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Outliers are commonplace in many real-life experiments. The presence of even a few anomalous data can
lead to model misspecification, biased parameter estimation, and poor forecasts. Outliers in a time series
are usually generated by dynamic intervention models at unknown points of time. Therefore, detecting
outliers is the cornerstone before implementing any statistical analysis. In this paper, a multivariate out-
lier detection algorithm is given to detect outliers in time series models. A univariate time series is trans-
formed to bivariate data based on the estimate of robust lag. The proposed algorithm is designed by using
robust measures of location and dispersion matrix. Feed forward neural network is used for designing
time series models. Number of hidden units in the network is determined based on the standard error
of the forecasting error. A comparison study between the proposed algorithm and the widely used algo-
rithms is given based on three real-data sets. The results demonstrated that the proposed algorithm out-
performed the existing algorithms due to its non-requirement of a priori knowledge of the time series
and its control of both masking and swamping effects. We also discussed an efficient method to deal with
unexpected jumps or drops on share prices due to stock split and commodity prices near contract expiry
dates.
� 2020 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The detection of outliers or unusual data structures is one of the
important tasks in the statistical analysis of time series data as out-
liers may have a substantial influence on the outcome of an analy-
sis. Appropriate definition of an outlier usually depends on the
assumptions about the structure of data and the applied detection
method. Hawkins (1980) defined the outlier as an observation that
deviates so much from other observations as to arouse suspicion
that it was generated by a different mechanism. Barnett and
Lewis (1994) indicated that an outlying observation, or outlier, is
one that appears to deviate markedly from other members of the
sample in which it occurs. Similarly, Johnson (1992) viewed that,
an outlier is an observation in a data set which appears to be incon-
sistent with the remainder of that set of data. There are many def-
initions of outlier proposed in the literature of time series. Outlier
observations in some situations are also referred as anomalies, dis-
cordant observations, or contaminants Carreno et al. (2019).

The presence of outliers in a time series has a significant effect
on the results of standard procedures of analysis. The conse-
quences may lead to improper model specification, faulty parame-
ter estimation and substandard forecasting. A crucial point here is
that any outlier detection technique can at most detect a set of data
points having different behavior than the rest of the data and
hence, it can be termed as a probable set of outliers. However, it
is up an analyst to take various itineraries to come up with a final
decision to justify these detected points as outliers. It is probable
that a point detected as an outlier has some real facts behind it,
e.g., the price of a stock just after the date of stock split with split
ratio of 2-for-1 or 3-for-1, which means a stockholder gets two or
three shares, respectively, for every share held. In a reverse stock
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split, a company divides the number of shares that stockholders
own, raising the market price accordingly. In such a scenario, most
of the outlier detection algorithms will detect the prices after the
date of stock split as outliers. The impact of outliers on parameter
estimation has been studied by Pena (1990), Fox (1972). Deutsch
et al. (1990) explored the effects of a single outlier on autoregres-
sive moving-average (ARMA) identification. In their study, Barreyre
et al. (2019) used statistical outlier detection methods to detect
anomaly in space telemetries. The suggested methods addressed
the issue of outlier limited to the nature and number of outliers.
Moreover, the some of the method of parameter estimation is
based on maximum likelihood estimation or on the least square
approach.

Outliers in a time series are usually generated by dynamic inter-
vention models at unknown points of time. A common practice to
deal with the outliers in a time series is to identify the locations of
outliers and then to use intervention models to analyze the outlier
effects. This is an iterative method that requires iterations between
outlier detection and estimation of model parameters. Tsay (1988)
discussed the significance of outliers in level shift and its dynamics
that leads to change in variance of the series. In their findings,
Chang et al. (1988) introduced two types of outliers, namely addi-
tive outliers (AO) and innovative outliers (IO). However, Chen and
Liu (1993) later introduced two more types of outilers in time ser-
ies such as temporary change (TC), and level shift (LS), addressing
their effect in modeling and estimating the parameters of time ser-
ies. They further demonstrated that the sensitivity of the forecast
intervals are mainly due to AO and discussed the issue of forecast-
ing when outliers occur near, or at the forecast origin. The conse-
quence of additive outliers on forecasts was addressed by
Ledolter (1989) in the case of ARMA model. In their study,
Battaglia and Orfei (2005) discussed the problem of identifying
the location of outliers and estimation of the amplitude in nonlin-
ear time series. An alternative semi-parametric estimator for the
fractional differencing parameter in the autoregressive fractionally
integrated moving average (ARFIMA) model was introduced by
Molinaresa et al. (2009) which is robust against additive outliers.
In their study, Leduca et al. (2011) considered the implementation
of auto-covariance function that is robust to the additive outliers.
Loperfido (2020) discussed a method based on achieving maximal
kurtosis for outlier detection in multivariate and univariate time
series models. However, the estimation procedure is based on
the assumption that the model parameters are known, which
may not be the case always, especially in case of real data.

