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Abstract In this paper, we consider a non-instantaneous impulsive system represented by second
order nonlinear differential equation with deviated argument in a Banach space X. We used the
strongly continuous cosine family of linear operators and Banach fixed point method to study
the existence and uniqueness of the solution of the non-instantaneous impulsive system. Also, we

study the existence and uniqueness of the solution of the nonlocal problem and stability of the
non-instantaneous impulsive system. Finally, we give examples to illustrate the application of these

abstract results.
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1. Introduction

The dynamics of many evolving processes are subject to abrupt
changes, such as shocks, harvesting and natural disaster. These
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phenomena involve short term perturbations from continuous
and smooth dynamics, whose duration is negligible in compar-
ison with the duration of an entire evolution. Sometimes time
abrupt changes may stay for time intervals such impulses are
called non-instantaneous impulses. The importance of the
study of non-instantaneous impulsive differential equations
lies in its diverse fields of applications such as in the theory
of stage by stage rocket combustion, maintaining hemodynam-
ical equilibrium etc. A very well known application of non-
instantaneous impulses is the introduction of insulin in the
bloodstream which is abrupt change and the consequent
absorption which is a gradual process as it remains active for
a finite interval of time. The theory of impulsive differential
equations has found enormous applications in realistic mathe-
matical modeling of a wide range of practical situations. It has
emerged as an important area of research such as modeling of
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impulsive problems in physics, population dynamics, ecology,
biological systems, biotechnology and so forth.

Recently, Hernandez and O’Regan (2013) studied mild and
classical solutions for the impulsive differential equation with
non-instantaneous impulses which is of the form

X'(t) = Ax(t) + f(t,x(1)), t€ (si,tin] i=0,1,...,m,
x(t) =g,(t,x(1)), te€(tys], i=1,2,...,m,
x(0)=xp€ X

(1.1)

In Wang and Feckan (2015) have a remark on the condi-
tions in Eq. (1.1):
x(1) = gi(t, x(1)),

where g; € C([t;,s;] x X, X) and there are positive constants
L, i=1,...,m such that

te(tys], i=1,2,....,m, (1.2)

Hgi(t7 xl) _gi(zvxZ)H < Lg,”xl - x2||7 VXHXZ €eX te [l‘,—,S,-]

It follows from Theorem 2.1 in Hernandez and O’Regan
(2013) that max{L, : i=1,...,m} <1 is a necessary condi-
tion. Then Banach fixed point theorem gives a unique
z; € C([t;, 8], X) so that z = g;(¢,z) if and only if z = z;(¢). So
Eq. (1.2) is equivalent to

x(t):Z,-(l), te(Zi7Si], i:l,Z,...,m, (13)

which does not depend on the state x(.). Thus, it is necessary to
modify Eq. (1.2) and consider the condition

x(t) =g, x(t7)), te(t,s], i=1,2,...,m (1.4)

Of course then x(f7)=g(t,x(¢7)),i=1,2,...,m. The
symbols x(#}) :=lim_ ¢+ x(t; +€) and x(;) := lim_o-x(#; +¢€)
represent the right and left limits of x(z) at = ¢; respectively.
Motivated by above remark, Wang and Feckan Wang and
Feckan, 2015 have shown existence, uniqueness and stability
of solutions of such general class of impulsive differential
equations.

In this paper, we continue in this direction to study the sec-
ond order nonlinear differential equation with non-
instantaneous impulses and deviated argument in a Banach
space X

X'(1) = Ax(1) +(, x(1), x[h(x(1), 1)]),

te (ShZH»l)v i:0717"'7m7

x() =T (6, x(67)), t€(tys], i=1,2,...,m, (1.5)
X(0)=P(t,x(£7), te(tys], i=1,2,...,m,
x(0) = xo,  ¥'(0) = yy,

where x(7) be a state function, 0 =s5p =1, < 1, < 8 < I, ...,
tn < S < tme1 =T <oo. We consider in Eq. (1.5) that
x e C((ti,ti1), X),i=0,1,...,m and there exist x(f;) and

x(¢f), i=1,2,...,m with x(f;) =x(¢;). The functions
J(t,x(t7)) and J(t,x(t7)) represent mnoninstantaneous
impulses during the intervals (¢, s;],i = 1,2,...,m, so impulses

at 77 have some duration, namely on intervals (¢;,s;]. A is the
infinitesimal generator of a strongly continuous cosine family
of bounded linear operators (C(t)),.z on X. J;,J;,h and f
are suitable functions and they will be specified later.

Many partial differential equations that arise in several prob-
lems connected with the transverse motion of an extensible

beam, the vibration of hinged bars, and many other physical

phenomena can be formulated as the second order abstract dif-
ferential equations in the infinite dimensional spaces. A useful
tool for the study of second-order abstract differential equations
is the theory of strongly continuous cosine families of operators.
Existence and uniqueness of the solution of second-order non-
linear systems and controllability of these systems in Banach
spaces have been investigated extensively by many authors
(Chalishajar, 2009; Pandey et al., 2014; Acharya, 2013; Arthi
and Balachandran, 2014; Sakthivel et al., 2009).

