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Abstract The problem of steady state output of the discrete-time fractional differential systems is

studied in this paper. Based on the fact that the exponentials are the eigenfunctions of such systems,

a general algorithm for the output computation when the input is the product ‘‘rising factorial.

exponential’’ is presented. The singular case is studied and solved.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The discrete-time differential systems were studied in
Ortigueira et al. (2015) where we developed a framework

parallel to the classic used in continuous-time systems. Those
systems are based on the nabla and delta derivatives (Bohner
and Peterson, 2001; Hilger, 1990; Ortigueira et al., 2015).

Here we resume the study of those systems by considering
the steady state responses to exponentials and products of
exponentials by rising factorial functions. We will study both
the regular and singular cases in a way similar to the one fol-
lowed in Ortigueira (2014b). The algorithm is based on the
concept of eigenfunction. As shown in Ortigueira et al.
(2015) the eigenfunctions of discrete-time differential systems

linear systems are exponentials suitably defined and the
corresponding eigenvalues are the transfer functions. Such
exponentials are defined with the help of the nabla and delta

derivatives and lead to nabla and delta Laplace transforms.
We will consider the regular and singular cases; these corre-
spond to the situation of infinite eigenvalue.

The paper outline is as follows. In Section 2 we present the
nabla and delta derivatives and the corresponding
exponentials. Their properties are listed. In Section 3 we

show how to compute the output when the input is an
exponential or the product of an exponential by a rising
factorial function.

Important remark – The formulation we will present

although in a discrete-time setup it mimics the continuous-time
counterpart. This leads us to use interchangeably t ¼ nh where
h is the underlying time interval.
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2. Fractional nabla and delta derivatives and exponentials

Let t ¼ nh be any generic point in T ¼ hZ ¼ kh : k 2 Zf g. We
define the nabla derivative (Bohner and Peterson, 2001; Hilger,

1990) by:

DrfðtÞ ¼ f 0rðtÞ :¼ fðtÞ � fðt� hÞ
h

ð1Þ

and the delta derivative (Neuman, 1993) by

DDfðtÞ ¼ f 0DðtÞ :¼ fðtþ hÞ � fðtÞ
h

ð2Þ

As it can be seen the first one is causal, while the second is

anti-causal. Their generalizations for any real (or complex)
order are obtained from the continuous-time Grünwald–
Letnikov derivative (Diaz and Osler, 1974; Magin et al.,
2011; Ortigueira, 2011; Ortigueira et al., 2015):

D
ðaÞ
r fðtÞ ¼ f

ðaÞ
r ðtÞ :¼

P1
n¼0 �1ð Þn

a

n

� �
fðt� nhÞ

ha

ð3Þ

and

D
ðaÞ
D fðtÞ ¼ f

ðaÞ
D ðtÞ :¼ e�iap

P1
n¼0 �1ð Þn

a

n

� �
fðtþ nhÞ

ha

ð4Þ

As before (Ortigueira, 2011) we will call these derivatives

respectively forward and backward due to the ‘‘time flow’’,
from past to future or the reverse. This terminology is the
reverse of the one used in some mathematical literature. The
first is causal while the second is anti-causal.

Attending to the fact that �1ð Þn a
n

� �
¼ð�aÞn

n!
where ð�aÞn is the

Pochhammer symbol for the rising factorial –

ðaÞk ¼ aðaþ 1Þðaþ 2Þ � � � ðaþ k� 1Þ2; we conclude immedi-

ately that these derivatives include as special cases the integer
order derivatives and anti-derivatives.

These derivatives enjoy several properties as described in
Ortigueira et al. (2015). The eigenfunctions of these derivatives
are the nabla and delta generalized exponentials defined by

Ortigueira et al. (2015):

erðt; sÞ ¼ 1� sh½ ��t=h ð5Þ

and

eDðt; sÞ ¼ 1þ sh½ �t=h ð6Þ

The properties of these exponentials are described in
Ortigueira et al. (2015).

