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A B S T R A C T   

In contemporary agriculture, farmers confront substantial challenges in maintaining crop yields and mitigating 
agricultural losses attributable to diseases. The existing methods for diagnosing and managing tomato leaf dis
eases often exhibit deficiencies in terms of accuracy, robustness, and interpretability. Typically, these methods 
are reactive, addressing symptoms after the disease has already impacted the plants, resulting in delayed and 
often ineffective interventions. The precision of disease localization and severity estimation plays a crucial role in 
efficient disease treatment; regrettably, existing post-processing techniques frequently fall short in this regard. 
While these methods have their flaws, our proposed method uses the best parts of deep learning and vector 
autoregressive moving average processes with eXogenous regressors (VARMAx processes) to quickly and accu
rately find tomato leaf diseases. Our approach represents an innovative solution to the challenges currently 
confronting the agriculture sector, thanks to its proactive attributes, improved categorization capabilities, and 
advanced post-processing stages. Convolutional neural networks (CNNs) and generative adversarial networks 
(GANs), built upon the “VARMAx-CNN-GAN Integration” framework, form the core of our method. In this in
tegrated model, convolutional neural networks serve the purpose of extracting features and performing early 
disease classification, whereas generative adversarial networks come into play for generating synthetic images, 
expanding the dataset, and enhancing the model’s ability to generalize. The “VARMAx-CNN-GAN Integration” 
model improves disease classification and decision-making for farmers and agronomists by providing insights 
into critical leaf images. Compared to traditional methods, it improves precision, accuracy, recall, AUC, and 
delay in identifying tomato diseases. The approach also shows potential for disease prevention, revolutionizing 
tomato leaf disease identification and management.   

1. Introduction 

Tomatoes are a vital global crop, crucial for food security, but 
various leaf diseases threaten their productivity. Traditional detection 
methods lack accuracy and timeliness, leading to significant crop and 
economic losses. Current approaches are reactive and often misdiagnose 
diseases due to reliance on visible symptoms. Deep learning models like 
the Modified-Xception-based Multi-Level Feature Fusion (MXF) can 
address these issues. Deploying such models on resource-constrained 
agricultural devices presents challenges like limited processing power 
and memory. However, optimization techniques, hardware accelera
tion, and efficient inference strategies can make deployment feasible. 
Memory management through model caching and compression, and 
energy-efficient strategies can further improve performance. A federated 
learning framework can facilitate collaborative training, maintaining 

data localization and privacy. Traditional post-processing in disease 
detection lacks precision and interpretability, hindering effective dis
ease management. Our research integrates IoT, deep learning, and 
“VARMAx-CNN-GAN Integration” mechanisms for early detection and 
management of tomato leaf diseases. This approach uses a fusion of 
CNNs, GANs, and autoencoders for accurate disease classification and 
saliency mapping for better disease localization and severity estimation. 
Extensive experiments show the model’s effectiveness over existing 
methods. 

The paper includes a literature review, methodology, experimental 
setup, results, comparative analysis, and concludes with implications for 
enhancing agricultural practices and reducing tomato leaf disease losses. 
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2. Literature review 

The detection and management of tomato leaf diseases have been 
extensively researched, utilizing methods ranging from traditional vi
sual inspection to advanced machine learning models. Historically, vi
sual inspection by trained agronomists and farmers has been the primary 
method, relying on physical symptoms of plants (Nandhini and Ashok
kumar, 2021; Thanammal et al., 2022; Huang et al., 2023; Moussafir 
et al., 2022). While simple and equipment-free, this approach is often 
subjective, time-consuming, and inaccurate, especially in early disease 
stages (Gurubelli et al., 2022; Nawaz et al., 2022; Vengaiah and Konda, 
2023; Hanamasagar et al., 2021). Spectral analysis techniques have 
improved detection accuracy and timeliness by leveraging light prop
erties reflected or transmitted by leaves (Lee et al., 2022; Thangaraj 
et al., 2021,2023; Djimeli-Tsajio et al., 2022). However, these require 
expensive, specialized equipment, limiting their use in resource-limited 
settings (Wang et al., 2021; Novak et al., 2021; Guo et al., 2023; 
Gadekallu et al., 2021). 