Modeling in time series depends on finding the functional rela-
tionship of the time series with its lagged variables. Artificial neu-
ral networks (ANN) are well known for their ability to find
functional relationship between input and sets of output variables.
Moreover, modeling with ANN may not require a priori knowledge
of parameters of the time series. It has been observed that a net-
work with properly designed architecture can approximate any
function to its desired accuracy (cf. Hornik et al. (1989), Hornik
(1991)). In their study, Shaheed (2005) used the approach of
feed-forward neural network with an external input and resilient
propagation algorithm to model non-linear autoregressive process.
Several studies have been carried out to address the application of
ANN for estimation and forecasting of linear or nonlinear autore-
gressive moving average (NARMA) process. Farayay and
Chatfield, 1998, Zhang et al., 1998, Khashei and Bijari, 2010 are
some of the studies where ANN has been used in parameter esti-
mation and forecasting of the ARMA process. However, the pres-
ence of outlier may affect both model identification and
forecasting in time series data.

Anomalies in a time series are considered as the observations
that deviate from some usual or standard patterns. Anomaly detec-
tion in time series is a growing area of research, where different
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techniques have been developed in the field of machine learning
as well as statistics. Omar et al. (2013) used machine learning tech-
niques for anomaly detection. In the field of statistics, some signif-
icant developments in terms of anomaly detection techniques in
time series are Jeng et al. (2013), Bardwell and Fearnhead (2017),
Ahmad et al. (2017). The statistical procedures are generally direc-
tion dependent and may be based on some prior assumptions, be it
distribution of the data or prior knowledge of the parameters.
Whereas, optimization techniques are the basis for machine learn-
ing algorithms and selection of an improper algorithm may result
in misleading outcome.

It is therefore necessary to look for robust methods which do
not require a priori knowledge of time series and may not depen-
dent on number, nature of outliers. Robust statistics deals with the
theory of stability of statistical procedures. It methodically departs
from the modeling assumptions of well-known procedures and
eventually tries to develop efficient procedures. Motivated by
these facts, an algorithm is proposed to detect outliers in time ser-
ies. The proposed algorithm uses robust measures of location and
dispersion matrix. Outlier free data has been modeled with feed
forward ANN. The architecture of the ANN is determined experi-
mentally. A ‘R’ package (Otsad) developed by Iturria et al. (2020)
which can detect point outliers in a univariate time series along
with BARD technique by Bardwell and Fearnhead (2017), a tech-
nique based on bayesian approach to detect abnormal regions
has been used for comparative study and results thereof are
presented.

2. Preliminaries and notations

2.1. Autoregressive (AR) model

In general, an autoregressive process of order p can be defined
as

Xp

i¼1

aiYt�i ¼ et ; t ¼ 0; �1; �2; : : : ; �n; ð1Þ

where a0–0; ap–0 and etf g are uncorrelated random variables with
zero mean and constant variance.

2.2. Autoregressive moving average (ARMA) model

In an ARMA process, both autoregressive and moving average
processes are considered. Let Yt ; t 2 ð0; �1; �2; : : : ; �nÞf g be a
stochastic process. An ARMA process of order (p, q) is defined as

Yt þ a1Yt�1 þ a2Yt�2 þ : : : þ apYt�p

¼ et þ b1et�1 þ b2et�2 þ : : : þ bqet�q : ð2Þ
where ap–0 bq–0 and etf g is the sequence of random variables
which are uncorrelated in nature.

