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ABSTRACT

Elevated ocean water temperature influences the physiological properties of fishes. This study is expected
to characterize the oxygen consumption rate (OCR) and gill morphology in different temperature in
hybrid grouper, tiger grouper x giant grouper (TGGGH). TGGGH specimens were distributed into four
temperature groups starting from 22, 26, 30 and 34 °C within a recirculatory system under controlled
conditions for 30 days in triplicates. Intermittent flow respirometry was directed to distinguish the
impact of temperature on the OCR, and scanning electron microscopy was conducted to observe the gill
morphology. Results indicated that the OCR of TGGGH increased significantly from 22.98 + 1.16 mg O,
h~! to 37.08 + 1.56 mg 0, h~! when temperature increased from 22 to 34 °C. Values of respired energy
(RE) increased from 456.35 + 11.41 Jh~! at 22 °C to 737.88 + 3.79 Jh~! at 34 °C. Meanwhile, values of tem-
perature quotients (Q;o) were maximum at 22 °C-26 °C and minimum at 26 °C-30 °C. The favored tem-
perature assessed from Q;o was between 26 °C and 30 °C. Gill lesions were significantly observed at 22 °C
and 34 °C. The outcomes proposed that this fish species may neglect to maintain sufficient O, uptake in
future atmospheric situations. Thus, optimum oxygen consumption is required for maintaining the
TGGGH in aquaculture environment.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

grouper-giant grouper hybrid (TGGGH) was developed to over-
come this issue where TGGGH was cultured under controlled con-

Grouper mariculture is a promising industry in Asian markets
due to its high marketable price. Among the marketable grouper
species are giant grouper or scientifically known as Epinephelus
lanceolatus and tiger grouper or scientifically known as Epinephelus
fuscoguttatus). However, these demanding species are facing slow
growth rate problem (Senoo, 2006). Therefore, a new tiger
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ditions in the research hatchery (Ch’'ng and Senoo, 2008).
Significant research is needed in culturing TGGGH and one of it
is by determining the oxygen consumption rate or short termed as
OCR. OCR is an important metabolic factor and indicator of various
physiological processes to increase the growth of TGGGH
(Mazumder et al., 2019). OCR examines environmental conditions
that are favorable for maximizing the energy of fish growth
(Brougher et al., 2005; Shi et al., 2011). This parameter influenced
by various factors, including fish developmental stage, physiologi-
cal state, and environmental parameters (Mazumder et al., 2019).
Maximal oxygen uptake after the fish has been exposed to desire
temperature for a certain time has been proposed as critical factors
during climate change (Portner and Knust, 2007) for example, ele-
vated temperature. The maximize capacity for oxygen uptake in
elevated temperature can no longer keep pace with the rise in rest-
ing metabolism, triggering a reduction in processes like feeding
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and reproduction, finally the growth development (Nelson, 2016).
Among the approach used to quantify the oxygen uptake (MO,) of
fish were swim tunnel respirometry and static respirometry
(Chabot et al., 2016a). However, according to research by
Svendsen et al. (2016a), the intermittent flow (or static) respirom-
etry propose the most benefit and commonly used.

A rise in temperature of 10 °C may cause a twofold increase in
the physiological rate and functions of fishes (Schmid-Nielsen,
1997). However, temperatures exceeding the optimal upper limit
of a fish species negatively affect its wellbeing by escalating its
metabolic rate and successive oxygen demand (Zheng et al.,
2008). The temperature coefficient (Q;¢) denotes the degree of an
organism’s sensitivity to temperature (Diaz et al.,, 2007). Qo of
ectotherms from aquatic habitats can be calculated by evaluating
oxygen consumption at different temperatures.

Furthermore, the gill in fishes is considered an essential site for
oxygen uptake and key organ where alterations are made to main-
tain oxygen uptake and the extent of high-impact metabolic execu-
tion at high temperatures (Evans et al., 2005). At the point when
metabolic prerequisites increase due to temperature and when
accessible O, becomes constrained, the useful surface zone of gills
can be expanded through gill redesign; in this manner, mainte-
nance of O, uptake is important to help digestion as example in
Crucian carp, Carassius carassius (Sollid and Nilsson, 2006) and
goldfish, Carassius auratus (Mitrovic and Perry, 2009). In any case,
the impacts of temperature towards gill formation in marine fish
(e.g., grouper) have been rarely investigated. Thus, in this study,
the effects of temperature changes in term of OCR and gill mor-
phology of a newly developed TGGGH was to be determined.