Traditional machine learning models like Support Vector Machines, 
Decision Trees, Random Forests, and k-Nearest Neighbors have also 
been applied to detect diseases (Martins et al., 2021; Balafas et al., 2023; 
Lobin et al., 2022; Ahmed et al., 2021,2023). Despite their advance
ments, these models struggle with the variability and complexity of 
disease symptoms (Sahu et al., 2023; Sunil et al., 2023; Kaur et al., 2023; 
Al Hashimi et al., 2022; Hosny et al., 2023).Deep learning models, 
particularly CNNs like Multivariate Normal Deep Learning Neural 
Network (MNDLNN), have been employed to address these limitations, 
enhancing classification accuracy by learning intricate patterns from 
images (Bora et al., 2023; Gajjar et al., 2022; Vengaiah and Konda, 2023; 
Mondal et al., 2022; Joseph, et al., 2024). However, these models 
require large datasets and may struggle with generalizing to new disease 

variants, as well as with interpretability issues (Kurmi et al., 2021; 
Moupojou et al., 2023; Garg and Singh, 2023; Liu and Wang, 2020. 
Table 1 describes the review of existing models used to estimate the 
tomato leaf diseases. 

Preemptive disease detection systems use weather, soil, and histor
ical data to predict potential disease outbreaks. However, data avail
ability and quality can limit these models, and they may struggle with 
real-world variability. Validation on a dataset involving diverse condi
tions, tomato varieties, and disease types shows precision, accuracy, 
recall, and specificity values. Current methods for diagnosing and 
managing tomato leaf diseases have shortcomings, including accuracy, 
robustness, and interpretability. Post-processing methods often fail to 
meet the need for accurate disease detection. Some of the more 
advanced systems integrate IoT devices with machine learning models 
for continuous monitoring and disease detection. These systems, along 
with (Chavan and Balani, 2022; Balani et al., 2022; Vengaiah and 
Konda, 2024) can provide real-time alerts and recommendations for 
disease management, enhancing the timeliness of interventions. How
ever, existing models can be complex to set up and maintain, particu
larly in large-scale farming operations. 

3. Proposed model 

After conducting an extensive review of existing models for tomato 
leaf disease identification, we discovered that their efficiency diminishes 
when applied to multiple datasets, and their complexity further con
strains their scalability levels. To overcome these issues, this section 
discusses the design of a “VARMAx-CNN-GAN Integration” for early 
detection and management of tomato leaf diseases. As shown in Fig. 1, 
the proposed model integrates CNNs for feature extraction and initial 
disease classification with GANs for generating synthetic images, 

Table 1 
Review of existing models used to estimate tomato leaf diseases.  

Method Findings Limitations Research Gaps 

SVM (Aishwarya et al., 2023) High accuracy in classifying tomato 
diseases. 

Limited by feature extraction and training data. Kernel selection and adaptation to large datasets. 

CNN (Russel and Selvaraj, 2022) Exceptional feature learning. Need significant computational resources and 
data. 

Transfer learning potential and architecture 
optimization. 

RF (Zhang and Chen, 2023) Robust against noisy datasets. Struggles with imbalanced datasets and 
interpretability. 

Parameter tuning and addressing class imbalance. 

DT (Bhagat and Kumar, 2023) Simple and interpretable. Prone to overfitting and instability. Ensemble methods for stability and generalization. 
KNN (Uppada and Kumar, 2023) Effective proximity-based grouping. Performance drops with high-dimensional 

data. 
Tailored distance metrics and handling high- 
dimensional data. 

NB (Zhou et al., 2022) Efficient probabilistic categorization. Assumes feature independence. Advanced probabilistic methods for complex 
relationships. 

MLP (Zhou et al., 2021) Adapts to intricate patterns. Prone to overfitting without regularization. Regularization techniques and hybrid models. 
GAN (Roy, 2023) Produces diseased leaf images. Vulnerable to mode collapse. GAN training stability and conditional GANs. 
PCA (Ahmed et al., 2022) Enables dimensionality reduction. Loss of interpretability and sensitivity to 

scaling. 
Advanced PCA variants for nonlinear extraction. 