2.3. Types of outliers in a time series

Let fYtg be a time series that follows a general ARMA process,
then fYtg can also be presented as follows

Yt ¼ hðBÞ
aðBÞ/ðBÞut; t ¼ 1; 2; : : : ;n; ð3Þ

where n denotes the number of observation in the time series, hðBÞ,
aðBÞ and /ðBÞ are polynomials of B. The outliers in a time series may
generally be represented by L Bð ÞIðtjÞ, where L Bð Þ ¼ A Bð Þ

G Bð ÞH Bð Þ is

polynomial function of lag operators and IðtjÞ in an indicator
function which takes value 1 when t ¼ j else take the value 0.
Here AðBÞ; GðBÞ; and HðBÞ represent the polynomials



G.K. Vishwakarma et al. Journal of King Saud University – Science 32 (2020) 3328–3336
hðBÞ; aðBÞ; and /ðBÞ, respectively and B is a backshift operator. The
types of outliers in a time series are (i) innovational outlier (IO), (ii)
additive outliers (iii), level shift, and (iv) temporary change, which
can be defined as follows

IO : LðBÞ ¼ hðBÞ
aðBÞ/ðBÞ ; AO : LðBÞ ¼ 1;

TC : LðBÞ ¼ 1
ð1�dBÞ and LS : LðBÞ ¼ 1

ð1�BÞ

)
: ð4Þ

Further, details about outliers can also be found in Chen and Liu
(1993).

3. Methodology

In this study, back propagation neural network (BPNN) has been
used to model time series. Brief descriptions of some methodolo-
gies are as follows.

3.1. Backpropagation neural network

The BPNN is one of the popular neural network methods. It is a
feed forward, multilayer perceptron (MLP) supervised learning
network. The backpropagation algorithm looks for the minimum
of the error function in the weight space using the method of gra-
dient descent. The combination of weights which minimizes the
error function is considered to be a solution of the learning prob-
lem. Since this method requires computation of the gradient of
the error function at each iteration step, continuity and differentia-
bility of the error function need to be guaranteed. Obviously, one
has to use an activation function other than the step function.
For MLP, the output of one layer becomes the input of the subse-
quent layers. The neurons in the first layer receive external inputs,
and the neurons in the last layer present the output of the network.
The following equation describes this operation

amþ1 ¼ f mþ1ðWmþ1am þ bmþ1Þ; form ¼ 1; 2; : : : ; M � 1;

where a is the input vector to the layer, b is the noise vector, W is
the weight matrix to each neuron, M is the number of layers in
the network, and f is the activation function. The widely used type
of activation function used in the hidden layer is the tangent hyper-
bolic, i.e.,

f ðxÞ ¼ sinðhxÞ
cosðhxÞ ¼

ex � e�x

ex þ e�x
¼ e2x � 1

e2x þ 1
: ð6Þ
3.2. Forecasting using ANN

For forecasting in time series, a training pattern is constructed
using lagged time series. Let us suppose, there are N observations
y1; y2; : : : ; yN in the time series and we need one-step ahead fore-
casting using ANN. The first training pattern will consist of
y1; y2; : : : ; yn as inputs and ynþ1 as an output. If there are n nodes
at the input layer, the total number of training patterns will be
(N�n). The cost function that is used during the training process
is given as follows

E ¼ 1
2

XN
i¼nþ1

ðyi � aiÞ2; ð7Þ

where ai denotes the actual output of the network and 1=2 is
included for the simplification of derivative computed during the
training algorithm.

4. Outlier identification and forecasting with proposed method

The measures of location and dispersion are two of the most
useful alternatives for describing data mean and variation. Usually,
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sample mean x
�
and variance s2 of a sample XN ¼ fxigNi¼1 provide

good estimate of location and dispersion, if data is free from out-
liers. When data is contaminated, even a single observation with
large deviation may affect sample mean as well as dispersion
matrix significantly. Therefore, in case of contaminated data,
robust estimation of the model such as M-estimator by Huber
(1981), generalized M-estimator by Denby and Martin (1979) are
useful. However, the efficiency of these estimators decreases when
the order of AR (p) model is high.