In certain real world problems, delay depends not only on
the time but also on the unknown quantity. The differential
equations with deviated arguments are generalization of delay
differential equations. Gal (2007) has considered a nonlinear
abstract differential equation with deviated arguments and
studied the existence and uniqueness of solutions. Recently,
Muslim et al. (2016) studied exact and trajectory controllabil-
ity of second order impulsive nonlinear systems with deviated
argument. There are only few papers discussing the second
order differential equations with deviated arguments in infinite
dimensional spaces. As per my knowledge, there is no paper
discussing the existence, uniqueness and stability of the mild
solution of the second order differential equation with non-
instantaneous impulses and deviated argument in Banach
space. In order to fill this gap, we consider a nonlinear second
order differential equation with deviated argument. Moreover,
the study of second order differential equations with nonin-
stantaneous impulses has not only mathematical significance
but also it has applications such as harmonic oscillator with
impulses and forced string equation, which we present in
examples.

2. Preliminaries and assumptions

We briefly review definitions and some useful properties of the
theory of cosine family.

Definition 2.1 (see, Travis and Webb, 1978). A one parameter
family (C(f)),cg of bounded linear operators mapping the
Banach space X into itself is called a strongly continuous
cosine family if and only if

(i) C(s+1)+ C(s—1) =2C(s)C(¢) for all 5,7 € R,
(ii) C(0) =1,
(iii) C(t)x is continuous in ¢ on R for each fixed point x € X.

(S(7)),cp: is the sine function associated to the strongly
continuous cosine family, (C(¢)),g: Which is defined by

t
S(t)x = / C(s)xds, xe X, teR.
0
D(A) be the domain of the operator A which is defined by
D(A) ={x € X: C(r)xis twice continuously differentiable in t}.

D(A) is the Banach space endowed with the graph norm
llx|l, = lIx]| + || Ax]|| for all x € D(A4). We define a set

E = {x € X: C(f)xis once continuously differentiable in t}

which is a Banach space endowed with norm

16l = [l + supocici [[AS(2)x[| for all x € E.
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With the help of C(7) and S(¢), we define a operator valued
function

e s
h(l)‘{Asm c<r>}’

Operator valued function /(¢) is a strongly continuous
group of bounded linear operators on the space E X X gener-
ated by the operator

_ {0 1}
A=
A 0
defined on D(A4) x E. It follows that AS(t): E— X is a

bounded linear operator and that AS(f)x — 0 as t — 0, for
eachx € E. If x : [0,00) — X is locally integrable function then

1) = /OIS(t — 85)x(s)ds

defines an E valued continuous function which is a conse-
quence of the fact that
fo $)x(s ds}

/olh_(tfs){x?s)}ds Jrc(e = s)x(s)ds

defines an (E x X) valued continuous function.

Propostion 2.1 (see, Travis and Webb, 1978). Let (C(t)),.x be
a strongly continuous cosine family in X. The following are
true:

(i) there exist constants K > 1 and ® > 0 such that
C(t)| < Ke®M for all ¢ € R.

(ii) |S(2) — S(11)| < K| [ e“Plds| for all 11,1, € R.

For more details on cosine family theory, we refer to Fattorini
(1985), Travis et al. (1977) and Travis and Webb (1978).

Let PC([0,T],
functions.

PC([07 T]7X) = {X S = [07 ﬂ —X:x€ C(([/ﬁ tk+l]7X)7
k=0,1,...,m and there exist x(¢;) and x(¢}), k=1,2,...,m
with x(#;) = x(#)}. It can be seen easily that PC([0, 7], X) for
all € [0,7], is a Banach space endowed with the supremum
norm,

X) be the space of piecewise continuous

[Wllpcs = sup{llw(m)lle™, 0<n<1}

for some Q>0. We set, C.(J,X)={ye PC(0,T],X):
() — ()| < L|t —s|,V t,s € [0, T]}, where L is a suitable
positive constant. Clearly CL(J X) is a Banach space endowed
with PCB norm.

In order to prove the existence, uniqueness and stability of
the solution for the problem Eq. (1.5), we need the following
assumptions:

(A1) A be the infinitesimal generator of a strongly continuous
cosine family, (C()),.z: of bounded linear operators.

(A2) f:Jy x X xX =X, Jy=J"lsitis1] is a continuous
function and there exists a positive constant K such that

WA 0, 00) =St 22, )| < K[l = 2l + [y = 2l)

for every xi,x2,y,,¥, € X, t € J;. Also there exists a
positive constant N such that ||f{¢,x,y)] <
N,VteJ and x,y € X.

(A3) h:X xJ, — J is continuous and there exists a positive
constant L, such that

[h(xy,s) — h(xa,8)] < Ly
and it holds 4(.,0) = 0.

(A4) J' e C(I; x X, X), I, = [t;,s,] and there are positive con-
stants L, i=1,2,...,m, [ =1,2, such that

X1 — x|, Vx1,x € X, 1 € J,

132, x1) = Ji(s, )| < Ly(le = 5| + [l = xal),
Vit,se€l, and x;,x, € X.

(AS) There exist positive constants C,1 and C 2,
such that

17 (2, %)

i=1,2,....m

<y and [122(1,%)

| <Cp, Vtel, and x € X.

In the following definition, we introduce the concept of
mild solution for the problem Eq. (1.5).

