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A B S T R A C T   

Objectives: Bacterial infections expressing New Delhi metallo-lactamase-1 (NDM-1) pose an escalating global 
threat to healthcare systems. NDM-1 is an enzyme that renders β-lactam antibiotics ineffective, leading to 
resistance against numerous antibiotics used in clinical practice. Therefore, there is an urgent need to identify 
and develop a clinically relevant inhibitor for NDM-1. 
Methods: Vitas-M laboratory database was screened for small molecules with abilities to bind NDM-1, by 
generating structure-based pharmacophore hypothesis. Thereafter, molecular docking was performed between 
NDM-1 and the potential small molecule inhibitors. The outcomes of molecular docking were validated by 
molecular dynamics simulation and MM-GBSA protocols. 
Results: Based upon initial NDM-1-binding characteristics, two ligands (STK115225 and STK107343) were 
nominated for further analyses for stability and affinity of protein–ligand interactions. Assessment of confor-
mational change parameters indicated that these showed tight and stable binding to the active site pocket of 
NDM-1 protein. Principal component analysis (PCA) further illustrated that the protein ligand complexes were 
highly stable. Molecular dynamics simulation along with high numbers of static hydrogen bonds signifies the 
potency of STK115225 and STK107343 in inhibiting NDM-1. Further, MM-GBSA-based binding free energy maps 
verified favorable energy changes for the binding of the two small molecules, indicating their abilities for high 
affinity-binding with NDM-1. 
Conclusions: This study has significant implications for addressing antibiotic resistance mediated by NDM-1. The 
identification of STK115225 and STK107343 as high-affinity binding ligands against NDM-1 provides a strong 
foundation for developing new therapeutic agents. However, to fully ascertain their clinical relevance, these 
findings must be validated through in vitro and in vivo experiments. If successful, these inhibitors could restore 
the efficacy of β-lactam antibiotics and offer a new approach to combat NDM-1 mediated antibiotic resistance, 
ultimately improving patient outcomes and reducing the global burden of resistant bacterial infections.   
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1. Introduction 

Emergence of bacterial antibiotic resistance has become a major 
clinical health concern (Ahmed et al., 2021; Faheem et al., 2013; Muteeb 
et al., 2017). β-lactamases enzyme is one of the more recently discovered 
agent in the bacterial arsenal for antibiotic resistance, and can efficiently 
hydrolyze β-lactam antibiotics such as penicillins, cephalosporins, 
monobactams, and carbapenems (Wang et al., 2021). β-lactamases 
function by hydrolyzing the β-lactam ring available in β-lactam antibi-
otics. The hydrolysis reaction involves the nucleophilic attack on the 
carbonyl carbon of the β-lactam ring, leading to the opening of the ring 
and loss of antibiotic activity. The production of β-lactamases by bac-
teria significantly complicates the treatment of bacterial infections. In-
fections caused by organisms that produce β-lactamase are linked to 
higher morbidity and mortality rates, extended hospital stays, and 
elevated healthcare costs. The presence of β-lactamases, particularly 
extended-spectrum beta-lactamases (ESBLs) and carbapenemases like 
NDM-1, in pathogenic bacteria such as Escherichia coli and Klebsiella 
pneumoniae has led to outbreaks in healthcare settings and community 
environments. 

Protein homology and underlying molecular mechanisms of action 
can be used to classify β-lactamases, as suggested by Ambler, into 4 
different groups (A, B, C & D). Class A β-lactamases are “serine β-lac-
tamases”, which include enzymes like TEM and SHV, often found in 
Gram-negative bacteria. Class C β-lactamases are also serine-based, 
commonly referred to as AmpC enzymes, which are chromosomally 
encoded and inducible. Class D β-lactamases, known as oxacillinases, 
have a serine residue at their active site and are capable of hydrolyzing 
oxacillin and other β-lactams. NDM-1 belongs to class B, also known as 
metallo-β-lactamases (MBLs). Unlike other classes, metallo-β-lactamases 
(MBLs) need divalent metal ions, usually zinc, for their enzymatic ac-
tivity and can break down a broad spectrum of β-lactam antibiotics, 
including carbapenems and cephalosporins (Hall and Barlow, 2005). 
Furthermore, Bush and Jacoby have classified β-lactamases into three 
functional groups (1, 2 and 3). Cephalosporinases are in group 1, while 
penicillinases, oxacillinases, serine-based carbapenemases, and ESBLs 
are in group 2. Metal ion-requiring carbapenemases are classed into 
group 3 (Bush and Jacoby, 2010). 

