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Time series study about the changes in Fractional Vegetation Cover (FVC) with its drivers is studied. From
2003 to 2013, FVC was calculated using remotely sensed data from the Moderate Resolution Imaging
Spectroradiometer-Normalized Difference Vegetation Index (MODIS-NDVI), Landsat-7, Defense
Meteorological Satellite Program/Operational Linescan System (DMSP/OLS), and Compound Night Light
Index (CNLI). The mean value of FVC is 0.34 (34 %). The findings indicate that the highest annual mean
values are between 34% and 37%, and 31% and 33%, that correspond to level of 70% and 40%, respectively.
The trend analysis by MODIS and Landsat-7 has the low (10%) FVC in the northern parts due to increase in
industrial development, urbanization, changes in landuse, landcover and other linked environmental fac-
tors. The southwestern-southeastern and eastern areas showed medium (40 %) and high (70 %) FVC
respectively. This is because of water availability and less human disturbance.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The terrestrial environment is a critical component of the global
village, serving the primary purpose of regulating human survival
and preserving the global structure and function (Liu et al.,
2019). The terrestrial ecosystem’s vegetation is an important fac-
tor. It depicts the variation in the ecological environment and the
surface vegetation cover (Wen et al., 2013). FVC is important in
the modeling of biophysical processes like transpiration, photosyn-
thesis, and evaporation (Chen and Gillieson, 2009).

FVC has already been used to monitor ecosystems and to inves-
tigate erosion of soil. The assessment of the FVC has big effects for
both environmental and social aspects. (Herrick et al., 2009).
Extremely important concerns influencing FVC are rising human
activity and ecosystem changes, as predicted by ecological and cli-
matic model predictions (Yang et al., 2010). Environmental poli-
cies, as well as global climatic fluctuations, have had a
considerable impact on the vegetation, which has changed consid-
erably over time (Matteucci et al., 2016). FVC is being used by a
number of experts to understand drivers and principles of spatial
change (Cao et al., 2015).

Temperature has a negative influence on plants usually, but
rainfall has a positive impact. The main factors that influence the
browning and greening of plants are population growth and
human-caused acts (Huang et al., 2014). Leading features as well
as computed fluctuating changes in vegetation from remotely
sensed data are studied by Tong et al. (2016).

FVC is easy to calculate due to the extensive use of digital pho-
tography (Chen et al., 2010). Remote sensing has always been
regarded as the most effective tool for estimating FVC (Barati
et al., 2011). For monitoring changes in vegetation, satellite-
based remote sensing is required (Zhan et al., 2002). Landsat The-
matic Mapper (TM), linear regression model was used for estimat-
ing the FVC in semi-arid region (Graetz et al., 1988). Fractional
Vegetation Cover was calculated using data of Landsat
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(soil-adjusted vegetation index (SAVI) and NDVI) described by
Buyantuyev et al. (2007).

Landsat has been widely used in several plant-related studies
during the previous decades. MODIS, among the several distant
sensors, possesses the necessary properties for detecting natural
vegetation degradation and supplying global data (Usman et al.,
2015). Furthermore, CNLI, which give information about urbaniza-
tion, socio-economic activities, light, energy, settlements, power
consumption, and gas emissions. These are the most essential driv-
ing forces for FVC (Shobairi et al., 2018). In order to analyze human
activities, the conventional census system uses uncommon data
and advanced technology, such as nighttime light emissions
(NTLEs) (Bagan and Yamagata, 2015).

The study’s primary objective is to estimate the Fractional Vege-
tation Cover at regional level and to investigate the dynamics, time
series, classification as well as trend analysis of the FVC using
MODIS-Terra and Landsat ETM+ data. Finally, the drivers of FVC
from 2003 to 2013 are discussed, including human activities and
climate factors. The investigation of FVC drivers in Dera Ismail
Khan using night light data from remote sensing is innovative.
The analyses showed that FVC characteristics are spatially and
temporally dynamic and provide an accurate explanation of vege-
tation cover changes. By using remote sensing data we also
acquired information such as which factor is more responsible
for FVC changes in the research area and how vegetation cover
has changed during previous years.
2. Material and methods

