 4, 1942–1948.

Kim, J., Pramanik, S., Chung, M.J., 1994. Multiple sequence align-

ment using simulated annealing. Comput. Appl. Biosci. 10 (4), 419–

426.

http://dx.doi.org/10.1093/bioinformatics/btp089
http://dx.doi.org/10.1093/bioinformatics/btp089
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0010
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0010
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0010
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0015
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0015
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0015
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0020
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0020
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0020
http://dx.doi.org/10.1093/nar/29.1.323
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0030
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0030
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0030
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0035
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0035
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0035
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0045
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0045
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0045
http://dx.doi.org/10.1145/1031120.1031122
http://dx.doi.org/10.1145/1031120.1031122
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0055
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0055
http://dx.doi.org/10.1002/pro.5560050113
http://dx.doi.org/10.1002/pro.5560050113
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0065
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0065
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0065
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0075
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0075
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0075
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0080
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0080
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0085
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0085
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0085
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0085
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0090
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0090
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0090
http://dx.doi.org/10.1016/0022-2836(82)90398-9
http://dx.doi.org/10.1016/0022-2836(82)90398-9
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0105
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0105
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0105
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0110
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0110
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0110
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0115
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0115
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0115
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0120
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0120
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0125
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0125
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0125

Fragmented protein sequence alignment 205
Kiranyaz, S., Ince, T., Yildirim, A., Gabbouj, M., 2009. Multi-

dimensional particle swarm optimization for dynamic clustering.

EUROCON, IEEE 2009, 1398–1405.

Kumar, Ganesh, Mohagheghi, Salman, Hernandez, Jean-Carlos,

delValle, Yamille, 2008. Particle Swarm Optimization: Basic

Concepts, Variants and Applications in Power Systems. IEEE,

pp. 171–195.

Lalwani, Soniya, Kumar, Rajesh, Gupta, Nilama, 2013a. A review on

particle swarm optimization variants and their applications to

multiple sequence alignment. J. Appl. Math. Bioinform. 3 (2), 87–

124.

Lalwani, Soniya, Kumar, Rajesh, Gupta, Nilama, 2013b. A study on

inertia weight schemes with modified particle swarm optimization

algorithm for multiple sequence alignment. In: International

Conference on Contemporary Computing (IC3). IEEE, pp. 283–

288.

Lalwani, Soniya, Kumar, Rajesh, Gupta, Nilama, 2015. A novel two-

level particle swarm optimization approach for efficient multiple

sequence alignment. Memetic Comput., Springer 7 (2), 119–133.

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGetti-

gan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A.,

Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007.

Clustal W and Clustal X version 2. Bioinformatics 23 (21), 2947–

2948.

Lassmann, T., Sonnhammer, E.L.L., 2005. Kalign-an accurate and

fast multiple sequence alignment algorithm. BMC Bioinform. 6

(298).

Lipman, D.J., Pearson, W.R., 1985. Rapid and sensitive protein

similarity searches. Science 227, 1435–1441.

Long, Hai-Xia, Xu, Wen-Bo, Sun, Jun, Ji, Wen-Juan, 2009a. Multiple

sequence alignment based on a binary particle swarm optimization

algorithm. IEEE Fifth International Conference on Natural

Computation. vol. 3, pp. 265–269.

Long, Hai-Xia, Xu, Wen-Bo, Sun, Jun, 2009b. Binary particle swarm

optimization algorithm with mutation for multiple sequence

alignment. Riv. Biol. 102 (1), 75–94.

Morgenstern, B., Dress, A., Werner, T., 1996. Multiple DNA and

protein sequence alignment based on segment-to-segment compar-

ison. Proc. Natl. Acad. Sci. U. S. A. 93, 12098–12103.

Morgenstern, B., Prohaska, S.J., Pöhler, D., Stadler, P.F., 2006.

Multiple sequence alignment with user-defined anchor points.

Algorithms Mol. Biol. 1 (6).

Mount, D.W., 2004. Bioinformatics Sequence and Genome Analysis,

second ed. Cold Spring Harbor Laboratory Press.

Needleman, S.B., Wunsch, C.D., 1970. A general method applicable to

the search for similarity in the amino acid sequences of two

proteins. J. Mol. Biol. 48, 443–453.

Notredame, C., Higgins, D.G., 1996. SAGA: sequence alignment by

genetic algorithm. Nucl. Acids Res. 24 (8), 1515–1524.
Notredame, C., Higgins, D.G., Heringa, J., 2000. T-COFFEE: a novel

method for fast and accurate multiple sequence alignment. J. Mol.

Biol. 302 (1), 205–217.

Pais, F.S., Ruy Pde, C., Oliveira, G., Coimbra, R.S., 2014. Assessing

the efficiency of multiple sequence alignment programs. Algorithms

Mol. Biol. 9 (4).