NDM-1, belonging to Class B1 (Ambler’s classification) and Group 3a 
(Bush and Jacoby’s classification), is a very potent β-lactamase which 
can inactivate β-lactam antibiotics, including cephalosporins, carbape-
nems and penicillins (Brem et al., 2016)7. Mechanistically, NDM-1 
selectively hydrolyzes amide bonds in β-lactam antibiotics. NDM-1 
was discovered in a Swedish patient in India in 2008, who was diag-
nosed with urinary tract infection of Klebsiella pneumoniae (Kumarasamy 
et al., 2010). Since then, NDM-1 has been detected in numerous coun-
tries across all continents, carried by various bacterial species, including 
Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumanii, and 
Enterobacter cloacae (Linciano et al., 2019). The gene encoding NDM-1 is 
often located on plasmids, which are mobile genetic elements that 
facilitate horizontal gene transfer between bacteria, further accelerating 
the spread of resistance. This plasmid-mediated transfer allows NDM-1 
to disseminate rapidly across different environments, from hospitals to 
community settings, complicating infection control efforts. The high 
prevalence of NDM-1 in both clinical and environmental isolates in-
dicates its widespread dissemination and the urgent need for coordi-
nated surveillance and containment strategies. 

Due to the serious consequences of NDM-1-mediated antibiotic 
resistance, it is urgently necessary to find new inhibitors that can 
effectively target this enzyme. Current treatment options are limited and 
often involve the use of antibiotics that are more toxic or less effective, 
such as colistin and tigecycline. These alternatives may have adverse 
side effects and are not always successful in treating infections caused by 
NDM-1-producing bacteria. Research efforts are focused on developing 
new molecules that can inhibit the activity of NDM-1, thereby restoring 
the efficacy of beta-lactam antibiotics. Strategies include designing 

small molecules that can chelate the zinc ions essential for NDM-1 ac-
tivity or developing novel compounds that can bind to the enzyme’s 
active site. While NDM-1 has been proposed to be repressed by chem-
icals such as captoprils, sulfonamides, boric acid derivatives and thiol- 
containing small molecules, none of these potential inhibitors have 
received approval for clinical use. Hence, in order to counteract bacte-
rial antibiotic resistance, it is essential to design/identify, evaluate and 
further develop novel and potent NDM-1 inhibitors (Klingler et al., 
2015). 

Computer-assisted drug design (CADD) has revolutionized the field 
of pharmaceutical research, offering significant advantages in the drug 
discovery process. However, it also comes with several limitations that 
need to be addressed for optimal application. These include the 
complexity and dynamic nature of biological systems, which are often 
oversimplified in computational models, leading to inaccuracies. The 
accuracy of predictive models depends on the quality of data, which can 
be incomplete or biased, and the need for substantial computational 
resources can be a barrier. Modeling the flexibility of biological targets is 
challenging, and integrating computational predictions with experi-
mental data is time-consuming and costly. Scalability issues, outdated 
software and algorithms, and difficulties in accurately predicting 
ADMET properties further complicate the drug discovery process. 
Continuous advancements and improved integration with experimental 
data are needed to fully realize the potential of CADD. 

Given the substantial role of NDM-1 in the dissemination of anti-
biotic resistance, this in silico study is dedicated to identifying potential 
small molecule inhibitors of NDM-1. 

2. Methodology 

2.1. Pharmacophore hypothesis 

Protein Data Bank (PDB) was used for the retrieval of co-crystal 
structures of NDM-1 (PDB IDs 4EY2, 4EYB, 4EYL, 4RL0, 6OL8, and 
6TTC). The structures were superposed to analyze the orientation of the 
binding pocket residues. The residues with consistent conformation 
were then selected for the generation of pharmacophore hypothesis. A 
pharmacophore hypothesis was developed by selecting the receptor 
cavity and manually choosing the binding pocket residues, utilizing the 
Phase tool of Schrödinger (Dixon et al., 2006). Before developing the 
hypothesis, the receptor was prepared by following the steps outlined in 
section 2.4. 