Definition 2.2. A function x € C.(J/, X) is called a mild solu-
tion of the impulsive problem Eq. (1.5) if it satisfies the follow-
ing relations:

x(0) = xo, ¥'(0) = o,

the non-instantaneous impulse conditions x(¢) = J! (¢, x(¢,)),
te(tys), i=1,2,....m, ¥ =J7tx()), € (s
i=1,2,...,mand x(¢) is the solution of the following integral
equations

x(1) = C(t)xo + S(0)y, + /Ot S(t — $)f(s,x(s), x[h(x(s),5)])ds,
€ [0, 14],
x(1) = C(t = 50)(J} (51, x(1;))) + St = 5:) (I3 (51, X(17)))
+/ S(t — s)f(s, x(s), x[h(x(s), 5)])ds,

te€sitin], i=12,....m

3. Existence and uniqueness result

Theorem 3.1. Let xo € D(A), yo € E. If all the assumptions
(Al)-(AS5) are satisfied, then the second order problem Eq.
(1.5) has a unique mild solution x € Cr(J,X).

Proof. Since AS(t) is a bounded linear operator therefore, we
set p = sup,,||4S(?)||. For more details on ||AS(z)||, we refer
(Pandey et al., 2014; Sakthivel et al., 2009; Hernandez and
McKibben, 2005). By choosing

NKT
o= max{ (Ke’”TCJ; + KTeTCp + —e“’r> e

1<i<m

NKT
Kol + Ko 40 e e |,

we set
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W={x€ Cr(J,X) : [[x]lpcp <6} [(Fx)(2) = (Fx)(@)ll < Ll — 4], (3.6)
We define a map F : W — W given by where L > C; + C, + C3 + Cy.
(FX)(0) = JH (1, €t = 511) L (510, (17) 1= 6> > 0, then we get
+ S0t = i) (U] (s, x(120)) IFx)(2) = (FR) @Il < I(C(E@) = Ch)xoll + (SE) = S(@)w
4
[ St )05 60, 5H((6), 1)), +Nk“ s =) =S =)l
N [28( - 5)]|ds
E([ias[] i:1727"'7m < L+ I+ + Ig.
(3.7)
Fx)(t) = C(t)xo + S(¢
(F2)(0) (0 (D We have,
+ S(t — $5)f(s, x(s), x[h(x(s),5)])ds, t€[0,1]; ~ ~ >
50 o9 s 1€ 00 Iy = ()~ il = 1L 7 AS(dk] a8
1 2 _ < Cs(hh— 1),
(Fx)(2) = C(t = s:)(J; (s, x(1;7))) + S(2 = 5:) (J; (51, x(£7)))
‘ where Cs = p||xo]|.
+/ S(t — 9)f(s, x(s), x[h(x(s), 5)])ds, Similarly, we have
te(s;,lH]]i:l,Z,...,m I = S _S" —|K 3 T d
o= I(S(2) = Sl = 1K [ ] 9)
First, we need to show that Fx e C.(J,X) for any < Colhy — 1),
€ C.(J,X) and L>0.1If ti,y = 6> >s;, th
)gcet L( ) and some 4 5 1> en we where Co = K [y,
Similarly, we calculate third and fourth part of inequality
~ ~ ~ . 3.
(FX)(@B) ~ (F@ < € =)~ O —s) UG x(ar))) B (37 as follows
+ t —s;) — S(t) —s; Js,,xt,’ -
IS =20 = S NEOSOD iy oo g
+N [ 1(S(22 = 5) — S(6 = 5))|ds 310
- 0—s oot .
N2 S — ) ds < Nf“Kﬁ d|ds (310
< h+h+L+1L < G- 1),
G.1) where C; = KNte®" and
We have, i
) ) zgzzv/ IS(7 = )llds < Cola— ), (3.11)
L = |(C(62 = s1) = C(tr = 5)) (T} (51, x(1,)))| "
= | [ AS@) ) sy x( )| (32)  where Gy = KNne™. .
T We use the inequalities Eqs. (3.8)—(3.11) in inequality Eq.
< G — 1), (3.7) and get the following inequality
where C, = pC. ~ ~ o
Similarlly, we have 1(Fx)(22) = (F)@)I < Ll = 4, (3.12)
B B whereL>C5+C6+C7+Cg.
Lo =|(S(t = si) = S(f = ) (S (1, x(e;)| Finally, if s; > & > #; > t;, then we get
= 1K [;7) e (7 (i, x(17)) )| (3.3) N N o
e Fx) () — (Fx)(@)|| < Lp.(f2— ). 3.13
et (X)) = X)) < Ly = i) (.13)
where Cy = Ke®1 C,p. Summarizing, we see that Fxe C.(J,X) for any

Similarly, we calculate third and fourth parts of inequality
Eq. (3.1) as follows

L= N[M|(S(5 —s) — (i - 5))lds
< N UK [ el |ds (3.4)
< Gyl — fh),

where C; = KNt; e+ and

5]

14:N/ HS(lz*S)HdS < C4([27[71), (35)
f

where C; = KNt; e”+1,

We use the inequalities Eqgs. (3.2)—(3.5) in inequality Eq.
(3.1) and get the following inequality

x € Cr(J,X) and some L > 0.
Next, we need to show that F:W — W. Now for
t € (si,t;i41] and x € W, we have
< €@ = s (i (G + 18( = s:) (I (51, x(1)) |
+ 3 118 = s)fTs, x(s), x[h(x(s), 9)]) || ds
< Kew(rfSi)CJ’I + K([ _ S[)e(u 1-5;) C.Ilz

[(F) (@]
+N [} K(t — 5)e”ds.

