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A relativistic correction to the Thomas-Fermi model of atoms is obtained by utilizing the variational solu-
tions proposed by Csavinszky [Phys. Rev. 166 (1968) 53]. The relativistic effect appears important for
heavier elements, and our correction improves the ionization energies more noticeably with an increas-
ing atomic number. The radial expectation values are calculated and compared with Hartree-Fock values.
The non-relativistic results for (r?) are slightly better, and our relativistic correction enhanced the expec-

tation value of the potential energy (1/r).
© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Thomas-Fermi [TF] statistical model (Fermi, 1927; Thomas,
1927) of the atom provides a method to describe the ground state
potentials and densities of large atoms, molecules, metals, and
even neutron stars (Englert and Schwinger, 1984). This model is
a crude approximation to the N-electron Schrodinger equation
and is exact in the case of infinite nuclear charge. It does not
account for the exchange effect, and it assumes that the electron
gas is in its ground state. The use of electronic density to describe
many-electron systems was an inception of several approaches in
physics, including Density Functional Theory (DFT); and the sim-
plicity of TF model formulation made it suitable to produce initial
potentials in self-consistent field methods. Several trials were pro-
posed to improve the theory (Lehtomdki and Lopez-Acevedo, 2017)
but our aim here is to improve it while keeping it as simple as pos-
sible to produce pseudopotentials. In this work, the solution pro-
posed by Csavinszky (1968, 1972, 1976, 1979) is corrected for
relativistic effects. In Section 2, the variation solution is summa-
rized to pave the way for the relativistic correction in Section 3.
Our results are presented and discussed in Section 4.
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2. Theory

The theory is detailed in references (Fermi, 1927; Thomas,
1927) and reviewed in many others (Spruch, 1981; Lieb, 1981). It
leads to a differential equation of the form
o _ R )
dx* VX
The dimensionless variable x is related to the distance from the
nucleus r by

X=— 2
q (2)
the proportionality constant q is defined as
(37t)2/3 n -1/3 -1/3
q= Ve meezz = 0.885a0Z (3)

where m, and e are the mass the charge of an electron, a, is the Bohr
radius (=1 in atomic units), and Z is the atomic number.

For a neutral atom, Eq. (1) is to be solved with the boundary
conditions

$(0)=1, ¢(00) =0, ¢(0)=0 (4)

One of the shortcomings of this equation is that electron density
decreases as the inverse fourth power of r, while it should decrease
exponentially (Gombas, 1949). This shortcoming can be eliminated
when the TF equation is replaced by its equivalent variational solu-
tion starting with the Lagrangian

L(¢) = /O " F(g. ¢/ x)d, (5)

where
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d(b 2 ¢5/2
F(¢,¢',x) = ( dx) 512 (
Substituting Eq. (6) into the Euler-Lagrange equation
OF 0 OF
90 xoF @

results in the TF Eq. (1).
In a previous work (Mobarek, 1991), ¢(x) was proposed to take
the form

Pd(x) = (ae*”‘ + be””‘)m7 (8)

where a,b,o, 8 are unknown parameters and the power
m = 1,2,and4. The original proposal of this form adopted the value
m = 2 (Csavinszky, 1968). In this paper, we propose an improve-
ment of the equivalent variational solution by taking the relativistic
correction into consideration for the original proposed power. The
first boundary condition of Eq. (4) requires that

a+b=1. 9)

and the solution must satisfy the normalization condition
/ n(rydt =N (10)
0

where N is the number of electrons, which equals the atomic num-
ber for neutral atoms, and the integration is over the entire space.
The proper parameters are those that minimize the Lagrangian of
Eq. (5).

The electron density n(r) within the atom is related to ¢(x) b
Gombas (1949)
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3. Relativistic correction

To account for the relativistic effect, Hamiltonian must be writ-
ten in its relativistic form and used to generate the electron den-
sity. Then, following the same procedure of the original TF
equation will produce the relativistic form of the TF equation
(Vallarta and Rosen, 1932)

€9 _ 9" (1 +;M>3/2 (12)

A X112 i

where /. = (£)*027*?and o is the fine structure constant.
When 1 > ﬂ.@ the equation can be approximated by

2 3/2 5/2 7/2
dx X172 27 x32 8 X5/2
The non-relativistic form of TF Eq. (1) is obtained as / — O.