2.2. Small molecule database creation and virtual screening 

Phase tool was also used to create a database of small molecule 
compounds from the Vitas-M laboratory database, containing 1.4 
million ligands (Dixon et al., 2006). Ten conformers were produced for 
every ligand in order to expand the chemical space search. Using the 
Epik tool (Shelley et al., 2007), various potential states at pH 7 were 
produced, and the database was cleared of the high energy tautomeric 
forms. Pharmacophore hypothesis was then applied to the virtual 
screening using the prepared database. For the molecular docking in-
vestigations, the screened hits with phase scores greater than 1.4 were 
chosen. 

2.3. Molecular docking 

Molecular docking of a small molecule database against NDM-1 was 
conducted using Glide (Schrodinger, LLC, NY, USA). Protein preparation 
wizard of Maestro was exploited to create the crystal structure of NDM-1 
(PDB ID 4EYL) (Madhavi Sastry et al., 2013). Preprocessing of the re-
ceptor included adding hydrogens, eliminating water, adding charges, 
and repairing side chain atom residues. Using PROPKA, the superfluous 
chains were cut off and tautomeric forms were produced at a pH value of 
7.0 (Bibi Sadeer et al., 2019). OPLS_2005 force field was employed to 
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further optimize and minimize the receptor’s shape (Shivakumar et al., 
2012). Creation of the grid relied on using the co-crystal ligand to 
perform site-specific docking. The dimension of the grid box was set as 
27 Å × 27 Å × 27 Å, while the X, Y, and Z coordinates were 2.51 Å, 
− 40.8 Å, and 1.89 Å, respectively. Prior to docking, the ligands were 
synthesized using Maestro’s LigPrep tool following grid creation (Mat-
suoka et al., 2017). Epik was used to produce ionization states at a set pH 
value of 7.0 (Shelley et al., 2007). Stereoisomers of the selected ligands 
with the specific chirality were created employing OPLS_2005 force field 
tool. Van der Waals radii of receptor atoms were set at 1.0 and the partial 
charge cut-off value was scaled at 0.25 to minimize the potential of the 
receptor’s non-polar portions. Subsequently, Glide docking tool was 
employed to dock the ligands to the synthesized receptor, NDM-1. 
Binding poses for the ligand-receptor interactions were examined 
using the glide gscore. 

2.4. Molecular dynamics simulations (MDS) 

Following preprocessing of the ligand-receptor complexes using 
OPLS_2005 force field, assessment of dynamic interactions via MDS for 
the selected protein–ligand complexes obtained using molecular dock-
ing was performed at 100 ns on Desmond software of Schrödinger 
(Bowers et al., 2006). Transferable intermolecular potential with three 
points (TIP3P) solvent model and an orthorhombic box (10 × 10 × 10 Å) 
was added using the system builder tool (Price and Brooks, 2004). 
Counter ions (0.15 M Na+/Cl-) were supplemented in the model to 
neutralize it and simulate the physiological conditions. Iso-
thermal–isobaric (NPT; amount of substance N, pressure P and tem-
perature T) parameters were set at 300 K and 1 atm. Prior to initiating 
MDS, the complex was loosened, and every 50 ps, trajectories were 
saved for the purpose of analyzing the simulation’s output. 

2.5. Dynamic Cross-Correlation matrix (DCCM) 

The Dynamic Cross-Correlation Matrix (DCCM) method is a valuable 
computational tool used to analyze the correlated motions of atomic 
pairs within molecular systems, particularly proteins and their in-
teractions with ligands. This method involves conducting molecular 
dynamics simulations to produce trajectories of atomic coordinates over 
time. It then eliminates global translational and rotational motions by 
superimposing these coordinates onto a reference structure. The method 
calculates the displacement vectors of atoms from their mean positions 
and constructs a cross-correlation matrix based on the correlation co-
efficients between these displacement vectors. For each pair of atoms i 
and j, the displacement vectors δri(t) and δrj(t) from their respective 
mean positions were computed over the course of the simulation. These 
vectors represent the deviations from their average positions at any 
given time t. The DCCM is constructed by calculating the cross- 
correlation coefficients between the displacement vectors of each pair 
of atoms. The elements of the DCCM, Cij, are given by the following 
equation: 

Cij =
〈δri(t).δrj(t)〉
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈δri(t)2
〉〈δrj(t)2

〉

√

where 〈⋅〉 denotes the time average over the entire simulation trajectory. 