Hence,

|FX)llpen < (KeCy + KTe Cpp o M0 ),

Now for ¢ € [0, ;] and x € W, we have



208

M. Muslim et al.

IFX)ON < IC@x0ll + Sl + N Jg ISt = 5)llds
< Ke||xo|| + Kte™ ||yo|| + N [y K(t — s)e”"=)ds.
Hence,
() () NKT ()
IFX)pen < KeMllxol| + KTe |yl +=_=e"".

Similarly for 7 € (#;,s;] and x € W, we have

[(FX)l pep < efm"cj}-
After summarizing the above inequalities, we get

[(FX)pes < 0
Therefore F:W — W. For any x,y €W, t € (s;, ti11],

i=1,2,...,m, we have
IFx)0) = (F@I < K™ Lyllx(r;) = y(17)|
+K(t — si)e“(”S’)LJ’z [x(e7) =y ()]
+KK (2 + LLy) [, (1 = 5)e”" ™V |1x(s) — y(s)|ds
< Ke®U—s)+ Ly 1 = ¥l pes
+K(t — 5;)e?t—s)+a Lpllx = yllpes
+KK(2+ LL,) fvr,(’ — 8)e T x — yl| oy
< KeoUmsrany ! lIX = ¥l pes
FK(t = 5)e” UL ||1x = pl| peg
4 KK i ((25,[(,1,57) [l = ¥l pes-
Hence,

I(Fx) (1) = (Fr)Olle ™ < Ke MLy x =yl peg
+K(t — s;)e? s+ [ 2llx = llpes

KKi(2+LLy)1; ;
+ I(Q “/ x = 2l pes
< (Keﬂ(r;ﬂ, LJ,' + Kt,‘+1e t,—.v,-)LJ,2

KKy (2+LLy)1;
+ 1 (Q_w)/ +|>

x_yHP(,'B‘

For ¢ € [0, #,], we obtain

[(Fx)(0) = (F»OI < KKi(2+ LLy) J;(t—S)e‘“(”‘”\IY(Y)—y(S)HdS
< KKi(2+ LLy) fo w(’ \)m‘dSH’C*J’HPCB
< W\h—y\nm

Hence,
_ KK1(2+LLh)f1
[(Fx) (1) = (Fy)(0)lle™ < W\Ix = Vllpes-

Similarly, for z € (#,s],i=1,2,...,m, we have

IEN@) ~ ENOI < Ly (K0 Ly ey ) -

+KK1(2+LL,,)f" (t; — 5)eli=9°||x(s)

< Ly (Ke(hﬂkl)wm['*lLJ! llx = yllpes + K(1

v DI+ Kt — Si—1)€<’ifslfl>wL/?

Therefore, we get

IF) @) = (F@lle® < Ly (Ketmm 2Ly 4 Kt —s,1)

i—Si_1 ) Q KK, (2+LLy)t; _
x elti=si-1)o+(tim1 =) L T 1Q w)/ )Hx yHPCB
< L,’l (Ke(""f“”'m[,l: + Ks;e 1171*.\'17!>QLJ’Z
KK (2+LLy,)1; i
HEBGLL) | — )| g
After summarizing the above inequalities, we have the
following

I(Fx) =

(F)pes < Lellx = ¥l peps

where

‘ . KKy (24 LL))t;
Ly = max{ (Keﬂ(r,f,x,-)LJ! + [{tl_Jrleﬂ(r,—A\,)L‘,g + 1( + h) +1)7

1<is<m (Q — w)
KK, (2 + LL,)1, i, .
(Q — w) ,L‘/’l (Ke(ll—l :—I)QLJ: + Ksie(”*' r—l)QLJ’Z
N KK (2+ LL,)t;
Q-ow) '

Hence, F is a strict contraction mapping for sufficiently large
Q > w. Application of Banach fixed point theorem immediately
gives a unique mild solution to the problem Eq. (1.5). O

4. Nonlocal problems

The nonlocal condition is a generalization of the classical ini-
tial condition. The study of nonlocal initial value problems are
important because they appear in many physical systems.
Byszewski (1991) was the first author who studied the existence
and uniqueness of mild solutions to the Cauchy problems with
nonlocal conditions. In this section, we investigate the exis-
tence and uniqueness of mild solution Eq. (1.5) with nonlocal
conditions.

We consider the following nonlocal differential problem
with deviated argument in a Banach space X:

x"(1) = Ax(t) + f(t, x(1), x[h(x(1), 1)]),

te(syti) i=0,1,....m

x() =T (6,x(57)), t€(tys], i=1,2,...,m, (4.1)
X(0) = P(t,x(6), t€(tys], i=1,2,...,m

x(0) = xo 4+ p(x), ¥'(0) =y +q(x),

where x(r) be a state function, 0 =150 < t; <51 < fo,...,
b < Sp < tmsy = T <oo. The functions J!(¢,x(f7)) and
JA(t,x(¢7)) represent non-instantaneous impulses same as in

system Eq. (1.5). 4 is the infinitesimal generator of a strongly

continuous cosine family of bounded linear operators (C(?))

x(t7 ) =yt )l

— »(s)llds)

_ S,',])C"(l' Si—1)w+Qt; IL

yHPCB

KK (24 LLy) [1 (1= $)et I ds]lx = vy )

< LJ} (Ke(ti—ﬁf—l)w*'ﬂti—lLJ’l Hx _ y”PCB + K(Z,- _ S,,f])e(liffifl)w*’gtzflLJ

_ KK ( 7+LL,,)t[eQ’l
X = Vlpes + (o)

x—y

Irea)-
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on X. The functions p(x) and ¢(x) will be suitably specified
later.