To improve the robustness of the model, Liu et al. (2004) sug-
gested the transformation of the original univariate series fytgNt¼1

into a bivariate fYt ¼ ðyt ; yt�kÞgNt¼kþ1 series. One of the multivariate
robust estimation methods, such as the minimum covariance
determinant (MCD) estimator developed by Rousseeuw (1984),
Rousseeuw and Driessen (1999) can be applied instead of the uni-
variate M or GM-estimators for the robust estimation of the model.
However, when a time series is transformed from univariate into
bivariate, application of MCD will detect outliers as pairs. If the
original time series has outlier at mth and lth position, ðm; lÞ < k,
then the application of the MCD will detect both the pairs, i.e.,
ðm; mþ kÞ and ðl; lþ kÞ as outliers. Hence, together with the orig-
inal outliers, same number of additional observations will also be
detected by the MCD. Further, the MCD detects outlier based on
some fixed threshold value (e.g., v2

ðp; 0:98Þ) that is subjective as sug-
gested by Filzmoser et al. (2005) because of the following reasons:

� If the data is drawn from a single multivariate normal distribu-
tion, the threshold is most likely to be infinity as there are no
observations from different distributions.

� A fixed threshold may not be always appropriate for every data
set.

To deal with this problem, the subsequent algorithm is pro-
posed as follows.
4.1. Proposed algorithm for outlier detection

Step I. Estimation of Robust Lag
In this step, autocorrelation coefficient for a time series is esti-

mated by a multivariate location and scatter estimator. The origi-

nal univariate series fytgNt¼1 is transformed into a bivariate

fYt ¼ ðyt ; yt�kÞgNt¼kþ1 series using the estimated lag.
Step II.1. Initial Step to Identify Outliers (as pairs)
In this step, a multivariate clustering algorithm is used to iden-

tify the outliers in the transformed bivariate data. Chatterjee and
Roy (2014) used Mohalanobis distance to define radius of cluster-
ing algorithm in their study. Mohalanobis distance is computed
using sample mean and covariance matrix. It is well-known that
both the estimators are very sensitive to extreme observations.
To increase robustness, Paul and Vishwakarma (2017) proposed
an algorithm based on distance measures of Hadi (1994). This algo-
rithm has been used in identifying the outliers in transformed
bivariate data from Step I.

Step II.2. Final Step to Identify Outliers (as pairs)
Let us consider that, data has been drawn from a p (p = 2) vari-

ate multivariate normal distribution. Let GnðuÞand Gdenote empir-
ical distribution function of MD2 (Mohalanobis distance) and
distribution function of v2

p , respectively. By strong law of large

numbers, GnðuÞ converges to G almost surely i.e. GnðuÞ!a:s G. The tail
values of GnðuÞ and G can be used to decide outliers. Tails in this
case can be defined by d ¼ v2

p; 1�a for certain value of aand
pnðdÞ ¼ supuPdðGðuÞ � GnðuÞÞþ. Here ‘+’ denotes positive difference
pnðdÞ and is the measure of departure of empirical distribution
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from theoretical distribution and can be considered as measure of
outliers in the sample. However, pnðdÞ is not directly used as a mea-
sure of outliers rather its critical value, i.e., pcritðd; n; pÞ ¼
ð0:24� 0:003pÞ= ffiffiffi

n
p

is used in general.
Step III. Identification of Actual Outlier
This step identifies the actual outlier from each pair of selected

outliers. The observed residuals can be written as follows

gt ¼ gðyðt�1Þ; gðt�1ÞÞ ; t ¼ r þ 1; : : : ; n : ð8Þ
If there is no outlier in the data then gt will approach et . Sup-

pose an outlier with amplitude xq occurs at time t, then we get

gt ¼ et ; t < q; gq ¼ eq þxq; t ¼ q; and gqþj ¼ eqþj; j ¼ 1; 2; : : : ; n� q:

Thus, we have

Xn
t¼rþ1

e2t ¼
Xq�1

t¼rþ1

g2
t þ ðgq �xqÞ2 þ

Xn
t¼qþ1

g2
t : ð10Þ

Minimizing (10) with respect to xq gives xq
_ ¼ gq.

Test statistics for the likelihood ratio test H0 : no outlier at t ¼ q
against H1 : there is outlier at t ¼ q (as defined by Chang et al.,

1988) is x
_
=rI;q

_
, where

rI; q
_ ¼ g2

rþ1 þ : : :þ g2
q�1 þ g2

qþ1 þ : : : þ g2
n

n� r
: ð11Þ

Under H0, the test statistic asymptotically follows Nð0; 1Þ. Thus,
rI; q
_

can be considered as an estimate of the standard error of the

outlier at time q.