2.6. Principal component analysis (PCA) 

Principal Component Analysis (PCA) was used to evaluate the col-
lective motions of both proteins and their accompanying ligands, uti-
lizing the Bio3D package (Grant et al., 2021). The process initiated with 
the elimination of translational and rotational motions of the protein. 
Subsequently, the covariance matrix and its corresponding eigenvectors 
were computed by aligning the atomic coordinates of the protein to a 
reference structure. This symmetric matrix was then diagonalized via an 

orthogonal transformation matrix, yielding a diagonal matrix of eigen-
values. The covariance matrix (C) was calculated using the following 
equation: 

Cij = 〈(xi − 〈xi〉)
(
xj − 〈xj〉

)
〉(i, j = 1,2, 3,⋯., 3N)

where, N, xi/j and < xi/j > signify the number of Cα-atom, the Cartesian 
coordinate of the ith/jth Cα-atom, and the time average of all the con-
formations, respectively. 

2.7. Molecular Mechanics-Generalized born surface area (MM-GBSA) 

The free energies for the interaction between NDM-1 and the selected 
ligands were computed using molecular mechanics force fields and the 
implicit solvation method using Prime (Schrodinger, LLC, NY, USA), as 
previously described (Ahmed et al., 2020; Friesner et al., 2006). 
Initially, the energies of the docked poses were minimized using Prime’s 
local optimization feature. Subsequently, the binding energies were 
computed using an MM/GBSA continuum solvation protocol, employing 
the OPLS3a force field, a VSGB solvation model, and a rotamer search 
algorithm (AlAjmi et al., 2021). The free energy was calculated ac-
cording to the following relationship: 

ΔG = Gcomplex minimized −
[
Gligand minimized + Gprotein minimized

]

where GComplex_minimized, GLigand_minimized, and GProtein_minimized were 
the minimized free energies of the protein–ligand complex, ligand only, 
and protein only, respectively. 

3. Results 

3.1. Protein structures alignment 

After retrieval of protein crystal structures of NDM-1 from PDB, they 
were aligned on each other to analyze the binding pocket residues. The 
RMSD difference was less than 0.5 which showed that there were not 
many deviations in the structures (Fig. 1A). The orientation of the res-
idues of binding pocket was deeply analyzed (Fig. 1B). It was observed 
that the conformations of Val73, Trp93, His122, Gln123, Asp124, and 
Lys211 had changed in 6TTC structure. 

3.2. Pharmacophore creation 

Binding pocket residues of NDM-1 protein were chosen in order to 
create a seven-featured pharmacophore model of the receptor cavity. 
The coordinates in the protein structure for the pharmacophore hy-
pothesis are depicted in Fig. 2A and summarized in Sup. Table S1. 
Fig. 2B depicts the features of the pharmacophore hypothesis, including 
the binding pocket cavity. 

3.3. Virtual screening 

Virtual screening of the selected ligands was conducted employing 
the pharmacophore model of NDM-1. A compound was designated as a 
hit only when a minimum of four features were found to be matched. 
Parameters such as vector alignments, RMSD site matching and volume 
scores were used to rank the final hits from screening in order of their 
phase fitness scores. Selected ligands’ vector scores ranged from − 1.0 
to + 1.0., and higher values in the vector score corresponded to greater 
alignment. On the other hand, volume scores ranged between 0.0 and 
1.0, with higher volume scores indicating higher commonality of the 
volumes of the aligned and reference ligands. Phase screen score 
threshold was set at 1.4 in order to identify possible hits. The ligands 
which were selected along with their phase screen score and alignment 
on the pharmacophore hypothesis are given in Sup. Table S2. 
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3.4. Molecular docking 

The ligands were docked to NDM-1 protein in accordance with the 
standard methodology of the glide tool. Analyses of molecular in-
teractions between the compounds docked to the receptor were evalu-
ated in consideration with the glide g-score obtained. A cutoff binding 
energy score of − 7 kcal/mol was fixed in order to select the hits. This 
resulted in the selection of 4 hits with appropriate glide g-score and 
binding energies (Table 2). Upon analyses of the molecular interactions 
between the protein and docked hits, we observed that STK115225 
made one π-π interaction with His122, and four π-alkyl interactions with 
Leu65, Val73, Trp93, and His250. STK107343 was found to make one 
π-sulfur bond with Trp93, one π-σ bond with His122, a π-π bond with 
His250, and an alkyl bond with Ala215. STK215880 was involved in one 
π-π interaction with His250, an alkyl bond with Ala215 and a metal 
acceptor with Zn as well. Lastly, STK115575 elicited three hydrophobic 

interactions with Ala74, Trp93, and His122. Fig. 3 depicts the ligand- 
receptor molecular interactions for all the four hits against NDM-1. 
Analyses of binding modes for the selected ligands docked to NDM-1 
were also conducted and are represented in Fig. 4. 