Definition 4.1. A function x € Cr(J,X) is called a mild
solution of the impulsive problem Eq. (4.1) if it satisfies the
following relations:

x(0) = xo + p(x), ¥'(0) =y, + q(x),

the non-instantaneous impulse conditions

x(6) = T (1, x(£7)), i=12,....m

X(1) = P(t,x(17)), i=1,2,...,m

and x(7) is the solution of the following integral equations
x(1) = C(1)(x0 + p(x)) + S(1) (vo + ¢(x))

+ /OIS(t — 9)f(s, x(s), x[h(x(s),s)]))ds, t€][0,1],

e (fj, S,‘}7
t € (t,si],

xX(1) = C(t = i) (Ji (51, x(17))) + St = 5:) (7 (51, X(17)))
+ /[S(t — $)f(s, x(s), x[h(x(s), s)])ds, € [s;, 1],
i=1,2,....m

Further, we need assumptions on the functions p and ¢ to
show the existence and uniqueness of the solution for the prob-
lem Eq. (4.1)

(A6) The functions p,q: C(J,X) — Xare continuous and
there exist positive constants ¢, and ¢, such that

) llp(x1)
(i) [lg(x1)

()l < Gllx = xl,
— ()l < ¢flxr — x|

Theorem 4.1. Let xo € D(A), yo € E. If all the assumptions
(Al)—(A6) are satisfied, then the second order nonlocal problem
Eq. (4.1) has a unique mild solution x € Cr(J, X) provided that

ol _ |
Ke”c, + Kgcq <1
)
Proof. By choosing

NKT
& = max { (Ke“’TC |+ KTe"TC +—

1<i<m

—Qs,
)e A

NKT _
KeT|lxo + p(x)[| + KTe“T |y + q(x)|| +——eT, e Cp }7
we set
W ={xeC.(J,X): <)
We define a map F : W — W given by

(FX)0) = (1, Clt = 55-) (0 (51, X(12,)
(= 5 UEsennli)) + [ S5 sx0),
(), )ds), 1€ (1s] i= 1.2, .m

(Fx)() = Cxn + p() + SO0 + ()

+ [ ' S(1 — (s, x(s), xHe(s), ) )ds, Wi € [0, 1

(Fx)(1) = C(t = ) (Ji (53, X(17))) + S(1 = 5) (J; (s, x(£7)))
+/ S(t = 9)f(s, x(s), x[h(x(s), 5)])ds,

te(sitim] i=1,2,....m

We have,
1(Fx) = (FI)lpes < Lellx = Vil pess
where

L, = max{ (Keg("""")L‘,l + Kt ML 4

I1<ism

KK (2 + LLh)tH,)
Q- o) ’

w (e”r —1) KK, (2+ LLy)1,
Ke*''c, + K p ¢+ Q—w) ,
s s KK 2+ LLy)t;
LJ: (Ke(r”‘ -r—l)QLJ’1 + KS,-(_’([”' lH)QLJ% + (Q — w) .

Thus, F is a strict contraction mapping for sufficiently large
Q > w. Application of Banach fixed point theorem immedi-
ately gives a unique mild solution to the problem Eq. (4.1).
The proof of this theorem is the consequence of Theo-
rem 3.1. [

5. Ulam’s type stability

In this section, we show Ulam’s type stability for the system
Eq. (1.5).

Lete >0, y > 0and ¢ € PC(J,R") be the nondecreasing.
We consider the following inequalities
1y (1) = Ay(e) = f{t, y(0), y[h(y(0), O] <€, 1 € (51, 1i1)
i=0,1,...,m,
Hy(t)_‘]:(tvy(t:))H <€7 te(tﬁSfL i:1727'~'7m7
Hyl(t)_‘],z(t7y(t:))|| <E7 te(thsl'L i:1727"~7m
(5.1)
and
[y (1) = Ay(1) — f( (), [ (2), D) < (1),
te (?17 H»l) 0 l m,
Hy()i‘]tl(t?y( ))H< te(ths"] i:1323"'7m7
1/ (6) = (2, »(1; ))II< te(tys], i=12,....m
(5.2)
and
[y (1) — Ay(2) f(t,y(t),y[h(y(f)y ODIF< e(),
L€ (siti) i=0,1,...,m,
|‘y(t)_‘];l(t7}( ))|‘<€l//> Ze(l‘hsi}v i:1727"~7m'
V() = By ) <ep, 1€ (ns], i=1,2,....m
(5.3)

Now, we take the vector space

Z = Ll XN C (81 10) ) Cl(si 1), D(A)):

The following definitions are inspired by Wang et al. Wang
and Feckan, 2015.