2. Materials and methods
2.1. Fish experimental framework

Sixty TGGGH (weight of 145 + 3 g; length of 17 + 2 cm) were
acquired from an incubation center in Banting, Selangor, Malaysia
(2°49'0” N, 105°30'0” E), and shipped to the research facility in
Universiti Kebangsaan Malaysia. TGGGH were scattered arbitrarily
between two stocking tanks, where it can hold to 1200 L in total
volume. Supply of ocean water (30 PSU) and temperature (26 °C)
was kept uphold at each tank with 30 TGGGH, fed with commercial
pellets utilized in the incubation center (De et al., 2016a). When
the fishes began feeding and defecating, they were arbitrarily des-
ignated to 12 exploratory tanks (five fish for each tank) with equiv-
alent sizes (62 cm x 31 cm x 23 cm, 175 L) for 30 days. During the
trial, TGGGH were administered a similar pellet diet (commercial
pellet with 50% protein, 8% lipid, and 7% sugar, CP Group, Malaysia)
twice a day during morning and evening (De et al., 2016b). Three
replicates were utilized for each change in exploratory tempera-
ture (22, 26, 30 and 34 °C). A radiator (ADA warmer 200 W, Malay-
sia) and chiller (TECO TK-500 aquarium chiller, Malaysia) were
used in order to adjust the temperature to the exploratory temper-
ature by a pace of 1 °C everyday. A total of 12 h light and 12 h dark
were provided during experimental framework. Total length, TL
and volume, W,, of TGGGH were estimated before the OCR analysis
started.

2.2. Oxygen consumption rate (OCR)

The OCR was determined through computerized and intermit-
tent flow-through respirometry (Chabot et al., 2016b). A respira-
tory chamber (cylindrical Plexiglas length 25.5 cm, volume, 4.3 L
diameter 15 cm) was drenched in a water bath inside a glass
aquarium (Fig. 1). The closed respirometer functions when the
chamber is closed, water is flushed and replaced to prevent
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Fig. 1. Experimental set up for measurement of oxygen consumption in TGGGH. F:
fish, R: respirometer, P: Pump, AN: airstone, AT: aerator, FOS: fiberoptic oxygen
meter sensor, FS: firesting oxygen analyser, PC: computer.

hypoxia and the build-up of metabolites. The respirometer consists
of a chamber linked to two submersible pumps, which to recircu-
late water past the oxygen sensor during metabolic rate measure-
ments, while the other one flushed water out of the chamber after
measurement has been done (Chabot et al., 2016b). The oxygen
sensor and pumps were connected to a central control unit and
computer for oxygen logging while the measurement was done.
A radiometer oxygen cathode (Perimed E5250) was connected to
evaluate the oxygen partial pressure (pO,) which then employed
respirometry software from Loligo Systems (www.loligosystems.-
com). Respirometry tests included a progression of 20 min cycles,
and each cycle started when the respirometer was closed
(Mazumder et al., 2019).

Measurement of oxygen consumption was evaluated at the end
of 30 days to ensure sufficient acclimatization of fishes in all tar-
geted temperatures (22, 26, 30, 34 °C). Fish has not been fed in
24 h prior to oxygen consumption, thus confirming that feeding
did not interrupt the measurement (Donelson et al., 2011). The
OCR during each measurement phase is derived from MO, = 20
[Cieo — e)][(Ve — Va)/(t1 — to)]M, where t; and t; are the instances
at which the measurement period starts and ends (min), respec-
tively; C (to — t;) is the oxygen consumed in water (mg O, h™!)
at time t; V; is the volume of the respirometer; V, is the volume
of fish and M is the fish mass (kg) (Svendsen et al., 2016b). The
results are analyzed in data collection software, showing one
MO, value for each TGGGH (in every 5 min). Oxygen solubility
tables were utilized to change over pO, to oxygen concentrations
in milligrams of O, per 20 min.

Several oxygen consumptions inside the respirometer might be
caused by the microbial respiration such as background respira-
tion. This can be done by evaluating the OCR of fish absence in
the respirometer. Background respiration is quantified prior to
the first session of OCR measurements among the fish. One full
respirometry cycle with no fish presence was adjusted to 5 min
flush, 1 min wait, and 5 min measurement was run to quantify
the background respiration.