3. Outputs of differential discrete-time linear systems

3.1. Regular cases

3.1.1. Exponential input

We are going to consider systems with the general format
(Magin et al., 2011)

XN
k¼0

akD
akyðtÞ ¼

XM
k¼0

bkD
bkxðtÞ ð7Þ
2 We make the convention ð0Þ0 ¼ 1 and ð0Þn ¼ 0 for any integer n
with aN ¼ 1. The operator D is the nabla derivative defined

above . The orders N and M are any positive integers. The
ak and bk sequences are strictly increasing and positive real
numbers.

The discrete-time convolution between two discrete-time
functions fðtÞ and gðtÞ is given by:

fðtÞ � gðtÞ ¼ h
Xþ1
k¼�1

fðkhÞgðnh� khÞ ð8Þ

Introduce the discrete delta (impulse) function by:

dðnhÞ ¼ DeðnhÞ ð9Þ

where eðnhÞ is the discrete-time Heaviside unit step

eðnhÞ ¼
1 n P 0

0 n < 0

�
ð10Þ

Let gðtÞ be the impulse response of the system defined by

(7): xðtÞ ¼ dðnhÞ. The output is the convolution of the input
and the impulse response (Ortigueira et al., 2015).

yðtÞ ¼ gðtÞ � xðtÞ ð11Þ

If xðtÞ ¼ erðnh; sÞ the output is given by:

yðtÞ ¼ erðnh; sÞ h
X1
n¼�1

gðnhÞeDðnh;�sÞ
" #

The summation expression will be called transfer function as
usually. We write then

GðsÞ ¼ h
X1
n¼�1

gðnhÞeDðnh;�sÞ ð12Þ

say, the transfer function is the nabla Laplace transform
(Ortigueira et al., 2015) of the impulse response. It is important

to remark that the nabla Laplace transform uses the delta
exponential. There is also the delta Laplace transform (see
Ortigueira et al., 2015). With these results we can easily express

the transfer function as

GðsÞ ¼
PM

k¼0bks
bkPN

k¼0aks
ak

ð13Þ

We conclude that:

� The exponentials are the eigenfunctions of the linear sys-
tems (7)

� The eigenvalues are the transfer function values.

Putting s ¼ 1�eih

h we obtain the usual sinusoidal case. These

results exhibit a high degree of coherence with classic results

(Ortigueira, 2014a).

Example 1. Let h ¼ 1 and consider the differential equation
(Ortigueira, 2014a)
y000ðtÞ þ y00ðtÞ � 4y0ðtÞ þ 2yðtÞ ¼ xðtÞ

Let xðnÞ ¼ 2�n. This corresponds to s ¼ �1. The solution is
given by:

yðnÞ ¼ 1

ð�1Þ3 þ ð�1Þ2 � 8þ 2
2�n ¼ 1

6
2�n

The above result can be generalized.
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3.1.2. ‘‘Rising factorial.exponential’’ input

Consider now that the input is the product ‘‘rising factorial.-

exponential’’ defined by

xðnhÞ ¼ ðnhÞKherðnh; bÞ ¼ eDðKh;�bÞlim
s!b

dK

dsK
erðnh; sÞ

where ðnhÞKh ¼ ðnhÞðnhþ hÞðnhþ 2hÞ . . . ðnhþ Kh� hÞ. We

can write

yðtÞ ¼ h
X1

m¼�1
gðmhÞðnh�mhÞKherðnh�mh; bÞ

According to Ortigueira et al. (2015) and the theory underlying
the Z transform, the summation is uniformly convergent. This
means that we can move the derivative operation out from the

summation to get:

yðtÞ ¼ eDðKh;�bÞlim
s!b

dK

dsK
GðsÞerðnh; sÞ ð14Þ

Using the usual Leibniz rule for the derivative of the
product the particular solution of the differential Eq. (7) when

xðnhÞ ¼ ðnhÞKherðnh; bÞ is given by:

yðnhÞ ¼ y0ðnhÞerðnh; bÞ ð15Þ

with

y0ðnÞ ¼
XK
j¼0

K

j

� �
GðjÞðbÞðnhÞðK�jÞheDððK� jÞh;�bÞ ð16Þ

provided that b is not a pole of the transfer function. This
result is formally equivalent to the one presented in

Ortigueira (2014a).
The general case stated in (7) is very difficult to study due to

the problems in computing the poles and zeros. So, we will

consider that all the orders are multiple of a given a that we
will assume to be real.