Definition 5.1. The Eq. (1.5) is Ulam-Hyers stable with if there
exists ¢(KjLyLym) > 0 such that for each ¢ > 0 and for each
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solution y € Z of the inequality Eq. (5.1), there exists a mild
solution x € Cr(J, X) of the Eq. (1.5) with

Iy(1) = x(0)] <

Definition 5.2. The Eq. (1.5) is generalized Ulam-Hyers stable
if there exists 0, 1, 1,m» € C(R*,R"),0(0) =0 such that for
each ¢ >0 and for each solution y € Z of the inequality
Eq. (5.1), there exists a mild solution x € C,(J, X) of the Eq.
(1.5) with

C(K[L]1ij)67 teJ. (54)

Iy(t) = x(OIl < Ok, 1y 1,mes L EJ. (5.5)
Definition 5.3. The Eq. (1.5) is Ulam-Hyers-Rassias stable
with respect to (¢,y) if there exists ¢(K;L,L;m¢) > 0 such
that for each ¢ > 0 and for each solution y € Z of the inequal-
ity Eq. (5.3), there exists a mild solution x € Cr(J, X) of the
Eq. (1.5) with

lly(1) = x(1)]| <

e(Ki Ly Lym)e(y + ¢(1)), 1€ J. (5.6)

Definition 5.4. The Eq. (1.5) is generalized Ulam-Hyers-Rassias
stable with respect to (¢, ) if there exists ¢(K;L,L,m¢p) >0
such that for each solution y € Z of the inequality Eq. (5.2),
there exists a mild solution x € C,(J, X) of the Eq. (1.5) with

Iy(2) = ()] < e(KiLyLym) (Y + (1)), 1 €. (5.7)

Remark 5.1. A function y € Z is a solution of the inequality
Eq. (5.3) if and only if there is G € ﬂ:.’;OCZ((s,-, tiv1), X)NL,C
((si,tis1),D(A4)), g, € N, C([t5, 5], X) and g, € m;ilcl([tivsiLX)
such that:

(@) 1G] <ed(t), 1€MLy (sisti1), g1 (1) || < ey and [|g, (1)]| <
ey, teMiolti,sil;
yih((2),0)]) +

(b) V'(t) = Ay(t) + f (&, ¥(2),
i=0,1,...,m
:Jl](t7y(tt_)) +gl(t)7 re (ti7si]7 i= 1727"'7m
=JHt,9(6) + & (1), t € (ti,s)], i=1,2,...,m

G(1), 1 € (siy tis1)

() ¥(1)
(d) y'(1)

Easily, we can have similar remarks for the inequalities Eqs.
(5.1) and (5.2).

Remark 5.2. A function y € Z is a solution of the inequality
Eq. (5.3) then y is a solution of the following integral
inequality

y(r) =Ty < e, 1€ (t,s], i=1,2,....,m
[RAOEFAC ’))H <ep, t€ (lusz] i=1,2,...,m
lly(6) = C(t)x0 — = Jo S(t = $)f(s, (), y[h(x(s), 5)])ds]|

<L file ”f ]¢( )ds, 1€ [0, tl];
lly(6) = C(t = 5:)(J} (51, (7)) = S(2 = 5:)(J: (s, (17 )

— 1 St = 5)f(s, ¥(8), y[A(¥(s), 5)])ds]| < expKe”")

K olios) 1] 4 2K [ 1] (s)ds,
tE [sitim], i=1,2,...,m

(5.8)

By Remark 5.1, we have

Y1) = Ay(0) + 1, y(0), y[h((0), 2)]) + G(2),

1€ (sitim)i=0,1,...,m
W) = T () + &i(0), 1€ (sl i=1,2,...m;
y,(t) = J’Z(l,y(lr)) +g2(t)7 te ([,’,S,‘], i= 1727 ceem

(5.9)
The solution y € Z with y(0) = x, and )'(0) = y, of the Eq.
(5.9) is given by
y(1) = ( V) + &), e (tys], i=1,2,....m
V() =P (L0(65) + g (1), te(tys], i=1,2,....m;
y(1) = ()Yo+S( o+ Jo St =9)[f(s, ¥ (s),
yIh(y(s),5)]) + G(s)lds, 1 €10,n];
(1) = C(r = 5)((J; (51, 9(67))) + & (s:))
+8(t = s) (7 (50, 9(67))) + &a(s1))
+ [ S(t = 9)[fTs, 1(5), ¥[A(¥(), 5)]) + G(s)]ds,
tE€[sitin], i=1,2,...,m
(5.10)

Easily, we can have similar remarks for the solution of the
inequalities Eqgs. (5.1) and (5.2). In order to discuss the stability
of the problem Eq. (1.5), we need the following additional
assumption:

(A7) Let ¢ € C(J,R™) be a nondecreasing function. There
exists ¢, > 0 such that

[ tas

Lemma 5.1 (Impulsive Gronwall inequality). (see Theorem 16.4,

Scepdp(t), Vied.

Bainov and Simeonov, 1992). Let My = MU {0}, where
M = {1,...,m} and the following inequality holds
t
t +/ b(s)u(s)ds + Z Byu(t), t=0, (5.11)
0

0<t <t

where  u,a,b € PC(R*,R"),a is nondecreasing  and
b(t) >0, B, >0, k € M. Then for t € R",

u(t)< a(r)(1 + B)* exp (/Urb(s)ds>, t € (tr, trr1], k € My,
(5.12)

where = supicy{Bi} and ty = 0.

Theorem 5.1. Let xy € D(A), y, € E. If the assumptions (Al)—
(A4) and (A7) are satisfied. Then, the Eq. (1.5) is Ulam-
Hyers-Rassias stable with respect to (¢, ).