Respired energy (RE) was determined by duplicating the OCR
(MO,) with the conversion factor 19.9 ] mg~! 0, (Elliott and
Davison, 1975). Moreover, Qo was estimated for TGGGH by Q¢ =
(MO,5/MO,%0)1% 9, (Schmidt-Nielsen, 1997), where MO,'; and
MO,'s were OCRs at t; and to; to is the lower temperature while
t; is the higher temperature from two temperatures for OCR.

2.3. Gill morphology

After 30 days of exposure to the experimental temperatures and
measuring OCR, TGGGH were euthanized by means of a cranial
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blackout concussion, and their second gills were expelled. The
excised gills were rinsed with physiological saline (0.9% NaCl solu-
tion) for 10 mins. It was replaced with 100% ethanol (EtOH) for
dehydration (Murdy and Takita, 1999). The specimens were dried
using CO,, mounted on metal stubs with colloidal silver paste,
and sputter coated with a thin conductive gold film. Each specimen
was micrographed at different magnifications via a scanning elec-
tron microscope (SEM, JSM-IT800, USA) at the Center for Research
and Instrumentation, UKM, Malaysia, to obtain a clear image of the
morphological characteristics of primary and secondary lamellae.

2.4. Statistical analysis

Quadrative regressions were used for the variances in OCR and
RE, oxygen consumed and oxygen demand. Data were initially run
for normality and homogeneity of variance between the different
temperature groups using a Kolmogorov-Smirnov (K-S) test on
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Fig. 2. Relationships between temperature and dissolved oxygen concentration in
TGGGH at different time interval in closed respirometry. The open triangle
represents 22 °C, open square represents 26 °C, open star represents 30 °C and
open diamond represents 34 °C. Data shown are mean + SE (n = 15). Means among
treatments with different letters at a particular time indicate significance (P < 0.05).
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residuals and Bartlett’s test for homogeneity of variance (Sokal and
Rohlf, 1995). Statistical comparisons among all groups were
achieved by an analysis of variance (ANOVA). A pairwise post-
hoc Tukey test was run if the ANOVA described significant differ-
ences in order to identify specifically the groups that were different
(Zar, 1984). Data expressed in the text, figures as well as table are
mean * standard error, S.E. while level of statistical significance
was set at P < 0.05. Polynomial and logistic regressions were per-
formed where necessary to describe the relationships among the
variables. R-square (r?) values were used to assess the fit of the
regression models. For polynomial regression, linearity of the
regression coefficients implies the assumptions of linear equation
would hold. Although 2 is rarely used for logistic regression never-
theless the values were also reported. All statistical analyses were
performed by MINITAB Version 20 (StatSoft Inc., Tulsa, OK, USA)
and Microcal Origin Version 12 (OriginLab, Northampton) com-
puter software (Das et al., 2014; Mazumder et al., 2019).

3. Results

3.1. Oxygen consumption rate (OCR)

The oxygen concentrations indicated significant differences at
the given experimental temperatures for every 5 min interval

id\
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(Fig. 2). This result suggested that the OCR was significantly affected
in different experimental temperatures (P < 0.05; Fig. 3), with the
values increased as temperature increased and differed significantly
at various temperatures. In particular, the OCR increased from 22.93
to 37.08 when temperature increased from 22 °C to 34 °C (Fig. 3).

As presented in the polynomial cubic model (MO, = — 483.271 +
54.298 T—1.927 T? +0.022 T3), OCR showed a highly significant rela-
tionship with temperature (r* = 0.99). The corresponding RE rate
increased significantly from 22 to 34 °C (Fig. 3). RE data that was
measured adapted well with the polynomial cubic model (RE = 956
6.487 + 1074.814 T — 38.150 T? + 0.454 T>; r? = 0.99). The relation-
ships between OCR and RE differed from each other (Fig. 3).

Q10, was the highest among 22 and 26 °C (1.70) while the lowest
was in between 26 and 30 °C (1.24). A moderate Qg vyque Was
observed between 30 °C and 34 °C (1.65). These data indicated that
the final desired temperature of TGGGH ranged between 26 °C and
30 °C (Fig. 3). The relationship between OC and OD displayed oppo-
site trends (Fig. 4) and was precisely described with a logistic
model (r* = 0.988-0.996).