2.1. Study area

District Dera Ismail Khan is the southernmost district of the
Khyber Pakhtun Khwa (KPK), Pakistan with an average elevation
of 173 m above sea level, lying between 31�.150 and 32�.320, north
latitude and 70�.110, and 71�.200, east longitude (Usman et al.,
2016). District’s total size is 0.896 mha, with 33 percent of that
being suitable for cultivation (Khan, 2003). Dera Ismail Khan has
a continental climate with noticeable temperature changes both
seasonally and daily, as well as a high level of dryness. The average
annual rainfall of area ranges from 180 mm to 200 mm. In the win-
ter, the average maximum and minimum temperatures are 20.3 �C
and 4.2 �C, respectively, in contrast to 42 �C and 27 �C in the sum-
mer (Marwat et al., 2012). Fig. 1 shows the map of Dera Ismail
Khan.
2.2. Process method and data source

We used MODIS’s level-3 16-Day vegetation collection
(MOD13Q1) products, with 250 m spatial resolution. These data
were downloaded from the MODIS website (Didan et al., 2015).
The majority of Landsat 7 images used for the prediction of NIR
and red surface reflectance were close to 100% cloud free.
MODIS-Terra has very low spatial resolution compared to Landsat
ETM+ (250 m vs 30 m). But MODIS has a better temporal resolution
compared to Landsat (daily vs 16-day repeat cycle) as well as Land-
sat has a better spatial resolution as compared to MODIS. The full
scene of Landsat and MODIS-based NDVI maps in the same year
showed overall similar distributions. MODIS and Landsat data were
reprojected from a sinusoidal to a UTM projection. NDVI data were
resampled to MODIS NDVI (250 m) spatial resolution for direct
comparisons between MODIS-Terra and Landsat 7. The boxcar
approach was used for resampling while adjusting the pixel sizes.
Averaging all the 250 m NDVI pixels from Landsat and MODIS that
fell within a 250 m MODIS pixel gave the 30 m pixel value
(Albarakat and Venkataraman, 2019).
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The Landsat 7, Collection 1, Tier 1, 8-Day NDVI composite from
the United States Geological Survey (USGS) was chosen. The Nor-
malized Difference Vegetation Index was then calculated from
Eq. (3). This satellite has datasets available from 1999 to the pre-
sent, with a spatial resolution of 30 m. For the NDVI, I used Landsat
7 (2003–2013). Following that, the NDVI data is coded in GEE and
exported annually. After exporting, I opened the .tif file in ArcGIS
and used the scan line error tool to remove image strips. To per-
form the calculation, used the ‘‘Raster Calculator” tool in the Spa-
tial Analyst toolbar. Eq. (4) is used to calculate FVC (Robinson
et al., 2017).

The other dataset covers the years 2003 to 2013 and includes
DMSP/OLS satellites for example F14, F15, and F16. A wide range
of visible and near-infrared (VNIR) emissions can be identified
using the data of DMSP/OLS. National Oceanic and Atmospheric
Administration’s website provided information of DMSP/OLS
(Shobairi et al., 2018).

2.2.1. Land surface temperature data
MODIS LST and Monthly Emissivity Level 3 (L3) Worldwide

0.05� climate modelling grid (CMG) V006 (MOD11C3) information
were used to obtain Land Surface Temperature (LST) data. In order
to use a night/day algorithm that helps in monitoring clear-sky
observations between 10:30 a.m. and 10:30p.m., the data was
recovered. MOD11C3 product is a latitude/longitude CMG which
has 5.6 km image resolution that is designed on a 0.05�. The LST
data types for daytime and nighttime are both unsigned 16-bit
integers in degrees kelvin. The LST valid values range is 7500–
65635, with a scaling factor of 0.02 used to calculate mean by using
data from several years. For more impressive results, LST was mul-
tiplied by the scaling factors (0.02), and then subtracted conversion
coefficient (273.15) between Centigrade and Kelvin to convert the
temperature in centigrade (Liu et al., 2019).