LDA (Özbılge et al., 2022) Facilitates multiclass discrimination. Assumes class homoscedasticity. Robust LDA variants and integration with feature 
selection. 

HMM (Shafik et al., 2023) Captures sequential progression. Depends on data sequence quality. Hybrid models with deep learning for sequence 
learning. 

SVM-RFE (Wu et al., 2022) Highlights key features. Computationally intensive. Efficient feature selection and noise resilience. 
CNN-LSTM (Sarma et al., 2022) Proficient in sequential feature 

extraction. 
Prone to vanishing gradients and overfitting. Improved mechanisms within hybrid architecture. 

DT-RF (Ashwathappa et al., 
2021) 

Enhanced classification accuracy. Potential redundancy and complexity. Pruning strategies and complexity mitigation. 

SAE (Rahman et al., 2023) Unsupervised feature learning. Sensitive to hyperparameters. Hyperparameter optimization and regularization 
techniques. 

ELM (Tian et al., 2023) Rapid training and generalization. Limited interpretability. Enhancing interpretability and optimizing hidden 
neurons. 

CRF (Thangaraj et al., 2022) Sequential pattern recognition. Dependent on feature engineering. Deep learning integrations and parameter 
calibration. 

ESVM (Ashwathappa et al., 
2022) 

Improved categorization. Computationally intense. Hybrid ensembles with lightweight classifiers. 

GMM (Alzahrani and Alsaade, 
2023) 

Probabilistic clustering. Sensitive to initialization. Robust initialization strategies and alternative 
models. 

RNN (Daniya and Vigneshwari, 
2023) 

Excels in sequential learning. Vanishing gradient issues. New activation functions and transfer learning 
methods.  

V. Cheemaladinne and S.R. K.                                                                                                                                                                                                               



Journal of King Saud University - Science 36 (2024) 103340

3

augmenting the dataset, and enhancing generalization. The GAN model 
augments leaf images by upsampling via bicubic sampling and iterating 
through the GAN model. Initially, the model estimates cross-entropy 
between image samples of different classes, as detailed in equation (1)., 

L
(
I1, I2) = f1*log

(
f2)+

[
1 − f2]*log

(
1 − f1)⋯ (1)  

Where, I1&I2 are the images from different classes, while, f1&f2 are their 
features which are estimated via use of Long-Short-Term Memory 
(LSTM) & Gated Recurrent Unit (GRU) operations. The feature extrac
tion process is represented in Fig. 2, where both LSTM & GRU is 
cascaded to improve density of features. 

The cascaded model estimates LSTM output features via equation 
(2), 

f(LSTM) = var(f*I(t − 1)+ i*C )⋯ (2)  

Where, var(x) represents variance of the signal which is estimated via 
equation (3), while f , i&C represents intermediate features, which are 
estimated via equations (4), 5, & 6, as follows, 

var(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(

x(i) −
∑N

j=1

x(j)
N

)2

N

√
√
√
√
√
√
√ ⋯ (3)  

Where, N represents total number of values in the input x for different 
signals. 

f = var
(
I*Uf + h(t − 1)*Wf )⋯ (4)  

i = var
(
I*Ui + h(t − 1)*Wi )⋯ (5)  

C = tanh(I*Ug + h(t − 1)*Wg)⋯ (6)  

Where, h represents an Iterative Kernel Matrix, which is used to identify 
high-density features. This matrix is updated via equation (7), 

h(t) = tanh(var(f*I(t − 1) + i*C ) )*var(I*Uo + h(t − 1)*Wo )⋯ (7)  

where, U&W represents constants of the LSTM process. These output 
features are further augmented using GRU operations via equation (8), 

f(final) = (1 − z)*hʹ
t + z*h(t)⋯ (8)  

Where, z is estimated via equation (9), 

z = var(Wz*[h(t)*f(LSTM)] )⋯ (9)  