3.2. Gill morphology

The changes of gill morphology in TGGGH were observed
through SEM (Fig. 5). Normal secondary lamella in the gill sections

Secondary
lamella

Primary
lamella

Mag = 500 X

Fig. 5. SEM of TGGGH'’s gill (magnification 1000 x ) of diferent temperature group: (A) 22 °C, (B) 26 °C, (C) 30 °C and (D) 34 °C. Arrow indicates primary lamella and secondary
lamella. Gill lesion on secondary lamella are marked in red box for image A and D although no lesion are to be seen in image B and C.

4
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Fig. 6. Secondary lamella thickness after being expose to diferent experimental
temperature groups. Data are presented as mean + SE (n = 15). Bars bearing
different letters are significantly different (P < 0.05) among treatments.

could be found at 26 °C and 30 °C. However, significant lesions
were observed in secondary lamella in the gill sections of TGGH
in 22 °C and 34 °C. Thickness of the secondary lamella was mea-
sured to support the SEM images (Fig. 6).

4. Discussion

Oxygen (0;) uptake rate of a fish is dependent on various abi-
otic and biotic factors. For example, it is affected by temperature,
which is an abiotic factor; that is, a normal increase in O, uptake
is associated with an increase in water temperature (Das et al.,
2004; Mazumder et al., 2018). Current study showed that the
OCR consistently rise as temperature elevated, supported the find-
ing of previous results observed in other teleost (Das et al., 2018;
Noor et al., 2019). Moreover, relationship between temperature
with OCR was precisely fitted with the polynomial cubic model
(r* = 0.996).

Each fish species has a unique threshold temperature, and fishes
cannot survive well beyond this range. Although TGGGH are cul-
tured in marine cages and captive water, their threshold limits
are similar to those of their parents (22 °C-34 °C) (Cheng et al,,
2013). Our results showed that TGGGH specimens experienced
stress in the laboratory when they were exposed to temperatures
exceeding 26 °C and 30 °C. The OCR of the TGGGH specimens
increased as water temperature increased. However, more energy
was proportionately consumed for their metabolism when they
were under stress at 22 °C and 34 °C. Thus, TGGGH may acclimate
to water temperature to some extent as some resilient species do
(Neer et al., 2006; Mazumder et al., 2019).

Q0 is the proportion of aquatic organisms’ metabolic ability to
adapt to temperature changes. The most noteworthy Q;o was
found between 22 °C and 26 °C, and the least Q;¢, was observed
between 26 °C and 30 °C in TGGGH. Q¢ at 30 °C and 34 °C was
1.65, proposing that TGGGH experienced slight changes in their
digestion from 30 °C to 34 °C. The lower Qo at 30 and 34 °C com-
pared to 22 and 26 °C may relate to expanded vitality use for
growth development. This supported our previous study which
uncovered that the best growth performance was observed in
26 °C (De et al., 2016b). A perfect temperature can be evaluated
based on the Q;9 of OCR (Das et al., 2004). TGGGH displayed a
low Qo likely because fishes have chemical frameworks with
explicit ideal temperatures. In this study, in view of the most
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minimal Qjo, the most favored temperature of TGGGH was
observed between 26 °C and 30 °C.

The SEM pictures of the gills of TGGGH presented observable
morphological contrasts among the four distinct temperatures.
Comparable outcomes were accounted for in other aquaculture
species, such as C. auratus and C. carassius (Sollid et al., 2005;
Bowden et al., 2014). The progressions observed in SEM pictures
were reliable with the morphological gill redesign observed in
temperate species to help in processing trade of gas when temper-
ature changes (Evans et al. 2005). The varieties in gill measure-
ments could be clarified by physiological changes, such as
changes in perfusion designs. To improve O, uptake, fishes nor-
mally carry out cutaneous gas trade. This result indicated that
TGGGH might not succeed for keeping enough oxygen in when
sea surface temperatures elevating as impact of global warming.

5. Conclusion

Our study demonstrated that the temperature range of 26 and
30 °C showed the best results in OCR. Additionally, no lesions were
observed on gill morphology at this temperature range. This work
provides a basis for conducting future research on a suitable tem-
perature for the culture of this newly developed TGGGH species.
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