After the relativistic consideration, the variational solution of
Eq. (6) becomes
3 ¢7/2 S (/)9/2

LWL (14)

d¢ 2¢5/2
7 x3/2 127 x5/2

Fra(, ¢, x) = (dx 542

Eq. (13) can be deduced if the variational principle is applied to Eq.
(14). The Lagrangian L can be written as

L=Li+Ly+Ls+Ls, (15)

using the notation

1 /dg\>
L 7/5(@) dx, (16)
5/2
L, = 2 d) dx (17)
3 ¢7/2
Ly = 74 a7 ——dx, (18)
1,092
Using the variable n defined as
_b
n= o (20)

then substituting ¢ in Eq. (16) gives

2 2 4
Li=a +4a3b 1m) | o2 (LHARHTN | o (BT +b7“’
3+n 1+n 1+3n 2
(21)
L _g\/@ @ 5ab  10a%h"  10@h’  Sab’ b’
>"5Val|v5 Varn V3+2n VZi3n J1t4n sn|

(22)

L= 7;.6#7”“ [ﬁa7 +7a%hV/6 + n +21a%b°\/5 + 2n+

35¢b* VA1 3n + 35%h* V3 F 4n + 21a2b°v2 + 50+ (23)
7ab®v/1 1 61 + \/ﬁbq ,

Ly= 72¥12 [(1993/2 +9a8b(8 +n)*? +36a7b%(7 +2n)**+
84a°b’ (6 + 3n)*? +126a5b* (5 + 4n)*/*+
126a*b’ (4 +5n)* +84a®b® (3 +6n)*? +36a2b’ (2 + 7n)**+
9ab®(1+8n)*? +b°(9n)*?|,
(24)

The normalization condition Eq. (10), using our form of ¢ and
the electron density in Eq. (11), becomes

NG {a3 3a%b 3ab? b }

N=2500 37 e At G|

(25)

For a neutral atom Z = N, Eq. (25) can be rearranged to write f in
terms of the other parameters

2/3
VT | @ 3a%b 3ab’® b’
o= |- | ==+ + + . 26

( 2 13%2 2+n’* (+2n°?7 (3n)7 (26)

Using this form of o and the boundary condition of Eq. (9), the
Lagrangian depends on two parameters only, a and n besides its
dependence on the atomic number Z. Now, L(a,n) can be mini-
mized with respect to these parameters for a specific element.

The limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm was used for calculating the optimized values of the
parameters. With an accuracy of 1077 in the Lagrangian, the
parameters were iterated until an optimized set is reached for each
element. The minimization process is quick and does not need
many computer resources.

4. Results and discussion

Table 1 shows the values of the optimizing parameters for
selected elements. The total energy (energy necessary to remove
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Table 1

The values of the parameters of Eq. (8) for neutral atoms for different elements.
Element z a b o B
H 1 0.722 0.278 0.178 1.760
He 2 0.722 0.278 0.178 1.762
Be 4 0.722 0.278 0.178 1.766
C 6 0.723 0.277 0.179 1.771
Ne 10 0.724 0.276 0.179 1.783
Ar 18 0.727 0.273 0.180 1.811
Kr 36 0.733 0.267 0.182 1.893
Xe 54 0.741 0.259 0.184 1.995
Hg 80 0.753 0.247 0.188 2.173
Rn 86 0.756 0.244 0.189 2.219
U 92 0.759 0.241 0.190 2.267

all electrons of an atom) is calculated from the relation (March,
1975)

F- (?) (9%)27/%0), 27)

where ¢'(0) is the slope of ¢ (x) at origin. The calculated energies are
shown in Table 2 and compared with non-relativistic and empirical
values, which are calculated using experimental parameters. The
improvement due to the correction is apparent from the compar-
ison with the empirical energies, especially for heavier elements.
This is understandable because the relativistic effect is more pro-
nounced with an increasing atomic number. For such a simple
model, the accuracy is excellent.

In Table 3, the expectation values (r?) are presented and com-
pared to Hartree-Fock (HF) values. In general, the non-relativistic
calculation looks slightly better compared to HF, but the deviation
from HF is quite large for both. In the case of (r?), there is a way to
check the results further with the molar diamagnetic susceptibil-

Table 2

ity, which is related to the mean value of the squared radii of the
electron cloud by Gombas (1949)

A = —4.75 x 10’6g(r2>. (28)
This quantity is measured experimentally, and its values are tabu-
lated in reference (Saito, 2009). The current calculation is much bet-
ter compared to the experiment, especially for heavy ions.

