
This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, transform, 
and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

© 2025 Journal of King Saud University – Science - Published by Scientific Scholar

FulL Length Article

Approximation by Stancu variant of 𝜆𝜆𝜆𝜆-Bernstein shifted knots operators
associated by Bézier basis function
Ahmed Alamer, Md. Nasiruzzaman ∗

Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 7149, Saudi Arabia

A R T I C L E I N F O

MSC:
41A25
41A36
33C45

Keywords:
Bernstein basis polynomial
Bézier basis function
𝜆𝜆𝜆𝜆-Bernstein-polynomial
Shifted knots
Stancu operators
Ditzian–Totik uniform modulus of smoothness
Lipschitz maximal functions
Peetre’s K -functional

A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

�̃�𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 
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The overproduction of reactive oxygen species (ROS) leads to oxidative stress, which is associated with many 
human diseases. Antioxidants counteract the effects of ROS, but traditional assays are costly and time-consuming. 
Quantitative structure-activity relationship (QSAR) models offer a predictive alternative. We developed a QSAR 
model using data from 3133 unclassified antioxidant compounds using extreme gradient boosting (XGBoost), 
random forest (RF), and support vector machine (SVM) algorithms. Molecular descriptors were calculated using 
RDKit, and 82 were selected based on importance. The XGBoost model showed superior predictive performance, 
with good agreement with the experimental data (R² = 0.81). Descriptor analysis revealed a significant influence 
of phenolic groups on antioxidant activity. This research provides valuable insights for those wishing to predict 
antioxidant activity from unclassified compound structure data and has implications for industries such as drug 
discovery and efficacy evaluation. Through a large-scale analysis of 3133 unclassified antioxidant compounds, 
we present an advanced QSAR model covering a wide pIC50 range (-0.98-10.30). Unlike previous studies of 
restrictively classified compounds, we have achieved universality, which is expected to contribute to effective 
antioxidant activity prediction and candidate discovery.

1. Introduction

Excessive production of reactive oxygen species (ROS) due to 
oxidative stress plays a significant role in the onset of human diseases 
(Halliwell, 1991). ROS free radicals cause damage to proteins, lipids, 
and DNA (Mathew et al., 2011) and negatively impact the cell division 
cycle (Verbon et al., 2012), potentially leading to malignant tumors and 
various diseases (Nishikawa, 2008).

The human body has several mechanisms to prevent and recover 
from damage caused by ROS. Antioxidant compounds play crucial roles 
in these mechanisms (Thorpe et al., 2004). Antioxidants function by 
disrupting free radical chain reactions and chelating metal ions (Rice-
Evans, Catherine, 1995). These compounds, found in various fruits, 
vegetables, flowers, and roots, have been used in traditional medicine 
because of their positive effects on human health (Brewer, 2011).

A variety of methods have been devised to assess the antioxidant 
capacity of compounds, among which in vitro chemical analyses are 
the most employed. Among these, the 2,2-diphenyl-1-picrylhydrazyl 
(DPPH) radical-scavenging capacity analysis has been widely used 
(Kedare and Singh, 2011). This analysis measures the quantity of 
DPPH converted from a purple to a relatively stable yellow compound 
using a spectrophotometer. However, these methods are affected by 
environmental factors and have limitations that make them expensive 
and time-consuming, with results varying depending on the skill of the 
experimenter (Schaich et al., 2015).

When measuring the antioxidant activity, the chemical reactivity of 
a compound depends on its structure (Rice-Evans, Catherine A. et al., 
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1996). From the structure of an antioxidant, many features (descriptors) 
can be obtained through programmatic calculations. Theoretically 
predicted antioxidant activities using descriptors calculated from 
compound structures have been shown to be in good agreement with 
experimentally measured antioxidant activities (van Acker et al., 1993). 
Therefore, researchers have proposed utilizing a quantitative structure-
activity relationship (QSAR) approach to predict antioxidant activity 
based on the structural properties of compounds.

Recently, QSAR has been extensively used to develop models 
for predicting the activity of antioxidant compounds by employing 
descriptors obtained from the calculated chemical structures alongside 
various physicochemical parameters, with appropriate programs 
(Karelson et al., 1996).