This process is repeated with new values of h till condition (10) is ful
filled, which indicates convergence of the feature extraction operations. 

|f(final, t + 1) − f(final, t) | < ∊ (10)  

Where, ∊ is an Iterative error threshold, which is used to maximize 
feature variance for LSTM & GRU operations. Based on this evaluation, 
the maximum levels of loss are estimated via equation (11), 

L(Max) = Max
[
log
(
f1)+ log(1 − f2)

]
⋯ (11)  

While, the minimum level of loss is estimated via equation (12), 

L(Min) = Min
[
log
(
f1)+ log(1 − f2)

]
⋯ (12)  

Using these evaluations, the final loss function is estimated via equation 
(13) as follows, 

L = Min
[
Max

[
log
(
f1)+ log

(
1 − f2) ] ]⋯ (13)  

The loss level is used to estimate generator probability via equation (14), 

P(G) =
I1

L(Max)
− I2⋯ (14)  

This probability is used to control augmentation operations by estima
tion of probability for each augmentation type via equation (15), 

P(out) = E
(
I1)*log

[
I1

0.5*
(
I1 − P(G)

)

]

+ E
(
I2)*log

[
P(G)

0.5*
(
I2 − P(G)

)

]

(15)  

Using the P(out) levels, augmentation probability is estimated via 
equation (16), 

AP(i) = P(out)*Max(A(i) )⋯ (16)  

Where, A(i) represents the parameters for different augmentation types. 
These types include Zooming, Rotating, Sheering, Shifting, and Bright
ness changes. The augmented images are classified into different tomato 
leaf diseases using an efficient 2D CNN process as shown in Fig. 3. This 
process fuses different Convolution Layers with Max Pooling & Drop Out 

Fig. 1. Design of the proposed model for prediction of Tomato Diseases from 
Leaf Image Sets. 
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layers for conversion of LSTM & GRU features into high-density feature 
sets. 

The 2D CNN process initially extracts Convolutional features via 
equation (17), 

Conv(f) =
∑

m
2

a=−
m
2

∑
n
2

b=−
n
2

f(i − a, j − b)*LReLU
(m

2
+ a,

n
2
+ b
)

(17)  

Where, m, n are the window dimensions, which range from 64 × 64 to 
512 × 512 for different layers, while a, b are stride sizes, and LReLU is an 
Iterative Leaky Rectilinear Unit, which is represented via equation (18), 

LReLU(x, y) = max((x + y)*la, (x + y) )⋯ (18)  

Where, la is an augmented leaky rectilinear constant, which is used to 

retain positive feature sets. The feature extraction process is repeated for 
multiple layers, and the final features are converted into disease classes 
using SoftMax activation via equation (19), 

C(disease) = SoftMax

(
∑Nf

i=1
Conv(i)*w(i)+ b(i)

)

(19)  

Where, w&b are the weights & biases for individual features, while Nf 
represents the total features which are extracted at the final convolu
tional layer, thereby assisting in improving feature variance levels. 

An efficient “VARMAx-CNN-GAN Integration” model has been 
designed to predict tomato plant diseases from feature patterns. We 
leverage the strengths of LSTM and GRU models to extract high-density 
temporal features from surveillance data. The fused outputs of these 
models, capturing intricate spatio-temporal patterns, serve as inputs for 

Fig. 2. Cascade of LSTM & GRU for extraction of GAN Features.  

Fig. 3. Design of the 2D CNN Process for identification of tomato leaf diseases.  
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the “VARMAx-CNN-GAN Integration” model, a robust time series fore
casting process. This model uses the history of fused LSTM and GRU 
outputs to predict future values, considering interactions between var
iables and exogenous influences. The Vector AutoRegressive (VAR) 
component plays a crucial role by regressing each variable in the fused 
outputs against its past values to find temporal dependencies, as 
described in Equation (20) for variable i at time t. 