Proof. Let y € C.(J,D(A)) N C*((s;, ti11], X) be a solution of
the inequality Eq. (5.3) and x is the unique mild solution of
the problem Eq. (1.5) which is given by
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x(0) =T (6,x(17), 1€ (tys), i=1,2,...,m 1(0) = x(O)[| < 1y (6) = T3 1y (D15 (6,0(5)) = T (8,x(87) |
X(1) = ( x(t7)), te€(tys], i=1,2,...,m; -
(1) = C(1)x0 + S(0)y + [ S(t — $)(s. x(s), x[h(x(s), )])ds, Se+ ;LJ}“ y(t;) = ()
te0,); K
x(1) = Clt = ) () 50 (6))) + St = ) (51, x(5) S (@t ew)]
+f;,- Sgl_;)f(vv x(8), x[h(x(s), $)])ds, 1 € [s, tia], T K (2+LL/,)KTe‘”T/[||y(s) — x(s)||ds
(513) DKLy KT L) | 0(6) ~ (1))
For ¢t € [s;, t;11], i=1,2,...,m. By inequality Eq. (5.8), we a (5.15)

have
[y(r) = C(t = 5)(J} (51, 9(£7))) = S(1 = ;) (3 (51, ¥(17)))

- /rS(t = 5)f(s, (), yh(¥(s), 5)])ds]|

VK, oi-s) K / (1)
(0] Si 71 _ (] S 71 d
P 1 5 [~ gty

K t
+ E—e”’T/ o(s)ds
w 0

ST+ cob(1).

< El//Kem(lfs,-) +

K
< El//KE‘wT + El// emT
w

< efKeT +

For t € (t;,s], i=1,2,...,m, we have

Iy (2) = 73 (£, () <

For 1 € [0, ,], we have

I6(6) = C(0)% — S0, — / 'St — )15, (5), YO (5), )|
EK/ ) 1]g(s)ds < BTy ).

Hence, for ¢ € [s;,1;11], i=1,2,...,m, we have

ly(2) = x(0)]|
< ly(r) = Cle = ) (U] (53, 0(57))) = St = 5:)(FF (53, 1(17)))

- /.t S(r = 5)f(s, 9(5), y[h(y(s), )))dsl| + Ke” ||} (s:, (7))
= S (i, (1))
—f(s,x(s),

I s x (DI + KT (55, 9(17)
KT / G5, y(s), 7 A (s), )])
WK+ LT 4 cy(1)
() — ()]

T+ Ki(2 + LL)KTeT / I6(s) — x(s)llds

x[h(x(s), s)])ds|| <
+ (Ke”"Ly + KTe""Lp)

<T@+ o)W+ 6(0)

t
- K24+ LL)KTe" / 15(5) — x(s) s

+ Y (K" Ly + KTe" L) || (0(e7) = (x(1;)]-

J=1

(5.14)

For t € (t;,s], i=1,2,...,m, we have

Now, for ¢ € [0, 1], we have

ly(2) = x(2)|| <o Kot sd(1) + K, (2+ LL,)KTe""

/ 1y(5) — x(5)llds

<= “’T[(2+C¢)(l//+¢( 1))+ Ki(2+ LLy)KTe""

/ 19(5) — x(5)1ds

+ Zl Ke"" Ly + KTe" L) | (y(5;) — (x(7)]-
J=

(5.16)

We observe that inequalities Eqs. (5.14)—(5.16) give together
an impulsive Gronwall inequality of a form of Eq. (5.11) on J.
Therefore, we can apply impulsive Gronwall inequality Eq.
(5.12) for t € J, since ¢ € (t;, 1;1,] for some i € M.

Consequently, we have

() = 5Ol < 5 e (2 4 ¢g)(1 -+ KePTLy) Rz HhakTe™
x e( + (1))
< (Ij (0T(2+L¢)(] +KemTLJ)mekl(2+LL,,)1<Te“”'T
X e( + (1))
c(KiLyLym@)e(yy + §(1)),
for any t€J, where L;=supy{Ly+TLp} and

c(K\L,Lym¢) is a constant depending on K, L,, L;,m, .
Hence, the Eq. (1.5) is Ulam-Hyers-Rassias stable with respect
to (¢,4). O

Theorem 5.2. If the assumptions (Al)- (A4) and (A7) are sat-
isfied. Then, the Eq. (1.5) is generalized Ulam-Hyers-Rassias
stable with respect to (¢, V).

Proof. It can be easily proved by applying same procedure of
Theorem 5.1 and taking inequality Eq. (5.2).

Theorem 5.3. If the assumptions (Al )—(A4) and (A7) are sat-
isfied. Then, the Eq. (1.5) is Ulam-Hyers stable.

Proof. It can be easily proved by applying same procedure of
Theorem 5.1 and taking inequality Eq. (5.1).
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6. Application

Example 6.1. Let X = L>(0,n). We consider the following
partial differential equations with deviated argument

OuZ(t,y) = 0y Z(t,y) + /o(y, Z(h(1), ) + f3(t, 3, Z(1, ),
ye(0,m), re€(2i,2i+1], ie{0}UN,
Z(1,0)=Z(t,n) =0, t€[0,7],0< T < oo,
Z(0,y) =xo, y€(0,7),
0:Z(0,y) = yy, € (0,7),
Z(1)(y) = (sini)Z((2i = 1), p), y € (0,m),
te (2i—1,2i], ieN,
0,.Z(1)(y) = (icosit) Z((2i — 1), ), € (0,7),
e @i—1,2], ieN,
(6.1)
where 0 =50 < 11 <851 < 1lyy.oo,ly < Sp < tmy = T < oo with

t; =2i— 175,' =2i and

Flty Z(1,y)) = / "Ry )@l Z(,5)] + bilZ(n,5)])ds

We assume that a;,b; > 0, (a;,b,)#(0,0),4:J; — [0, 7] is
locally Holder continuous in ¢ with £(0)=0 and
K:[0,7] x [0,7] — R.