4.2. Issues related to the proposed algorithm

In Step II.1, as described above, Mohalanobis distance is calcu-
lated using robust measures of location and dispersion matrix. If
the dispersion matrix becomes singular, then the algorithm will
end up with the issue of infinite loop. In the present scenario, pos-
sibility of such issues arises because a time series yt is, in general,
highly correlated with its lagged series yt�k and the co-variance
matrix corresponding to fYt ¼ ðyt; yt�kÞgNt¼kþ1 may tend to be singu-
lar. The problem of singularity of covariance matrix is avoided by
considering the nearest positive definite covariance matrix as sug-
gested by Higham (2002).

The algorithm starts with transforming the time series to a
bivariate data. The initial step, i.e., Step II.1 of the algorithm will
generate clusters based on the cluster radius. The radius of the
algorithm increases gradually as the algorithm proceeds. Hence,
the possibility of the outliers or suspicious observations will be
at the end clusters. The Step II.2 will help in identifying the clusters
containing outliers amongst the end clusters. Further, Step III helps
in identifying actual outliers which are identified in Step II.2 as
pairs in end clusters.

The proposed algorithm is designed in a way that it does not
depend on any assumption regarding the distribution or the nature
of the time series. The algorithm can perform well with small sam-
ple size. However, presence of very high co-linearity in the data
may affect the performance of the algorithm. The performance of
the proposed algorithm considering various types of simulated
data and real data are discussed in the subsequent section.

5. Simulation and data analysis

Simulation helps in comparison of analytical techniques even
when techniques under study deviate from the standard
assumptions. The different methodologies that have been adopted
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to identify outliers in time series are Chen and Liu (1993), the MCD
by Rousseeuw and Zomeren (1990), Bayesian approach to detect
abnormal regions (BARD), OTSAD and finally the proposed method.
Outlier free data is used as an input to a single layered feed-
forward neural network for training. Architecture for training net-
work is determined experimentally based on the standard error
(SE) of the prediction. An architecture corresponding to which SE
of predicted error is least is considered as the suitable architecture
for that particular time series. For the simulated time series, initial
90% of the data is used for training the network and rest of the 10%
is used for prediction. The following simulated and real data sets
have been considered for carrying out comparative study.

Data set -I: A time series data from an ARMA (2, 2) process has
been simulated with AR and MA coefficients (0.8897, �0.4858) and
(-0.2279, 0.2488) respectively. Length of the time series is 100 and
every 10th observation is contaminated by adding an observation
of magnitude 5r. When an ARMA (2, 2) model was fitted to the
contaminated data, the resulting coefficient for AR and MA compo-
nent are found to be (1.37267,�0.58397) and (�1.46634, 0.52976),
respectively.

The plot of the time series and the residuals as presented in
Fig. 1, clearly suggest the presence of outliers in the time series
data. The performance of the proposed method is compared with
other methods via correlation of the predicted and original values,
and standard error of predicted residuals ðeiÞ which is given as
below

SEðeiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðY � Y
_

i
Þ
2

vuut : ð12Þ

For comparing the performance of the proposed method, some
more time series with different set of parameters are simulated. To
each simulated time series, outliers are added after a regular inter-
val. The magnitude of the outliers is kept at 4r and 5r. Here r
denotes the standard deviation of the time series. Table 1 shows
the performance of the proposed algorithm along with other
methods.

From Table 1, it can be observed that the performance of the
proposed method is better compared to others methods. Perfor-
mances are compared in terms of correlation of the predicted val-
ues with that of originals and SE of predicted errors. The method
which is effective in identifying outliers is expected to have lesser
SE and higher correlation between predicted and original values.