Y{i, t} = ci+
∑

A{i, j}Y{i, t − j}+
∑∑

B{i, j, k}Y{i, t − j}+ ε{i, t}
(20)  

Where, Yi,t: This represents the value of the variable i (disease type), 
which proposed work are trying to predict, ci is the intercept term 
specific to the variable i, indicating the base value sets, Ai,j are co
efficients that reflect the influence of the past values of variable i on its 
current value sets. The index j refers to the number of past temporal 
instance sets. Bi,j,k are coefficients capture the impact of the past values 
of variable i on itself, considering the influence of other past temporal 
instance sets. The indices j and k indicate different lags. ∊i,t term rep
resents the error or residual at time t for the variable i, which accounts 
for the difference between the predicted and actual value sets. 

Exogenous inputs, which represent external factors (including tem
perature, rainfall, pH levels, and soil parameters) affecting the disease 
behavior, are integrated into the “VARMAx-CNN-GAN Integration” 
framework process via equation (21), 

Y{i, t} = ci+
∑

A{i, j}Y{i, t − j}+
∑

B{i, j, k}Y{i, t − j}

+
∑

C{i, l}X{l, t}+ ε{i, t}⋯
(21)  

The “VARMAx-CNN-GAN Integration” model was used for disease 
detection in tomato plant segments. It improved accuracy by capturing 
changes in variables over time, allowing for multivariate analysis and 
understanding complex interactions. VARMAx models are flexible, 
allowing for both linear and nonlinear relationships, and can include 
exogenous variables, enhancing predictive accuracy and effectiveness in 
disease prediction and management strategies. 

4. Result analysis and experimentation 

The proposed model combines CNN and GAN operations to improve 
tomato leaf disease classification and prediction. Using a dataset of 
350,000 images, it was divided into training (65 %), validation (15 %), 
and testing (20 %) sets. Preprocessing involved resizing, data augmen
tation, and normalization. Models such as MXF[5], MIR[23], MNDLNN 
[24], and custom designs were evaluated using cross-entropy loss and 
the Adam optimizer, focusing on specificity, precision, and accuracy. 
Experiments ran on high-end GPUs with TensorFlow and PyTorch. Ef
ficiency was enhanced by optimizing architecture, reducing parameters, 
and using pruning, quantization, data pipeline optimization, paralleli
zation, and transfer learning to ensure robust performance. 

4.1. Performance of the classification process 

Based on this strategy, the Precision, Accuracy, Recall, and Speci
ficity levels were estimated via equations (22), 23, 24 & 25 as follows, 

Precision =
TP

TP + FP
(22)  

Accuracy =
TP + TN

TP + TN + FP + FN
⋯ (23)  

Recall =
TP

TP + FN
⋯ (24)  

Specificity =
TN

TN + FP
(25)  

True Positive (TP) indicates correctly predicted positive instances, True 
Negative (TN) indicates correctly predicted negative instances, False 
Positive (FP) indicates incorrectly predicted positive instances, and 
False Negative (FN) indicates incorrectly predicted negative instances. 
The precision obtained during disease classification was compared with 
MXF [5], MIR [23], & MNDLNN [24], and the VARMAX-CNN-GAN 
combination also helps to improve the pre-emptive capabilities for 
identifying tomato leaf diseases. Fig. 4a displays the precision observed 
for identification of different diseases using various methods at different 
data sizes (ranging from 240 K to 3 M). MXF [5] shows precision ranging 
from 82.38 % to 87.31 %, with the highest precision of 87.31 % at 2280 
K data. MIR [23] demonstrates a steady increase in precision from 86.26 
% at 240 K to 92.54 % at 3 M. MNDLNN [24] similarly shows an 
increasing trend, starting at 86.25 % and reaching 93.54 % at 3 M. 
VARMAx-CNN-GAN consistently outperforms the other methods, with 
precision values between 92.33 % and 99.37 %, and the highest preci
sion of 99.37 % at 3 M data. Overall, VARMAx-CNN-GAN exhibits su
perior performance across all data sizes compared to the other methods. 
Similarly, Fig. 4b presents the precision observed for the pre-emption of 
diseases using various methods at different data sizes (ranging from 240 
K to 3 M). MXF [5] shows precision ranging from 73.60 % to 82.94 %, 
with the highest precision of 82.94 % at 2280 K data. MIR [23] dem
onstrates precision varying between 78.20 % and 86.34 %, reaching its 
peak precision of 86.34 % at 3 M. MNDLNN [24] shows fluctuations in 
precision, starting at 82.34 % at 240 K and achieving its highest preci
sion of 86.88 % at 3 M. VARMAx-CNN-GAN consistently outperforms 
the other methods, with precision values between 87.48 % and 94.55 %, 
and the highest precision of 94.55 % at 1320 K data. Overall, VARMAx- 
CNN-GAN demonstrates the highest precision for the pre-emption of 
diseases across most data sizes compared to the other methods. 