Pankaj, S., Pankaj, S.P., 2013. A DNA sequential alignment using

dynamic programming and PSO. Int. J. Eng. Innovative Technol.

(IJEIT) 2 (11), 257–264.

Roshan, U., Livesay, D.R., 2006. Probalign: multiple sequence

alignment using partition function posterior probabilities. Bioin-

formatics 22, 2715–2721.

Sierk, Michael L., Smoot, Michael E., Bass, Ellen J., Pearson, William

R., 2010. Improving pairwise sequence alignment accuracy using

near-optimal protein sequence alignments. BMC Bioinform. 11

(146). http://dx.doi.org/10.1186/1471-2105-11-146.

Sievers, F., Wilm, A., Dineen, D.G., Gibson, T.J., Karplus, K., Li, W.,

Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.

D., Higgins, D., 2011. Fast, scalable generation of high-quality

protein multiple sequence alignments using clustal omega. Mol.

Syst. Biol. 7. http://dx.doi.org/10.1038/msb.2011.75. Article num-

ber: 539.

Smith, Temple F., Waterman, Michael S., 1981. Identification of

common molecular subsequences. J. Mol. Biol. 147, 195–197.

http://dx.doi.org/10.1016/0022-2836(81)90087-5. PMID 7265238.

Subramanian, A.R., Kaufmann, M., Morgenstern, B., 2008. DIA-

LIGN-TX: greedy and progressive approaches for the segment-

based multiple sequence alignment. Algorithms. Mol. Biol. 3 (6).

Suresh, G., Vijayalakshmi, C., 2013. A novel approach based on

approximation and heuristic methods using multiple sequence

alignments. Indian J. Appl. Res. 3 (5), 36–40.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W:

improving the sensitivity of progressive multiple sequence align-

ment through sequence weighting, positions-specific gap penalties

and weight matrix choice. Nucl. Acids Res. 22, 4673–4680.

Wu, S., Manber, U., 1992. Fast text searching allowing errors.

Commun. ACM 35, 83–91.

Xu, Fasheng, Chen, Yuehui, 2009. A method for multiple sequence

alignment based on particle swarm optimization. Emerging Intel-

ligent Computing Technology and Applications. With Aspects of

Artificial Intelligence, Lecture Notes in Computer Science, vol.

5755, pp. 965–973.

Zhan, Zhi-Hui, Zhang, Jun, Li, Yun, Chung, Henry Shu-Hung, 2009.

Adaptive particle swarm optimization. IEEE Trans. Syst., Man,

Cybern.-Part B: Cybern. 39 (6), 1362–1381.

Zuo, Guanghong, Li, Qiang, Hao, Bailin, 2014. On K-peptide length

in composition vector phylogeny of prokaryotes. Comput. Biol.

Chem. 53, 166–173.

http://refhub.elsevier.com/S1018-3647(15)30125-7/h0130
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0130
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0130
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0135
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0135
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0135
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0135
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0140
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0140
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0140
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0140
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0145
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0145
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0145
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0145
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0145
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0150
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0150
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0150
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0155
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0155
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0155
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0155
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0155
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0160
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0160
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0160
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0165
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0165
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0175
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0175
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0175
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0180
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0180
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0180
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0185
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0185
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0185
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0190
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0190
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0195
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0195
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0195
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0200
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0200
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0205
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0205
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0205
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0210
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0210
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0210
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0215
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0215
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0215
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0220
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0220
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0220
http://dx.doi.org/10.1186/1471-2105-11-146
http://dx.doi.org/10.1038/msb.2011.75
http://dx.doi.org/10.1016/0022-2836(81)90087-5.PMID7265238
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0240
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0240
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0240
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0245
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0245
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0245
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0250
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0250
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0250
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0250
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0255
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0255
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0265
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0265
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0265
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0270
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0270
http://refhub.elsevier.com/S1018-3647(15)30125-7/h0270

	Fragmented protein sequence alignment using�two-layer particle swarm optimization (FTLPSO)
	1 Introduction
	2 Related work
	3 Scoring functions for MSA
	4 Particle swarm optimization
	5 Proposed method FTLPSO
	5.1 Fragmentation: table of [$]k[$]‐tuples
	5.2 Alignment: PSO
	5.2.1 Particle creation
	5.2.2 Local-PSO
	5.2.3 Best particle mutation
	5.2.4 Two-layer PSO (TLPSO)

	6 Numerical results
	6.1 Comparative analysis
	6.2 Parametric study
	6.2.1 PSO parametric study: exploration, and exploitation
	6.2.1.1 Acceleration coefficients
	6.2.1.2 Velocity
	6.2.1.3 Inertia weight

	6.2.2 Objective functions parametric study

	7 Conclusion
	References