2.2.2. Rainfall data
Precipitation Estimation from Remotely Sensed Information

using Artificial Neural Networks-Climate Data Record (PERSIANN-
CDR) was used for Rainfall data. Data of satellite based on daily
precipitation comprise the PERSIANN-CDR dataset. It has been
acknowledged by National Climatic Data Center (NCDC), a NOAA
CDR programme, as a source of high-resolution precipitation
records for studies of climate around the world (Santos et al.,
2021). PERSIANN-CDR is a tool that can be aid to evaluate world-
wide rainfall patterns (Miao et al., 2015).

2.3. Calculation of FVC

Pixel dichotomy model (PDM) was used in this study to inves-
tigate FVC because of its high handling capability. Most probably,
the pixel contained information about soil and vegetation. The
pixel with FVC contains the fraction of spectral data of vegetation
(Jiapaer et al., 2011). The PDM equation is as follows:

FVC ¼ VI� VIsoil
VIveg� VIsoil

ð1Þ

VI stands for vegetation index, VIveg for vegetation index with
vegetation pixel, and VIsoil for vegetation index with soil pixel (Li
et al., 2014). NDVI was considered to be the most accurate indica-
tor of vegetation density and crop growth condition. NDVI allows
for more precise data collection on plants while reducing noise
from the environment (Hu et al., 2017). When we replace VI with
NDVI in Eq. (1), we get the FVC equation as follows:

FVC ¼ NDVI� NDVIsoil
NDVIveg� NDVIsoil

ð2Þ



Fig. 1. The study area’s geographical location.
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NDVIsoil demonstrates soil. NDVIveg demonstrates the NDVI of the
vegetation.

Vegetation index method was developed for FVC calculation
based on Eq. (3) (Huete et al., 2002). We used ArcGIS to calculate
NDVI using Eq. (3).

The NDVI, SAVI, and RVI are all recommended VIs (Liu et al.,
2019). There was an independent variable called NDVI that we
used in the linear model.

NDVI ¼ Rnir � Rred
Rnir þ Rred

ð3Þ

For monthly FVC values, the NDVIveg and NDVIsoil are replaced
by NDVImax and NDVImin, respectively, in Eq. (2) (Ge et al., 2018).
The FVC was calculated using Eq (4). As NDVImin is the value at
Fig. 2. Low, medium, and high were three classes of FVC in 11 years.
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which the NDVI is the minimum and NDVImax is the value at
which the NDVI is the maximum (Fig. 2).

FVC ¼ NDVI� NDVImin
NDVImax� NDVImin

ð4Þ
2.4. FVC spatial distribution at different period and FVC spatio-
temporal dynamics

Statistical Package for the Social Sciences (SPSS) software was
used for the analysis of time series by yearly information of FVC
from 2003 to 2013. An expert modeler’s time series forecasting
module is used to fit yearly FVC information for forecasting. We
used linear trend test to investigate FVC dynamics as variable
which depend on time (Kirkman et al., 2013). When using the NDVI
dataset to detect changes in vegetation, linear trend analysis is per-
haps the most widely used method. Linear trend analysis uses a
simple linear regression model between vegetation index value
and time to depict time-based trends within the NDVI dataset
(Fensholt et al., 2009).
2.5. Calculation of CNLI

Eq. (5) was used to calculate CNLI using DMSP/OLS data.

CNLI ¼ I� S ð5Þ
I denotes average brightness of all lit pixels in given location at

night as follows.

I ¼ 1
NL � DNM

x
XDNM

i¼p

DNi x nið Þ ð6Þ

P is ultimate beginning point for the identification of cities with
lights from DMSP/OLS imageries. DNi indicates value of DN’s ith
grey level, fitting to ith gray level and lit pixels number is ni. Max-



Fig. 4. FVC Trend dynamics during 2003 to 2013.
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imum DN value is DNM, and total number of lighted pixels with DN
value between P and DNM is NL. Illuminated cities ratio to total area
of specified region is denoted by the letter S as follows:

S ¼ AreaN
Area

ð7Þ

where AreaN is illuminated cities area in defined region and Area is
specified region’s whole area.