The Fig. 5(a) shows the accuracy of various disease identification 
methods at different data sizes. MXF[5], MIR[23], and MNDLNN[24] 
show varying accuracy rates at different data sizes (ranging from 240 K 
to 3 M). VARMAx-CNN-GAN consistently outperforms these methods, 
with an accuracy of 97.61 % at 3 M data, and demonstrating superior 
accuracy across all data sizes. The Fig. 5(b) shows the accuracy observed 
for the pre-emption of diseases using various methods at different data 
sizes (ranging from 240 K to 3 M). MXF [5] shows accuracy ranging from 
81.41 % to 89.79 %, with the highest accuracy of 89.79 % at 1800 K 
data. MIR [23] demonstrates an increasing trend in accuracy from 73.51 
% at 720 K to 89.70 % at 3 M. MNDLNN [24] shows fluctuating accu
racy, starting at 68.22 % at 240 K and achieving its highest accuracy of 
83.23 % at 2280 K. VARMAx-CNN-GAN consistently outperforms the 

Fig. 4a. Precision observed for identification of different diseases.  
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other methods, with accuracy values between 85.61 % and 97.61 %, 
reaching the highest accuracy of 97.61 % at 3 M data. Overall, VARMAx- 
CNN-GAN demonstrates superior accuracy for the pre-emption of dis
eases across all data sizes compared to the other methods. 

The Fig. 6(a) shows the recall observed for the identification of 
different diseases using various methods at different data sizes (ranging 
from 240 K to 3 M). MXF [5] shows recall values ranging from 78.65 % 
to 86.66 %, with the highest recall of 86.66 % at 3 M data. MIR [23] 
demonstrates recall values ranging from 80.39 % to 89.58 %, peaking at 
89.58 % at 2670 K data. MNDLNN [24] shows recall values fluctuating 
between 82.35 % and 92.05 %, achieving the highest recall of 92.05 % at 
3 M data. VARMAx-CNN-GAN consistently outperforms the other 
methods, with recall values between 89.04 % and 99.55 %, reaching the 
highest recall of 99.55 % at 3 M data and demonstrates the highest recall 
for the identification of different diseases across all data sizes compared 
to the other methods. Similarly, the Fig. 6(b) shows the recall observed 
for the observed for the pre-emption of diseases using various methods 
at different data sizes (ranging from 240 K to 3 M). VARMAx-CNN-GAN 
consistently outperforms the other methods, with recall values between 

89.04 % and 99.55 %, reaching the highest recall of 99.55 % at 3 M data. 
Fig. 7(a) shows the delay in milliseconds for identifying different 

diseases using various methods across data sizes from 240 K to 3 M. MXF 
[5] delays range from 173.09 ms to 192.73 ms, peaking at 2670 K data. 
MIR [23] delays range from 154.27 ms to 185.66 ms, peaking at 2280 K 
data. MNDLNN [24] delays are more consistent, from 141.06 ms to 
149.83 ms, peaking at 3 M data. VARMAx-CNN-GAN shows the lowest 
delays, from 127.94 ms to 142.77 ms, peaking at 3 M data, and is the 
fastest across all data sizes. Fig. 7(b) shows the delay for disease pre- 
emption, where VARMAx-CNN-GAN again shows the lowest delays, 
from 125.94 ms to 138.77 ms, peaking at 3 M data, consistently out
performing other methods. VARMAx-CNN-GAN also achieves the high
est AUC values for disease identification (85.14 to 98.70) and pre- 
emption (81.09 to 92.70), peaking at 98.70 and 92.70, respectively. 
Comparatively, MXF [5] ranges from 75.90 to 85.73 in identification 
and 75.90 to 80.73 in pre-emption; MIR [23] ranges from 76.17 to 90.60 
in identification and 76.17 to 84.87 in pre-emption; MNDLNN [24] 
ranges from 75.13 to 87.83 in identification and 75.13 to 80.15 in pre- 
emption. 