3.5. MDS analysis 

The docked poses of the ligands were superposed on the co-crystal 
ligand and two compounds were chosen for protein–ligand stability 
analyses. The aligned poses of the selected compounds are shown in 
Fig. 5 A-B. 

3.5.1. Root mean square deviation (RMSD) 
To evaluate the stability of the ligand–protein complexes, RMSD of 

the alpha carbon atoms in the proteins and ligands was computed from 
the trajectories (Sargsyan et al., 2017). As depicted in Fig. 6A, complexes 
for STK115225 and STK107343 and were equilibrated for 10 ns. RMSD 
of STK115225 complex showed negligible deviations till 20 ns and 
achieved stability at ~ 1.25–1.50 Å until the culmination of the MDS. 
There were minor deviations at the frames generated at 50 and 60 ns. 
For the STK107343 complex, RMSD attained a value of ~ 1.75 Å and 
remained in this range until the culmination of the MDS at 100 ns. 

3.5.1.1. Root mean square fluctuations (RMSF). RMSF values are a good 
measure of the dynamic behavior of amino acid restudies in receptor 
proteins, when the latter are complexed with their ligands (Martínez, 
2015). With the exception of the loop section residues which extended to 
the maximum value of ~ 2.5 Å, RMSF of other residues were found to 

Fig. 1. The superimposed residues of the NDM-1 crystal structures used for pharmacophore model generation. (A) The alignment of the co-crystal structures, (B) The 
aligned residues of the binding pocket. 

Fig. 2. Pharmacophore model of NDM-1 for the binding pocket (A) and the cavity of the pocket (B).  

Table 1 
Binding free energies for the two ligands complexed to NDM-1 as evaluated by 
MM-GBSA analyses.  

Energy components (kcal/mol) STK115225-complex STK107343-complex 

ΔEvdW − 52.86 ± 0.34 − 59.85 ± 0.37 
ΔEele − 2.96 ± 0.25 − 8.90 ± 0.36 
ΔEGB 13.40 ± 0.22 20.85 ± 0.32 
ΔEsurf − 5.50 ± 0.03 − 5.63 ± 0.04 
ΔGgas − 55.83 ± 0.37 − 68.75 ± 0.54 
ΔGsolv 7.89 ± 0.21 15.21 ± 0.32 
ΔGtotal − 47.93 ± 0.31 − 53.54 ± 0.43  
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Table 2 
Glide g-score scores of the selected ligands.  

S. No. Compound ID Structure of ligand Glide score 

1. STK115225 − 7.291 

2. STK107343 − 7.280 

3. STK215880 − 7.262 

4. STK115575 − 7.043  

Fig. 3. Molecular interactions underlying binding of the four selected ligands (STK115225, STK107343, STK215880 and STK115575) to NDM-1. Magenta, purple 
and orange lines depict hydrophobic interactions, pi-Sigma bonds, and pi-sulfur interactions, respectively. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

S. Haque et al.                                                                                                                                                                                                                                   



Journal of King Saud University - Science 36 (2024) 103290

6

vary by less than 1 Å during the course of the simulation (Fig. 6B). 
Overall, the results indicate that the protein residues are more-or-less 
rigid and do not show any major fluctuations. This suggests that the li-
gands form a stable complex with the protein receptor DNM1. 

3.5.1.2. Protein-Ligand contacts. Based on MDS analysis, interactions 
between the ligands and receptor protein, NDM-1 mainly relied on hy-
drophobic, ionic, and hydrogen bond interactions. Amino acid residues 
involved in ionic bonds in STK115225-NDM-1 complex were Asp124, 
Cys208, Lys211, and His250 (Fig. 7A). On the other hand, His120, 
His122, Asp124, His189, Cys208, Lys211 and His250 were found to 
make ionic bonds with STK107343 compound (Fig. 7B). 