Data set II: In this case, the following system that represents
biological characteristics of single neurons has been considered
to simulate nonlinear time series. The set of differential equation
discussed below represents the Morris-Lecar (M-L) neural system

_X ¼ �0:5gCa 1þ tanh
X � V1

V2

� �� �
X � 1ð Þ

� gKY X � VK
� �

� gL X � VL
� �

þ Z þ anðtÞ; ð13Þ

_Y ¼ ð1=3Þcosh X � V3

2V4

� �

0:5 1þ tanh
X � V3

V4

� �� �
� Y

� �
; ð14Þ

and

_Z ¼ �l V0 þ Xð Þ: ð15Þ
In the above model, X represents the membrane potential of the

neuronal cell, Y is the activation variable, and Z is the applied input
current. The parameter values – gCa; gK and gL represent the max-
imum conductances corresponding to the Caþ2; Kþ and leak cur-
rents, respectively. VK and VL represent the reversal potentials



Fig 1. ARMA (2, 2) data contaminated with outliers and its estimated residuals.

Table 1
Correlation of predicted values with the original values and SE of predicted error for the time series with outliers (Original TS) and outlier free time series by different methods i.e.,
Chen and Liu, MHD, OTSAD, BARD and the proposed method.

Series AR MA OUT Size Method Actual Mean Predicted Mean SE Correlation

1 (0.25, 0.5) (0.15, 0.25) 5 Original TS �0.98428 2.33188 1.40399 0.42110
TS out 0.67281 1.14356 0.67140
MHD 5.09674 2.33637 0.73592
OTSAD �1.02115 2.18269 �0.02344
BARD �0.97036 2.17000 �0.01677
Proposed �0.12080 1.36421 0.92216

2 (0.25, 0.5) (0.15, 0.25) 4 Original TS �0.98428 2.33188 2.14380 �0.56041
TS out 0.10008 1.59520 �0.50953
MHD 2.14803 1.80944 0.40594
OTSAD �1.08540 2.20467 �0.10353
BARD �0.94229 2.17188 �0.09783
Proposed �0.78951 1.42248 0.98135

3 (0.35, 0.4) (0.25, 0.35) Original TS �0.81950 1.52126 0.92348 �0.29183
TS out 1.24810 1.00461 �0.14333
MHD 1.22683 0.92051 0.12738
OTSAD 0.52043 1.85552 0.07658
BARD 0.21498 1.48411 0.60338
Proposed 1.73246 0.90988 0.71946

4 (0.35, 0.4) (0.25, 0.35) Original TS 1.87942 0.62172 1.32867 0.01295
TS out 0.07351 1.27462 �0.38708
MHD �0.07543 1.19450 �0.24250
OTSAD 0.79915 1.59565 0.01211
BARD 0.55382 1.69728 �0.23965
Proposed 0.04587 1.18582 0.02165

5 (0.45, 0.3) (0.35, 0.5) Original TS 0.73290 �1.52951 1.08669 0.41153
TS out �2.12211 1.35197 �0.81606
MHD �1.79043 1.23342 �0.71067
OTSAD �0.55577 1.09098 0.72645
BARD �0.54276 1.08638 0.65570
Proposed �0.05579 1.04609 0.82315

6 (0.45, 0.3) (0.35, 0.5) Original TS �0.30581 4.46680 1.81264 �0.52627
TS out 1.61485 1.75415 �0.37026
MHD 3.32455 1.56829 �0.23019
OTSAD �0.52036 3.24570 �0.41797
BARD 0.04587 1.74190 0.32706
Proposed 3.32059 1.54702 0.85747
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corresponding to the above ionic currents. The parameters
V1; V2; V3 and V4 are appropriately chosen for the hyperbolic
functions so that they can attain their equilibrium points
instantaneously.

Fourth order Runge-Kutta (RK) method has been used to simu-
late data for ðX; Y ; ZÞ:Time interval considered in the simulation
process is Dt ¼ 0:001 seconds and simulation is carried out over
a time period of 20 s. Simulated time series are presented in
Fig 2. Data for these simulated variables are tested for nonlinearity
as suggested by Teraesvirta et al. (1993) and the below table pre-
sents the result of nonlinearity test.

Results in Table 2 confirm that X and Y are non-linear in nature.
The discussed methods of identifying outliers in a time series are
3332
applied to the simulated time series of ðX; YÞ: While 90% of the
simulated initial data is used for training, the rest 10% is used for
prediction. Correlation of the predicted and actual values along
with the SE of the predicted errors is presented in Table 3. The
noticeable point here is that, Chen and Liu method does not find
any outlier in simulated time series of X. However, BARD and
OTSAD identifies outliers in both the time series of X and Y . The
outlier-free data is used for prediction and the result obtained by
application of various methods is presented in Table 3.