Rasulev et al. (2005) used a machine learning (ML) approach with 
molecular descriptors obtained from density functional theory (DFT) 
to accurately predict the antioxidant activity of 27 flavonoids. Using 
multiple linear regression (MLR) combined with a genetic algorithm, 
we achieved an accuracy level of R2 of 0.874 and Q2 of 0.808. Djeradi et 
al. (2014) also predicted the antioxidant activity of 24 flavonoids with 
an MLR model using DFT (R2: 0.82). Duchowicz et al. (2019) predicted 
the antioxidant activity of 23 anthocyanins with an MLR model 
using prospective information on the compositional and topological 
molecular characteristics (R2: 0.85 and Q2: 0.51). Shi predicted the 
antioxidant activity of 75 phenolic compounds with four descriptors: 
n(OH), Cosmo Area (CA), core-core repulsion (CCR), and final heat 
of formation (FHF). Compared to the MLR model, the support vector 
machine (SVM) showed higher predictive power (R2: 0.92, Q2: 0.91). 
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Spiegel et al. (2020) predicted the antioxidant activity of 22 phenolic 
acids with an MLR model using DFT (R2: 0.99, Q2: 0.97). Important 
features (descriptors) have been identified to improve the prediction 
accuracy of the QSAR model. The use of the identified descriptors can 
reduce unnecessary computations in the model, and higher model 
accuracy can be achieved (Bajorath, 2001). Studies have successfully 
predicted antioxidant activity from flavonoid and phenolic compounds, 
but previous studies mainly focused on small sets of compounds (20–75) 
within specific categories, such as flavonoids or phenolic acids, using 
MLR or SVM. These models are limited to predicting the antioxidant 
activity of specific compounds. Sufficient data is needed to predict the 
antioxidant activity of a wide range of compounds.

In addition, while MLR models are used in most reaches, boosting 
and bagging models, such as the extreme gradient boosting (XGBoost) 
and random forest (RF), have gained traction in recent research (Hadi 
et al., 2023; Korial et al., 2024). A few studies have shown that SVM 
has a higher prediction rate than MLR (Shi, 2021). Different algorithms, 
such as XGB, RF, and SVM, should be tried in the development of QSAR 
models. To the best of our knowledge, there is a lack of reporting on the 
use of XGBoost in QSAR models.

The primary objective of this study is to use compounds as a single 
dataset for a QSAR model without classifying them. By employing an 
extensive and unclassified collection of compounds as training data 
for the model, we can enhance our understanding of the molecular 
structural features that impact antioxidant activity, thereby aiding in the 
identification and assessment of potential antioxidants. To enhance the 
accuracy of the QSAR models, we implemented the XGBoost algorithm, 
which has been recently recognized for its effective performance. The 
developed QSAR model can contribute to experiments by predicting the 
antioxidant capacity of compounds by computer calculations without 
being influenced by factors such as environment or the experience of 
an examiner in measuring the antioxidant capacity, encountered in 
traditional experiments. The main contributions of this study can be 
summarized in the following points.

1. Develop a QSAR model for predicting DPPH antioxidant activity 
based on an extensive database of unclassified antioxidants

2. Utilize a RF algorithm to select the most useful descriptors.
3. Evaluate the performance of the proposed QSAR model using the 

metrics proposed by Tropsha (2010).

2. Material and methods

2.1 Data collection

The dataset included 3,133 records of in vitro antioxidant 
measurements, compound names, experimental activities, and 
simplified molecular-input line-entry system (SMILES) data, sourced 
from an antioxidant database (https://aodb.idruglab.cn/) (Deng et 
al., 2023, Weininger, 1988). The radical scavenging activity against 
DPPH was expressed as IC50 (nM). IC50 values were converted to 
pIC50 values by applying the -log10 method. The pIC50 values ranged 
from -0.98 to 10.30. SMILES comparisons were used to identify 
duplicate structures, and rows with duplicate smiles were removed 
to keep a single representation to avoid data bias. Oversampling and 
undersampling were not performed due to the small number of outliers 
(Supplementary Fig. S1).

The dataset's compounds were divided into training and test sets, 
where the training set included 2,506 compounds and the test set 
contained 627 compounds.

2.2 Calculation of molecular descriptors

Molecular descriptors are simple mathematical expressions used to 
encode the chemical and structural features of a molecule. Molecular 
descriptors were calculated using the Python open-source RDKit library 
(Landrum, 2013). The descriptors were calculated using the RDKit 
module after the conversion of SMILES to Mol.