3.5.1.3. Principal component analysis. PCA was employed to evaluate 
the dynamic behavior of the protein in both complexes (Fig. 8 A-B). This 

method aids in determining the collective motion of dynamics trajec-
tories. Plotting the variance proportion against the Eigen values, which 
depict dynamic motions, was performed. Three principal components 
(PC) which cover the major fluctuations were plotted. The PCA analysis 
can demonstrate conformational changes in all groups through basic 
grouping in PC subspace (Khan et al., 2021). For the STK115225 com-
plex, overall flexibility was recorded at 31.55 %. PC-1 elicited the 
highest variation of 15.35 %, while PC-2 and 3 had variabilities of 
9.04 % and 7.16 %, respectively (Fig. 8A). With regards to the 
STK107343-complex, PC-1 also showed the maximum variation at 
21.68 %. Corresponding variations of 6.8 %, and 5.71 % were observed 
for PC-2 and 3, respectively. Overall flexibility for the STK107343 
complex was found to be 34.19 % (Fig. 8B). 

3.5.1.4. Cross correlation. Correlations amongst NDM-1 protein 

Fig. 4. Probable binding modes of the four selected ligands (STK115225, STK107343, STK215880 and STK115575) represented as sticks in the binding pocket of 
NDM-1. 
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residues were assessed using a dynamic cross correlation matrix (DCCM; 
Fig. 9A-B). Most residues elicited positive correlations, but few and 
short-lived anti-correlated residues were also present. Overall, cross 
correlation matrix suggests that NDM-1 residues are highly correlated to 
in presence of the ligands during the MDS. 

3.5.1.5. MM-GBSA calculations. MM-GBSA analyses were performed in 
order to calculate the total binding free energy (ΔGtotal) of the two li-
gands, STK115225 and STK107343 to NDM-1 protein. ΔGtotal is a good 
measure of the stability of protein–ligand complex (Du et al., 2011), and 
lower values indicate enhanced stability of the complex. ΔGtotal calcu-
lated by MM-GBSA model is dependent on the contributions of the 
various kinds of ligand–protein interaction energies, including van der 

Waals (ΔEvdW) and electrostatic (ΔEele) energies, and electrostatic 
contribution by generalized born (ΔGGB). ΔGtotal for the two complexes 
are depicted in Table 1. 

The ΔEvdW contribution of STK107343 complex was more than 
STK115225 complex, and this was same for the electrostatic contribu-
tion. Similarly, generalized born contribution was higher for STK107343 
when compared to the STK115225 complex. ΔGtotal was computed as 
− 47.93 ± 0.31 kcal/mol for STK115225 complex, and 
− 53.54 ± 0.43 kcal/mol for STK107343 complex. The contribution of 
each energy component in the calculation of ΔGtotal is depicted in 
Supplementary Fig. S1. 

Fig. 5. Probable binding modes for ligands, STK115225 (A; magenta sticks) and STK107343 (B; blue sticks) aligned with NDM-1 co-crystal structure. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. (A) RMSD plots of ligand–protein complex for the duration of MDS (100 ns). (B) RSMF value plots depicting the residue fluctuations during the simulation 
period. Cyan and magenta plots represent complexes of STK107343 and STK115225, respectively for both (A) and (B). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

Antibiotic resistance in pathogenic microbial has emerged as a sig-
nificant global health issue. NDM-1 and its variants have recently 

attracted a lot of consideration because of their ability to hydrolyze 
practically all β-lactam antibiotics. These antibiotics include carbape-
nems, which have been traditionally thought to be last resort antibiotics. 
Horizontal gene transfer and enhanced spread of NDM-1 in newer 

Fig. 7. Ligand-protein interaction during MDS for STK115225 (A) and STK107343 (B). The interacting residues in NDM-1 are displayed as stacked bars.  

Fig. 8. PCA of ligands STK115225 (A) and STK107343 (B) bound to NDM-1. Blue, white and red represents greatest, intermediate and least amount of flexibility 
movements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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bacterial species has aggravated the problems. In this regard, it is critical 
to identify and clinically evaluate NDM-1 inhibitors which may retard 
antibiotic resistance in pathogenic microbes and render current antibi-
otics usable and beneficial (Ahmed et al., 2021; Faheem et al., 2013; 
Rahman and Khan, 2020). In recent years, the utilization of investiga-
tional, current, and experimental drugs in drug development approaches 
has become increasingly important. Among them, high-throughput 
computational screening methods such as virtual screening of massive 
databases concentrating on different chemical principles, network 
pharmacology, and molecular docking have taken the lead (Löwer and 
Proschak, 2011; Thangavel and Albratty, 2022). Virtual screening of 
natural and synthetic molecules has emerged as a vital strategy for 
modern drug development (Walters et al., 1998). Virtual screening can 
be used for computational evaluation of novel small molecule chemicals 
from existent libraries for their binding effectiveness against target 
proteins. Chemical libraries are filtered using the docking approach, and 
compounds are ranked according to how well they bind (Lyne, 2002). In 
the present study, virtual screening in complementation with molecular 
docking has been employed in order to identify potent high-affinity 
binding ligands against NDM-1 protein. 