GðsÞ ¼
PM

k¼0bks
akPN

k¼0aks
ak

ð17Þ

The polynomial in the denominator is called characteristic

pseudo-polynomial (Ortigueira, 2011).

Example 2. Consider Example 1, but with xðnÞ ¼ n2�n. Using

(15) and (16) we obtain yðnÞ ¼ 2�n
P1

j¼0
1
j

� �
GðjÞðbÞðnÞK�j21�j.

As Gð�1Þ ¼ 1
6 and G0ð�1Þ ¼ 1

12 ; yðnÞ ¼ 2�n n
3� 1

12

� �
.

In this kind of systems the above procedure is simple,

except in the singular case that we will treat next.
3.2. Singular cases

Let us consider now the problem we have when the

characteristic pseudo-polynomial in the denominator has an
mth order root for s ¼ b. This means that we can factorize
AðsÞ by putting in evidence the presence of the pole

AðsÞ ¼ ðsa � baÞm �AðsÞ

This implies that we can decouple the original equation into
two sub-equations
XN�m
k¼0

�akD
akuðtÞ ¼

XM
k¼0

bkD
bkxðtÞ ð18Þ

and

Xm
k¼0
ð�1Þm�k

m

k

� �
bðm�kÞaDkayðtÞ ¼ uðtÞ ð19Þ

The solution, uðtÞ, of (18) is according to (15) and (16) given by

uðnhÞ ¼ u0ðnhÞerðnh; bÞ ð20Þ

where

u0ðnhÞ ¼
XK
j¼0

K

j

� �
�GðjÞðbÞeDððK� jÞh;�bÞðnhÞðK�jÞh ð21Þ

and

�GðsÞ ¼ BðsÞ
�AðsÞ ¼

ðsa � baÞmBðsÞ
AðsÞ ð22Þ

Attending to (20) where u0ðtÞ can be considered as a ‘‘poly-

nomial’’ with a given degree K, put

yðtÞ ¼ y0ðtÞerðnh; bÞ;

but now the degree of y0ðtÞ is J ¼ Kþm. Using the generalized
Leibniz rule (Ortigueira et al., 2015) for the product

Dc fðtÞgðtÞ½ � ¼
X1
i¼0

c

i

� �
f
ðiÞ
r ðtÞg

ðc�iÞ
r ðt� ihÞ

we can write

Dc ðnhÞJherðnh;bÞ
� �

¼ erðnh;bÞ
XJ
i¼0

c

i

� �
Di ðnhÞJh
� �

bc�ieDðih;�bÞ

Then the c order fractional derivative of yðtÞ is given by

Dc y0ðtÞerðnh; bÞ½ � ¼ erðnh; bÞ
XJ
i¼0

c

i

� �
Diy0ðnhÞbc�ieDðih;�bÞ

where D ðnhÞJh
� �

¼ ðJhÞðnhÞðJ�1Þh.
We could express the successive derivatives of the ‘‘poly-

nomial’’, but it is preferable to insert this result into (19) to
obtainXm
k¼0
ð�1Þm�k

m

k

� �
bðm�kÞa

XJ
i¼0

ka

i

� �
Diy0ðtÞbka�ieDðih;�bÞ¼ u0ðtÞ

After some manipulation we get an ordinary integer order
differential equation

XJ
i¼0

bma�ieDðih;�bÞ
Xm
k¼0
ð�1Þm�k

m

k

� �
ka

i

� �" #
y
ðiÞ
0 ðtÞ ¼ u0ðtÞ

On the other hand,

Xm
k¼0
ð�1Þm�k

m

k

� �
ka

i

� �
¼
Xm
k¼0
ð�1Þm�k

m

k

� �
ð�kaÞi

i!