During model development, highly collinear molecular descriptors 
were carefully excluded. Testing and removal of descriptors that encode 
similar molecular information and those with little variation (descriptors 

with a Pearson correlation coefficient absolute value greater than 0.9) 
are important because collinear descriptors encode similar information. 
Subsequently, high-impact descriptors were selected using an RF 
model. This method involves plotting the correlation-coefficient values 
obtained for the different cutoffs of the descriptor significance included 
in each model to analyze the statistical quality improvement of the 
model. Hence, 82 descriptors that could be used to develop linear and 
non-linear models were screened.

2.3 QSAR model development

QSAR was used to predict the antioxidant activity of the compounds. 
The QSAR model was trained using three algorithms: XGBoost, RF, and 
SVM.

2.3.1 Extreme gradient boosting model algorithm

XGBoost is a supervised learning algorithm based on gradient 
boosting, designed to mitigate overfitting while facilitating parallel 
processing. Gradient boosting is an algorithm that sequentially adds 
new learning models with weights to minimize the learning errors 
of several weak decision tree (DT) (Zhang and Haghani, 2015). A 
new learning model was created at every step instead of modifying 
the existing learning models. The error in the model was reduced 
using gradient descent. XGBoost applies penalties to loss functions to 
prevent overfitting of the training data. Furthermore, the drawback of 
consuming significant learning resources, owing to the sequential data 
learning characteristics of the gradient model, can be resolved through 
parallel processing (Chen et al., 2015).

Many ML algorithms face the black box problem, which refers to 
the challenges in observing or understanding how an ML algorithm 
operates internally. Our research applied SHapley Additive exPlanation 
(SHAP), which introduce an algorithm based on SHAP values from 
game theory, to solve the black-box problem in the model (Merrick and 
Taly, 2020). The SHAP values, which indicate the impact of the input 
data on the prediction results in terms of direction and magnitude, were 
calculated. This explains the contributions of the input variables to the 
output values of the model.

2.3.2 Random forest model algorithm

RF is a supervised learning algorithm applied to a wide range of 
classification and regression tasks (Biau and Scornet, 2016). RF models 
integrate several DTs to form an ensemble regressor and predict 
outcomes by averaging the output values of each DT. If the number of 
DTs is sufficient, RF reduces the overall variance and prediction error 
by averaging the uncorrelated trees, thus avoiding model overfitting. 
An RF with bagging characteristics can maintain its accuracy even if 
some data are missing.

2.3.3 Support vector machine model algorithm

SVM is one of the algorithms used for various classification and 
regression problems (Suthaharan and Suthaharan, 2016). A major 
advantage of the SVM is the adoption of the structural risk minimization 
principle, which is superior to the empirical risk minimization principle 
used in conventional neural network structures. Therefore, SVM is 
less vulnerable to overfitting. Furthermore, it demonstrates robustness 
against outliers and performs well in predicting data with values that 
differ from the general pattern.

2.4 K-fold-cross validation

Cross-validation is a model validation technique used to test what 
kind of results an analysis created by a machine learning algorithm 
would produce on an independent dataset. For this study, we chose 
a k value of 5 for k-fold cross-validation, which means we divided 
the dataset into five subsets with similar proportions of each class 
represented in each subset. Training and testing were performed in five 
iterations. In each iteration, one subset was used for testing, and the 
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rest (four subsets) were used for training. Each subset was also used for 
testing once at the same time (Anguita et al., 2012).

2.5 Model optimization

The hyperparameters of the learning algorithm were optimized 
using a grid search method, which is a decision-theoretic approach 
that searches for the optimal configuration by sequentially applying 
fixed hyperparameter values (Yang and Shami, 2020). Select the 
hyperparameters to tune and determine the search range. Get all 
possible combinations and optimize them to have the smallest root 
mean square error (RMSE) value.

2.6 Model evaluation and validation

Model validation is crucial in the development of QSAR models. 
Various methods and statistical parameters were used for model 
evaluation. When there are no restrictions on the applicability domain, 
each model can theoretically forecast the activity of any compound, 
including those with structures entirely distinct from those in the 
training set. Consequently, lacking an applicability domain, a critical 
element of QSAR models, may cause undue extrapolation across 
chemical space. This can significantly increase the risk of making 
inaccurate predictions.