2.6. Analysis of the driving forces affecting the dynamics of the FVC

To study link between vegetation changes and socio-economic
components quantitatively we conducted analysis of correlation
to determine their correlations using Pearson correlation coeffi-
cients. There were however, links between each component (Zhu
et al., 2016). For determining the correlation between FVC, CNLI,
and climatic factors, the Pearson correlation coefficient was con-
firmed (Fig. 3).
Fig. 5. FVC Trend dynamics from 2003 to 2013 through Landsat 7.
3. Results and discussion

3.1. FVC spatio-temporal dynamics from MODIS

To fit the yearly FVC data, an expert modeler’s time series fore-
casting module was used (Shobairi et al., 2018). We found annual
changes in FVC from 2003 to 2013. The FVC value in 2005, 2007,
2008, 2009, 2010, 2011, 2012 and 2013 was above the mean
(34%). FVC values were below the average in 2003, 2004 and
2006. According to (Chand et al., 2006) in 2003, 2004 and 2006 a
small number of areas had severe drought seasons. Throughout
this timeframe, rainfall was low and daylight hours were unusually
long, which was unlikely to increase vegetation growth and result
in reduced annual FVC. Unpredictably, average annual precipita-
tion was more than 20.24 (inches) in the years 2005, 2007, 2009,
and 2013, causing a large vegetation area to grow and setting off
increased FVC.

To examine FVC dynamics as variable which depend on time,
we used a linear trend test (Kirkman et al., 2013). FVC was lower
in 2003, 2004 and 2006 whereas it was higher in the remaining
years, as displayed in Fig. 4. FVC is divided into low, medium,
and high class. The spatial distribution of FVC in northern regions
Fig. 3. DMSP/OLS nighttime lig
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was low (10%) throughout these 11 years due to human distur-
bance. Due to less human disturbance, the southeast- southwest
and the eastern regions are occupied by medium (40%) and high
(70%) classes, respectively. Regional differences in economic
development, urbanization, and climatic conditions are all strongly
linked to spatial pattern. Because of less human disturbance and
water accessibility on the eastern plains of the research area,
industrialization has not fully developed, resulting in increased
FVC. Human disturbance is a concern in the northern region, where
water is scarce, resulting in a low FVC.
hts during 2003 and 2013.



Table 1
Estimated values for FVC by Landsat-7 data.

Years FVC

2003 0.31
2004 0.33
2005 0.37
2006 0.33
2007 0.35
2008 0.34
2009 0.35
2010 0.34
2011 0.34
2012 0.35
2013 0.35

Fig. 7. Dynamics of CNLI and DMSP/OLS (Mean) in Dera Ismail Khan during 2003 to
2013.
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3.2. FVC spatio-temporal dynamics from Landsat-7 data

The results of the FVC trends analysis demonstrate the increase
of vegetation growth from 2003 to 2013 (Fig. 5). To assess the FVC
dynamics as a time-dependent variable, we applied the linear
trend test (Kirkman et al., 2013). FVC value was more than average
(0.34) in 2005, 2007, 2009, 2012, and 2013, however FVC value was
lower than 0.34 in 2003, 2004 and 2006, as shown in Table 1. From
Landsat-7 data, we classified the FVC in low, medium, and high
class. FVC in the northern regions of the research area was typically
low (10%) over the aforementioned years due to disturbance and
decreased precipitation. Due to the overall economy and water
accessibility in the southwestern and eastern parts, medium
(40%) and high (70%) classes, were observed respectively. The spa-
tial distribution is basically linked to regional changes in industrial
development, urbanization, and climatic conditions. There was less
human interference and easier access to water in the eastern
regions, resulting in higher FVC.