The Pochhammer symbol ð�kaÞi is a polynomial in k with

degree equal to i. So, attending to
Pm

k¼0ð�1Þ
m�k m

k

� �
ki ¼ 0

for i < m, the above equation can be rewritten as

XK
i¼0

bma�i�meDðih;�bÞcmy
ðiþmÞ
0 ðtÞ ¼ u0ðtÞ
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with cm ¼
Pm

k¼0ð�1Þ
m�k m

k

� �
ka

iþm

� �
. Introduce a new

function vðtÞ ¼ y
ðmÞ
0 ðtÞ verifying the equation

XK
i¼0

bma�i�meDðih;�bÞ
Xm
k¼0
ð�1Þm�k

m

k

� �
ka

iþm

� �" #
vðiÞðtÞ¼ u0ðtÞ

ð23Þ

This new differential equation has the transfer function:

GðsÞ ¼ 1PK
i¼0Aisi

ð24Þ

with

Ai ¼ bma�i�meDðih;�bÞ
Xm
k¼0
ð�1Þm�k

m

k

� �
ka

iþm

� �" #
ð25Þ

for i ¼ 0; 1; . . . ;K. To obtain the solution of Eq. (7), we use the

result stated in (21) showing that u0ðtÞ is a ‘‘polynomial’’ with

order equal to K : u0ðtÞ ¼
PK

i¼0Uið�nhÞih.
Then from (21)

vðnhÞ ¼
XK
i¼0

Ui

Xi

j¼0

K

j

� �
�GðjÞð0ÞðnhÞði�jÞh

To get the solution, yðtÞ, we are looking for we must realize

that y
ðmÞ
0 ðtÞ ¼ vðtÞ. So, from (3)

y0ðtÞ ¼ hm
XK
i¼0

Ui

Xi

j¼0
GðjÞð0Þ ði� jÞ!

ði� jþmÞ! ðnhÞði�jþmÞh ð26Þ

The particular solution of the differential Eq. (1) when it is
singular and xðtÞ ¼ ðnhÞKherðnh; bÞ is given by

yðtÞ ¼ erðnh; bÞhm
XK
i¼0

Ui

Xi

l¼0

l!Gði�lÞð0Þ
ðlþmÞ! ðnhÞðlþmÞh ð27Þ

with Ui the coefficients of the polynomial in (21) and GðsÞ
given by (24) and (25).

A simple summation change can give another format to the

above relation:

yðtÞ ¼ erðnh; bÞhm
XK
l¼0

l!

ðlþmÞ!
�UlðnhÞðlþmÞh ð28Þ

with �Ul ¼
PK

i¼lUiG
ði�lÞð0Þ.

Example 3. Consider the semi-differential equation
(Ortigueira, 2014b):

yð2ÞðtÞ � 4yð3=2ÞðtÞ þ 3yþ 4yð1=2ÞðtÞ � 4yðtÞ ¼ ðnÞ2erðn; 4Þ

where we assumed h ¼ 1 by simplicity.
The characteristic pseudo-polynomial has a second order

zero at s ¼ 4. Thus m ¼ 2 and K ¼ 2. Proceeding as described

above we have

�GðsÞ ¼ ðs1=2 � 2Þ2

s2 � 4s3=2 þ 3sþ 4s1=2 � 4
¼ 1

sþ 4s1=2 þ 3

from where we deduce that U0 ¼ �G00ð4Þ ¼ 79
153
;

U1 ¼G0ð4Þ ¼� 2
225
, and U2 ¼ �Gð4Þ ¼ 1

15
.

For GðsÞ, we have

Ai ¼ 4�1�i
X2
k¼0
ð�1Þm�k

m

k

� �
k=2

iþm

� �" #

¼ 4�1�i 1� 2:ð1=2Þiþm þ ðiþmÞ!
� �

that gives A0 ¼ 3
8
;A1 ¼ 13

64
, A2 ¼ 95

512
and

GðsÞ ¼ 1
3
8
þ 13

64
sþ 95

512
s2

giving Gð0Þ ¼ 1
A0
¼ 8

3
;G0ð0Þ ¼ � A1

A2
0

¼ � 13
9
, and G00ð0Þ ¼ � 2A2

A2
0

þ
2A2

1

A3
0

¼ 29
27
.

With these constants we compute the �Ul that inserted in
(28) gives the searched solution. This algorithm can be
formulated in a matricial framework as in Ortigueira (2014b).
4. Conclusions

The steady state output of the discrete-time fractional
differential systems was studied in this paper. Based on the fact
that the exponentials are the eigenfunctions of such systems,

we devised a general output computation when the input is
the ‘‘rising factorial.exponential’’ product. The singular case
that puts some difficulties was studied and solved.
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