The crystal structures of the NDM-1 protein were retrieved from 
PDB, and were aligned onto each other with reference to the binding 
pocket residues. The structures were aligned on each other to analyze 
the binding pocket residues. The RMSD difference was less than 0.5 
which showed that there were not many deviations in the structures. 
Using the pharmacophore hypothesis, virtual screening of the small 
molecule ligand library obtained from the Vitas-M Laboratory database 
was carried out. A threshold phase screen score of 1.4 was utilized to 
identify possible hits, and 44 different compounds scoring higher than 
this threshold were chosen. These hits were analyzed for their binding to 
NDM-1 protein by molecular docking studies. This allowed us to predict 
the ligands’ affinity, orientation, and interaction when complexed with 
NDM-1. Docking results were evaluated as determined by glide gscores 
and molecular interaction parameters of the ligands (Silakari and Singh, 
2021). In order to select high affinity binding hits and after setting a 
cutoff value of − 7 kcal/mol, 4 hits (STK115225, STK107343, 
STK215880, and STK115575) were identified and further evaluated. 

The docked poses of the ligands were superposed on the co-crystal 
and two compounds (STK115225, and STK107343) were selected for 

the protein–ligand stability analysis. STK115225 has been found to 
interact with the active site residues of NDM-1 such as His122, and 
His250. In addition, STK115225 was also involved in the interaction 
with second-shell residues of NDM-1 like Leu65, Val73, and Trp93. 
Similarly, STK107343 interacted with the catalytic residue Asp124 of 
NDM-1, along with other active site residues (His122, and His250), and 
second-shell residue (Trp93). Protein-ligand interactions usually involve 
receptor flexibility, which enables selectivity in ligand recognition. It 
follows that it is imperative to comprehend the conformational states of 
the ligand–protein complexes with the high affinity and specificity 
binding sites using techniques such as molecular dynamics simulations 
(MDS). MDS allows for the building of an ensemble of structures that 
may be used to compute thermodynamic potentials such as binding free 
energy with great precision (Salmas et al., 2015; Zimmermann et al., 
2013). According to RMSF analyses, NDM-1 protein residues exhibited 
rigidity and did not exhibit substantial variations throughout the 
simulation duration, indicating high stability of the ligand–protein 
complex. Further, PCA revealed a large static number of hydrogen 
bonds. Additionally, the cross-correlation matrix was used to evaluate 
the correlation between the protein residues. Our results suggest that 
when the protein residues were bonded to their corresponding mole-
cules during simulation, they showed a strong correlation with one 
another. Lastly, total binding free energies of the complexed ligands 
were calculated, and confirmed high stability of the complexes. 

5. Conclusions 

NDM-1 deactivates β-lactam antibiotics and leads to resistance 
against several antibiotics generally used in clinical settings. Hence, the 
present computational analyses explore promising small molecules with 
high binding affinities that could be exploited for designing NDM-1 in-
hibitors. Herein, Vitas-M laboratory database was screened for small 
molecules capable of binding to NDM-1 by generating a structure-based 
pharmacophore hypothesis, followed by molecular docking and dy-
namics simulations. The ligands, STK115225 and STK107343 were 
further analyzed for the stability and affinity of protein–ligand in-
teractions. While we identified key compounds capable of targeting 
NDM-1, further experimental (in-vitro/-vivo) validation is required to 
confirm and extend our current findings (Saeidnia et al., 2016). 

Fig. 9. Dynamic cross correlation matrix (DCCM) of STK115225 (A) and STK107343 (B) complexed to NDM-1 protein. Cyan represents positively correlated res-
idues, and magenta depicts the anti-correlated ones. Cyan diagonal lines in DCCM indicate positive correlations between topologically proximate residues. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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However, in vitro and in vivo experiments are required to determine if 
these ligands (STK115225 and STK107343) can inhibit the biological 
function of the NDM1 protein and thus target antibiotic resistance in 
bacteria. 
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