To complete the comparison, we list in Table 4 the mean values
of the reciprocal of the electron cloud radii (1/r) and the mean val-
ues of the radii (r). The improvement in the relativistic calculation
over the non-relativistic ones is small but clear.

Our calculation accounted for the minimization of the Lagran-
gian of the system. This could be the reason for generating the best
results with the ionization energy, and -though small- in the values
of (1/r) because it represents the potential energy.

Pseudopotentials are approximated potentials that have proven
to be highly useful in calculating different types of properties.

Total ionization energies (in atomic units) of the non-relativistic calculation in reference (Mobarek, 1991) Ey and the current work E,,; compared to the empirical values E,, from

reference (Gombas, 1949).

Element Z Eemp Eo err. (%) Erel err. (%)
H 1 0.500 0.5984 19.68 0.5985 19.7
He 2 2.904 3.0156 3.84 3.0176 3.91
Be 4 14.68 15.198 3.53 15.223 3.70
C 6 37.86 39.143 3.39 39.256 3.69
Ne 10 129.5 128.96 0.42 129.65 0.12
Ar 18 525.4 508.09 3.29 514.47 2.08
Kr 36 2704 2560.6 5.30 2642.8 2.26
Xe 54 7079 6595.2 6.83 6964.1 1.62
Hg 80 18680 16501 11.66 18098 3.12
Rn 86 21866 19535 10.66 21628 1.09
§) 92 25520 22864 10.41 25560 0.16

¢ Empirical value is not available, HF value is used instead.

Table 3

Comparison (similar to Table 2) of the radial expectation value (r?) in atomic units. The third column is the Hartree-Fock (HF) values ((r?),; (Saito, 2009), the fourth column is the
non-relativistic values (r?), (Mobarek, 1991), and the sixth column is the current work (r?),,. The last three columns are the molar magnetic Susceptibilities (in units of
106 cm? mol~) of the current work Zret» the experimental values y,,, from reference (Haynes, 2017), and the percentage deviation from the experimental values.

Element Z (e () err. (%) (1)1l err. (%) Arel Lexp err. (%)
H 1 3.00 8.85 194.9 8.85 194.9 3.98 7.01 76.13
He 2 2.37 11.15 370.4 11.14 370.2 1.88 8.82 369.15
Be 4 17.32 14.04 18.9 14.03 19.0 9.0 11.11 23.44
@ 6 13.79 16.08 16.6 16.05 16.3 6.0 12.71 111.83
Ne 10 9.37 19.06 103.4 18.99 102.6 6.74 15.04 123.15
Ar 18 26.03 23.19 10.9 22.99 11.7 19.6 18.21 7.09
Kr 36 39.53 29.21 26.1 28.59 27.7 28.8 22.65 2135
Xe 54 62.65 33.44 46.6 32.24 48.5 439 25.54 41.82
Hg 80 68.63 38.12 44.5 35.89 47.7 334 28.42 1491
Rn 86 81.24 39.05 519 36.55 55.0 - 28.95 -

u 92 123.59 39.94 67.7 37.17 69.9 28.0 29.44 5.14
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Table 4

Comparison of the expectation values of (1/r) in (atomic units)~! among the HF (Saito, 2009), non-relativistic (Mobarek, 1991), and relativistic correction results.
Element z /1) ye (1/r)o err. (%) (1/1) 101 err. (%)
H 1 1.00 1.82 82.1 1.82 82.1
He 2 3.37 4.59 36.0 4.59 36.0
Be 4 8.41 11.57 37.5 11.56 37.5
C 6 14.69 19.86 35.2 19.85 35.1
Ne 10 31.11 39.24 26.1 39.21 26.1
Ar 18 69.73 85.92 23.2 85.82 23.1
Kr 36 182.85 216.50 184 215.89 18.1
Xe 54 317.87 371.74 16.9 369.99 16.4
Hg 80 548.13 627.83 14.5 623.03 13.7
Rn 86 604.39 691.38 14.4 685.61 134
8] 92 661.82 756.43 14.3 749.60 13.7

The TF equation can be used as a starting point to produce them
and the parameterization process can be built into the generating
codes. Moreover, the codes can use multi-condition processes
(minimization that takes into account different values other than
the Lagrangian) according to the calculation needed from the
pseudopotentials.
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