Therefore, it is advised to adhere to a specific set of statistical 
criteria that the prediction model must meet. For continuous QSAR, 
the recommended guidelines for creating activity/property predictors 
include the following. The slope (K, K') between the predicted and 
actual observed values should be calculated to evaluate the linear 
relationship between the two variables. Cross-validation determination 
coefficient (Q²) should be used to assess the generalization ability of 
the model, calculated through cross-validation of the training set. The 
correlation-coefficient (R) measures the strength of the correlation 
between predicted and observed values. The determination coefficient 
(R²) indicates how well the model predictions explain the actual 
observed values. R0

2 and R'02 are calculated through linear regression 
using the regression of observed values for the predicted values and 
the regression of predicted values for the observed values, respectively. 
These were used to assess the extent to which the model predictions 
matched the actual observed values. The validation criteria outlined 
by Tropsha for a model to be deemed acceptable include the following 
specifications:

Q²> 0.5 (1)
R²> 0.6 (2)
(R² - R0

2) / R² < 0.1 | (R² - R'02) / R² < 0.1 (3)
0.85 < K < 1.15 | 0.85 < K' < 1.15 (4)
| R0

2 - R'02| < 0.3 (5)

Models that meet these conditions are considered to have reliable 
predictive power (Tropsha, 2010).

3. Results and Discussion

3.1 Descriptor screening

As mentioned previously, the quantitative relationship between 
the activity and structural characteristics of antioxidant compounds 
was investigated using linear and non-linear models. The main step in 
descriptor screening is the selection of the most influential descriptors.  
During model development, care was taken to avoid including highly 
linear molecular descriptors. Descriptors with high Pearson correlation 
coefficients may encode similar molecular information, and the model 
may learn redundant information, leading to overfitting. Therefore, 
it was important to test the descriptors and remove those with low 
variation and those that encode hereditary information (Fatemi and 
Gholami Rostami, 2013).

The pIC50 values in our study show a large variation from -0.98 to 
10.30, which suggests that while covering a wide spectrum from low to 
high activity increases the versatility of the model, it may also increase 

the prediction error somewhat in the extreme value range. Therefore, 
further experimental validation is suggested as future work to improve 
the accuracy in this range.

We performed a Pearson correlation analysis of the descriptors 
to remove those with absolute correlation values greater than 0.9 
(Fig. 1). Then, 82 descriptors were selected by using an RF algorithm to 
evaluate attribute importance. Subsequently, descriptors with attribute 
importance greater than 0.0025 were screened (Fig. 2). These selected 
descriptors were used for training the QSAR models. In our research, 
we employed three ML algorithms, XGBoost, RF, and SVM, to train the 
QSAR models.

3.2 Hyperparameter optimization and QSAR model SHAP analysis

In the QSAR modelling process, we used a grid search 
method to select the hyperparameters of the model and found 
the hyperparameters with the lowest RMSE, i.e. C, the optimal 
hyperparameters. The lower the RMSE, the better the performance of 
the model. We applied the 5-fold cross-validation method to optimize 
the hyperparameters using only the training data set and calculated 
the cross-validation correlation coefficient (Q2). When comparing 
the RMSE values of the three ML algorithms, the XGBoost model 
had the lowest value (Hodson, 2022). The best-performing XGBoost 
model and its hyperparameter exploration coverage have been shown 
in Table 1. The optimal hyperparameter values were n_estimators = 
400, learning_rate = 0.05, max_depth = 7, and colsample_tree = 0.3. 
Fig. 3 represents the plot of experimental pIC50 values against the 
calculated pIC50 values using the XGBoost, SVM, and RF models. A 
good match between the calculated and experimental values indicates 
the fitness of the developed models. Fig.  4 displays the residuals of 
the predicted pIC50 values compared to the experimental data. The 
spread of residuals around the zero line suggests that the XGBoost 
model developed does not contain systematic errors. According to 
the results of the SHAP analysis for the XGBoost model, the impact 
of the descriptors have been depicted in Fig. 5. Table 2 outlines the 
names and definitions of these descriptors, all of which represent the 
topological and electronic dimensions of the chemical structures of 
compounds that influence antioxidant activity. Among these, the most 
critical descriptor is fragment-Ar-OH, highlighting its effectiveness 
over others by indicating the presence of phenolic groups within a 
compound's structure. Similarly, the fourth most important descriptor, 
NHOHCount, represents the number of NH and hydroxyl groups in 
a compound. As previously discussed, the existence and location of 
hydroxyl groups on the benzene ring markedly affect the compound's 
ability to scavenge radicals (Duchowicz et al., 2019; Shi, 2021). The 
values of this descriptor positively impact the antioxidant activity. This 
observation can be explained by the hydrogen atom transfer reaction 
pathway (Mayer, 2011). The second most important descriptor, 
MinPartialCharge, is also related to the density of electrons within 
the compound. A lower minimum partial charge within the compound 
positively impacts antioxidant activity. This observation can be 
explained according to the literature (Klein et al., 2005).