Data set III: In this case, two time series of TCS stock price and
Aluminum trading prices for the period January 2, 2006 to Decem-
ber 31, 2010 and December 24, 2014 to April 12, 2015 are
considered respectively. The reason for considering these two time



Fig 2. Plot of the time series (X, Y, Z) from the model described in equations (13), (14) and (15).

Table 2
Test for nonlinearity of time series.

Hypothesis Teraesvirta’s Test White NN test

Linearity in mean Linearity in mean

Statistic P-Value Statistic P-Value

X 26.1623 2.084E�06 26.3139 1.932E�06
Y 10.3352 0.005698 11.0802 0.003926
Z 0.610 0.7369 0.522 0.7703
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series is to discuss the issue of unusual jumps and drops observed
in a financial time series. Generally, in a corporate action such as
stock split, a company divides its existing shares into multiple
shares. This causes increase in the number of shares by a specific
multiple but at the same time the whole value of the shares
remains the same. The price of the resulting shares will suddenly
drop to half or one third based on split ration. Similar fluctuations
are also observed in case of nearing expiry dates of commodity
3333
contracts. A contract that will expire after several years from
now will remain relatively illiquid until it gets closer to its expiry.
As the liquidity increases near the expiry date, sudden change in
price of the commodity can be observed. The consequences of
these corporate actions may result in the following:

a) The return distribution may change.
b) Most of the outlier detection algorithm may detect the

changes in price brought in due to stock split or nearing
maturity dates as outlier.

Data for commodity (Aluminum) has been taken from the
website http://www.mcxindia.com. Contract expiry dates for the
corresponding metal can also be obtained from the same website.
The change in price of a financial instrument due to its nearing
maturity of stock is not market-driven and brings in unexpected
volatility. Leveling such volatility is to smoothen the historical
prices of a time series based on the changes brought in due to
recent corporate events. The following method of adjustment

http://www.mcxindia.com


Table 3
Correlation of predicted values with the original values and SE of predicted error for the time series with outliers (Original TS) and outlier free time series by different methods i.e.,
Chen and Liu, MHD, OTSAD, BARD and proposed on Nonlinear time series from a dynamical system.

Series Method Actual Mean Predicted Mean SE Correlation

X Original TS �0.13628 0.05940 0.12221 �0.82892
Chen and Liu 0.05242 0.11792 �0.72504
MHD 0.02549 0.10536 �0.78706
OTSAD �0.24971 0.02310 �0.09882
BARD �0.25023 0.02313 0.02313
Proposed 0.07258 0.11783 0.96080

Y Original TS 0.25878 0.31182 0.08124 0.94024
Chen and Liu 0.18787 0.08096 �0.90088
MHD 0.43872 0.10395 0.93376
OTSAD 0.07274 0.15993 0.88120
BARD 0.32472 0.03009 0.03009
Proposed 0.20747 0.05746 0.94633

Table 4
Change in volatility by the proposed adjustment method.

Variance Actual Variance Adjusted Variance Change

TCS 376.8456651 245.3078093 �53.62%
Aluminum (AL) 6.969504787 5.86304104 �18.87%
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has been applied to reduce the effect of corporate events on a
financial time series.

Let t1; t2; : : : ; tk are the dates of k corporate events of a financial
instrument. Dpi ¼ fpiþ1 � pig; i ¼ 1; 2; : : : ; k� 1 is the change in

price due to the ith corporate event. Then the method of adjusting
historical prices for a financial instrument will be as below

i) Calculate the price change factor at 1st date of corporate
event Dpt1 ¼ pðt1þ1Þ � pt1
Fig 3. Plot showing the effect of adjustment method o
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ii) Adjust the historical prices till ðt2 þ 1Þwith change factor
Dpt1

: Denote adjusted price on ðt2 þ 1Þ as p0
ðt2þ1Þ where

p0
ðt2þ1Þ ¼ pðt2þ1Þ þ Dpt1 :

iii) The change factor on date t2 is calculated based on the
adjusted price on ðt2 þ 1Þ day (i.e., p0

ðt2þ1Þ) and actual histor-

ical price on tth2 day as Dpt2 ¼ p0
ðt2þ1Þ � pt2

iv) Continue the process till the last date of corporate event.