The VARMAx-CNN-GAN consistently demonstrates high specificity 

Fig. 4b. Precision for pre-emption of diseases.  

Fig. 5a. Accuracy observed for identification of different diseases.  

Fig. 5b. Accuracy for pre-emption of diseases.  

Fig. 6a. Recall observed for identification of different diseases.  
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in both disease identification and prevention across varying data sizes 
(240 K to 3 M). For disease identification, MXF [5] achieves a maximum 
specificity of 86.32 % at 2670 K data, MIR [23] peaks at 89.00 % at 
1800 K data, and MNDLNN [24] reaches 88.84 % at 2280 K data. In 
disease prevention, MXF [5] peaks at 83.32 % at 2670 K data, MIR [23] 
at 86.13 % at 3 M data, and MNDLNN [24] at 82.61 % at 2670 K data. 
VARMAx-CNN-GAN outperforms with a maximum specificity of 96.44 
% for disease identification and 87.44 % for disease prevention at 3 M 
data. Fig. 8(a) displays the specificity observed in the detections of 
various diseases, whereas Fig. 8(b) illustrates the specificity in the pre
emption of diseases. 

Table 2 shows improvements across precision, recall, accuracy, and 
F1-score as additional techniques (GAN and VARMAx) are incorporated 
into the base CNN model. 

The proposed model for disease classification faces errors like false 
positives and false negatives due to inadequate feature representation, 
class imbalance, and environmental factors. To address these issues, the 
model may need to augment training data, improve feature represen
tation, or incorporate advanced techniques. Strategies include data 
augmentation, transfer learning, and ensemble learning. Further vali
dation and refinement are needed for real-life agricultural situations. 

5. Conclusion 

The approach suggested herein creates a CNN-based model for dis
ease detection in tomato crops. Each of the three convolution and max 
pooling layers in the proposed CNN-based architecture contains a 
different number of filters. The present research undertook a thorough 
evaluation and comparison of four distinct classification models, 
assessing them across various criteria such as delay, AUC levels, and 
specificity. This in-depth analysis has yielded valuable insights, 
enriching our understanding of the effectiveness and efficiency of each 
model in performing classification tasks. The proposed work consis
tently showcased superior performance across a spectrum of metrics. 
Whether examining delay values, where it excelled in minimizing pro
cessing time, AUC levels, where it demonstrated impressive discrimi
nation ability, or specificity levels, where it displayed remarkable 
proficiency in accurately identifying negative instances, the proposed 
method consistently outperformed the existing models, including MXF, 
MIR, and MNDLNN. This performance underscores the strength and 
effectiveness of the proposed approach in comparison to its counter
parts. The methodology adopted in the proposed work, has proven 
effective in attaining optimized results. The comparative analysis 

Fig. 6b. Recall for preemption of diseases.  

Fig. 7a. Delay observed for identification of different diseases.  

Fig. 7b. Delay for preemption of diseases.  

Fig. 8a. Specificity observed for identification of different diseases.  
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reflects a holistic approach where various aspects of the classification 
process were taken into consideration, allowing for a multifaceted un
derstanding of the models’ behaviors. The improved classification per
formance demonstrated by the proposed method may pave the way for 
new opportunities in applications where accurate, efficient, and 
dependable classification is crucial. This encompasses domains such as 
medical diagnosis, and disease detection. The enhanced model perfor
mance offers the potential to significantly benefit real-world scenarios 
where precise and timely classification plays a pivotal role. 
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