The high spatial resolution of the Landsat-based image resulted
in many homogeneous pixels with either high or low NDVI. The
low spatial resolution of the MODIS-based map resulted in many
mixed pixels consisting partly of high NDVI and partly of low NDVI
(Fig. 6). As shown in graphs of Landsat and MODIS mean values are
very similar.
3.3. CNLI and DMSP/OLS spatial patterns

From 2003 to 2013, the level of urbanization as well as human
economic activity was determined mainly by determining the
Fig. 6. FVC map of D
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CNLI, as indicated in Fig. 7. CNLI changes were observed when
DMSP/OLS information was calculated, indicating that urbaniza-
tion was more common in low vegetation cover areas.
Urbanization, mining, agroindustry, and population all are linked
to CNLI. Vegetation in the study area has declined as a result of
these factors. The CNLI, as shown in Fig. 7, is an important indicator
for analyzing the urbanization trend. DMSP/OLS night-time satel-
lite informative indexes detected wildfire regions with 98 percent
accuracy in combination with field observations and multi-satellite
informative indexes (Chand et al., 2006). DMSP-OLS is linked to
human activities and has an impact on changes in land cover. Each
year, economic activity, urbanization, and industrialization
increase, which has vast consequences.
3.4. FVC driving forces

Its is notable that during the 11 years, when CNLI and temper-
ature increased, the spatial distribution of FVC decreased. That
trend has a strong link to cities development and industrial devel-
opment trends. It was determined that numerous elements,
including anthropogenic activities, climate, and environmental
influences, are believed to be the key factors of changes in FVC.
As shown in Table 2, Pearson correlation coefficient is used to
study link between rainfall, temperature, CNLI and FVC. Mean
era Ismail Khan.



Table 3
Estimated values for FVC, climatic conditions and CNLI.

Year FVC (mean) Temperature (� C) Rainfall (inches) CNLI

2003 0.314842231 25.26 17.11 0.05
2004 0.33209781 24.52 18.14 0.05
2005 0.366884609 22.27 21.18 0.01
2006 0.331749203 26.33 17.18 0.17
2007 0.346999204 25.34 24.57 0.06
2008 0.34494997 25.69 19.41 0.16
2009 0.346999204 25.22 22.23 0.14
2010 0.343378745 26.67 18.07 0.18
2011 0.343378745 26.67 18.06 0.18
2012 0.34944997 25.82 19.07 0.16
2013 0.35494997 25.17 27.69 0.1

Table 2
Correlation of FVC, LST, rainfall and CNLI.

Factors FVC LST Rainfall CNLI

FVC 1.00 �0.429 0.594 �0.054
LST �0.429 1.00 �0.292 0.845**

Rainfall 0.594 �0.292 1.00 �0.285
CNLI �0.054 0.845** �0.285 1.00

** Correlationn is significant at the 0.01 level.
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annual rainfall (inches) is positively correlated with FVC, however
the mean annual temperature is negatively correlated.

Additionally, negative correlation exist between FVC and CNLI.
Significant positive correlation between Fractional Vegetation
Cover and rain is explained by the fact that loss of water is reduced
during rain season, due to this the process of photosynthesis was
not affected negatively, resulting in higher FVC. Urbanization and
industrial development have a negative impact on the yearly mean
FVC.

The FVC for each period is altered and changed by CNLI and cli-
matic conditions, as shown in Table 3.

4. Conclusions

NDVI images from MODIS-Terra, Landsat-7 data, LST, rainfall
data and DMSP/OLS datasets were used to study FVC variations
in district Dera Ismail Khan Pakistan from 2003 to 2013. An analy-
sis of time series shows that the average value is 34%. The signifi-
cant impact of temperature, rainfall, and CNLI on FVC is observed
in annual results. The highest percentages are 40% for the medium
class and 70% for the high class, with a dramatic trend in the
southeast-southwest and eastern regions. Similarly, FVC from
Landsat data (2003–2013) was classified as low at 10%, medium
at 40%, and high at 70%. The FVC trend in northern parts was found
to be less than 10%, however in southeast-southwest and eastern
parts, it was found to be up to 40% and 70%, respectively. Due to
suitable conditions, a high value of FVC was discovered in the east-
ern region. Additionally, industrialization, urbanization, and a vari-
ety of other climatic factors influence the spatial pattern of FVC.
With the importance of this research in mind, a further analysis
will focus on FVC estimation for atmospheric impacts, and multi-
sensor time series can be obtained using surface reflectance
estimates.
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