The process of such an adjustment reduces the unwanted
volatility in a financial instrument. Table 4 shows the change in
volatility level due to the application of the method of the adjust-
ment discussed above.

The changes in price level are also presented graphically in
Fig 3. However, question may arise about the need of carrying
out such adjustments. The change in price level due to nearing
maturity or stock split is such that most of the outlier detecting
n the considered time series (TCS and aluminum).



Table 5
Correlation of predicted values with the original values and SE of predicted error for the time series with outliers (Original TS) and outlier free time series by different methods i.e.,
Chen and Liu, MHD, OTSAD, BARD and proposed on TCS share prices and Aluminum prices.

Series Type Method Actual Mean Predicted Mean SE Correlation

Aluminum Actual Original TS 27311.44737 26664.00211 481.61788 �0.14135
Chen and Liu 26595.94526 478.51846 0.25158
MHD 26592.94132 475.70323 0.32630
OTSAD 26352.01000 501.82690 0.50943
BARD 26320.58150 711.37989 0.22274
Proposed 26716.24368 455.33193 0.57230

Adjusted Original TS 28449.02632 27537.63711 479.11588 0.15110
Chen and Liu 27526.30395 476.03141 0.23661
MHD 27542.66553 479.93021 0.29479
OTSAD 27144.95800 641.88919 0.75588
BARD 27134.27400 809.64871 0.56824
Proposed 27547.86692 476.20275 0.78854

TCS Actual Original TS 1789.51413 1336.54828 195.98089 �0.18150
Chen and Liu 1281.66712 158.14802 0.19871
MHD 888.15584 136.72612 0.07241
OTSAD 1081.77220 135.56480 �0.82535
BARD 998.70296 130.85752 �0.67576
Proposed 1244.22465 143.71735 0.12144

Adjusted Original TS 469.81413 535.82003 139.54160 �0.21379
Chen and Liu 535.82003 139.54160 �0.21379
MHD 578.74642 139.56281 �0.18000
OTSAD 1061.27950 141.86397 �0.79451
BARD 698.65030 125.66914 0.10552
Proposed 587.47307 138.84780 0.37043

Fig 4. Plot showing anomalies region detected by BARD on TCS and aluminum time series.
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algorithm will detect such price changes as outliers. Actual outliers
may remain in the data for the sake of corporate action and any
analysis may come out with fallacious results. Indeed, the pro-
posed adjustment method changes the historical prices relative
to the current price level. After adjusting the time series, the pro-
posed method of the outlier detection is applied to both adjusted
and original time series, the results of which are presented Table 5.
It may be noticed that the efficiency of BARD in some cases is bet-
ter than the proposed method. The increase in efficiency of BARD is
mainly due to the removal of the larger regions from the original
data as depicted in Fig 4. The detected regions are presented in a
different colour bounded by red lines. From Fig 4 it can be observed
that, changes in the level of the data due to stock split and expiry of
commodity contract dates are actually identified by BARD as the
region of anomalies. However, mere elimination of such region
may not be a proper justification. Thus, the method of adjustment
discussed above may help in locating actual outliers.

6. Conclusion

In the present study, a multivariate outlier detection algorithm
has been studied. A univariate time series is transformed to a
bivariate data frame based on the robust estimate of lag. Different
methods are applied to identify the outliers in time series. Feed for-
ward neural network has been applied to the outlier free time ser-
ies for model building. Comparison has been carried out based on
correlation between predicted and actual values and SE of pre-
dicted errors. The discussed method of identifying outliers has
been applied to ARMA process as well as to non-linear time series.
The efficiency of the proposed algorithm is due to its ability to
locate actual outliers unlike BARD and MHDwhich identify outliers
as region and pairs, respectively. The performance of another
method OSTAD in identifying outliers has also been compared.
The performance of the proposed method is satisfying and may
be handy in detecting outliers in time series. In addition, the pro-
posed method does not require a priori knowledge of model
parameters. Apart from the simulation examples, time series for
TCS share price and commodity price are also considered. How-
ever, the proposed method is limited to univariate time series.
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