We define an operator A4, as follows,

Ax=x" with D(A)={x€ X: x" € Xand x(0) = x(n) = 0}.

(6.2)
Here, clearly the operator A is the infinitesimal generator of

a strongly continuous cosine family of operators on X. A has
infinite series representation

where x,(s) = \/2/nsinns, n = 1,2,3. . is the orthonormal set
of eigenfunctions of A. Moreover, the operator A is the
infinitesimal generator of a strongly continuous cosine family
C(t),cp On X which is given by

x € D(A),

x xn Xny

(H)x = Zcos nt(x,x,)x,, x¢€X,
and the associated sine family S(7),., on X which is given by
=1
S(t)x = —sinnt(x,x,)x,, x€X.
()x ;nsmn(xx)x X

The Eq. (6.1) can be reformulated as the following abstract
differential equation in X:

X"(t) = Ax(t) + ft, x(2), x[h(x(2),0)]), ¢ € (81, li11),
ie {0}UN,

x(0) =J 6, x(57)), t€(t,s], i€N,

X(1) =P (t,x(£7)), t€(t,s], i€N,

x(0) = xo, X'(0) = y,,

(6.3)

Sy, 8)(y) =

where x(f) = Z(t,.), that is x(¢)(y) = Z(t,y),y € (0, 7). Func-

Nt x(6;)) = (sinin)Z((2— 1)",y) and  2(1,x(5;))

=i(cosit)Z((2i — 1), y) represent noninstantaneous impulses

during intervals (7;,s;]. The operator A4 is same as in Eq. (6.2).
The function f: J; x X x X — X, is given by

tions

fz(% ) +f3([ 2 l//)a
where f, : [0, 7] x X — Hy(0,7) is given by

&= /Oy?(y, x)&(x)dx

and
W6y ) < VO, )1+ [l e 0.0))
with V(.,f) € X and V is continuous in its second argument.

For more details see (Sakthivel et al., 2009; Gal, 2007). Thus,
Theorem 3.1 can be applied to the problem Eq. (6.1). We can
choose the functions p(x) and ¢(x) as given below

= Zn:ock X(Zk)7
9 =3B x(n),
3

where o, and f, are constants.

tr€J forallk=1,2,3,---,n,

te€J forallk=1,2,3,---,n,

Example 6.2. We consider particular linear case of the abstract
differential Eq. (6.3) in the space X = R. A forced string
equation

X'(t) + arx(t) + ay sin x(c1t) = g(1),
i=0,1,...,m,

t e (si,tir1)

x(1) = astanh(x(¢;,))r(2), t€ (ti,s], i=12,...,m,
X'(f) = astanh(x (7)) (1), t€ (48], i=1,2,....m,
x(0) = xo, ¥(0) = yy,

(6.4)

where a, € R, ay,a3 € R,c; € (0,1],g € C(J;,R) and re
C'(J5,R) for J, = U, I;. We define 4, as follows

Ax = —a;x with D(4) = R.

Here, clearly the value —a; behaves like infinitesimal gener-
ator of a strongly continuous cosine family C(¢) = cos./at.
The associated sine family is given by S(¢) = \/#a_] sin y/ait.
Deviated argument in the abstract differential Eq. (6.3) is rep-
resented by the term apx(c;7) of the differential Eq. (6.4).
Noninstantaneous impulses az tanh(x(t;))r(1) and
as tanh(x(z;))r'(¢) are created when bob of the string is extre-
mely pushed on each interval (¢, s;].

Example 6.3. We generalize the above example to consider a
coupled system of strings or pendulums

X3 (1) + @y Sin X, (1) + @y sin X, (¢ut) = by Xu—1 (1) + by Xur1 (1) + &,(1),

te (si,tit1),i=0,1,...,m nez,
Xu(1) = a3 tanh (x, (67 ) (1), 1€ (ti,8], i=1,2,....m
X, (1) = a3 tanh(x, (1) (1), te(t,s), i=1,2,...,m,
X2(0) = X0, X,(0) =y,

(6.5)
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where a1, dn, a3, bu, b €R, ¢, €(0,1],g, € C(J;,R) and
o € C'(J5,R). Moreover we suppose sup,|au| < oo,k =
1a27 3> Supn(|bn1| + ‘bn2|) < o0 and supn(”gn” + ||VnH + Hr’l
/||) < oco. Then we consider Eq. (6.5) on £, and use Exercise
1 on p. 39 from Fattorini, 1985. The lattice ODE Eq. (6.5) is
a generalization of the discrete sine-Gordon equation Scott,
2003 and x,(c,?) represents pantograph-like terms Derfel and
Iserles, 1997.

7. Conclusion

The research presented in this paper focuses on the existence,
uniqueness and stability of solutions to the impulsive systems
represented by second order nonlinear differential equations
with noninstantaneous impulses and deviated argument. We
used strongly continuous cosine family of bounded linear oper-
ators and Banach’s fixed point theorem to get the existence and
uniqueness of the solutions. Moreover, Ulam’s type stability is
established using impulsive Gronwall inequality.
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