3.3 QSAR model validation and evaluation

We adopted the methodology outlined by Tropsha to evaluate the 
applicability of the QSAR model. A high value of Q² alone is not a 
sufficient criterion for a QSAR model to have high predictive power, so 
researchers have described reliable predictive performance not only in 
terms of the value of Q² but also in terms of fulfilling the conditions of 
eq (2) to eq (5) (Golbraikh and Tropsha, 2002; Tropsha et al., 2003). 
Table 3 outlines the statistical metrics for the external validation set 
used across the three models. The results from the XGBoost model 
align closely with the previously defined limits, further underscoring 
the XGBoost model's strong predictive capability. A comparison of 
these statistics with those obtained from the RF and SVM models 
demonstrates the superiority of the DT-based models. Among the DT-
based models, those applying the boosting algorithm proved superior in 
predicting the pIC50 values. We also compare the QSAR model in our 
study with the reported QSAR models. Table 4 shows that the reported 



Kim et al. Journal of King Saud University - Science Article in Press

4

Fig. 1. Heatmap of Pearson correlation coefficients for the selected 82 descriptors.

Fig. 2. The relationship between R2 values and the count of descriptors, along with 
their significance in the random forest model.

Table 1.  
Explored piper hyperparameter ranges and selected hyperparameter value.

Hyperparameter Range Selected value

N_estimator 50, 100, 200, 300, 400 400

Learnin_rate 0.01, 0.05, 0.1, 0.5 0.05

Max_depth 3, 5, 7 ,9 7

Colsample_tree 0.3, 0.5, 0.7, 1.0 0.3

QSAR models used classified compounds as training data, while our 
QSAR model used unclassified compounds as training data. Although 
our model did not outperform Shi's SVM or Duchowicz et al. (2019) 
MLR model in terms of R2 (0.85-0.93) for specific flavonoid or phenolic 
acid datasets (23-75 compounds) in terms of accuracy, However, our 
model includes 3,133 unclassified compounds, which ensures broader 
structural coverage. Although the R² is 0.81, greater chemical diversity 
increases real-world applicability, demonstrating the robustness of 
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Fig. 3. The plot of XGBoost (a), Random Forest (b), Support vector machine 
(c) predicted versus experimental of values pIC50. Fig. 4. The plot of XGBoost (a), Random forest (b), and Support vector machine 

(c) residuals versus experimental of values pIC50.

(a)

(b)

(c)

(a)

(b)

(c)
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Fig. 5. (a) The impact of the descriptor on the output of the model (SHAP value) and 
(b) average of the absolute values of the impacts.

(a)

(b)

Table 2.  
Descriptor names and descriptions of the top 5 influential RDkit molecular 
descriptors in the calculated RDkit molecular descriptors.

No. Descriptor name Description Reference

1 Fr_Ar_OH Count of aromatic hydroxyl groups (Landrum, 
2013)

2 MinPartialChange Minimal non-integer charge value when 
measured in elementary charge units

(Landrum, 
2013)

3 PEOE_VSA 11 EState VSA descriptors (Labute, 2000)

4 NHOHCount Count of amine (NH) and hydroxyl (OH) (Landrum, 
2013)

5 VSA_Estate7 MOE-type descriptors using EState 
indices and surface area contributions 
(developed at RD, not described in the 
CCG paper)

(Hall et al., 
1991)

RD: Research and development, CCG: Chemical computing group, MOE: Molecular 
operating environment

Table 3.  
The statistical metrics for the external validation set applied to the XGBoost, 
Random forest, and Support vector machine models.

Equation XGBoost RF SVM

Q2 0.816 0.754 0.249

R2 0.817 0.754 0.525

(R²- R0
2) / R² -0.006 -0.016 -0.107

K 1.077 1.137 0.770

K' 0.762 0.673 0.359

|R0
2 – R'02| 0.000 0.000 0.358

Table 4.  
Compare our QSAR model to the reported QSAR models.

Data class Data count Model R2 Ref.

Flavonoids 24 MLR 0.82 (Djeradi et al., 2014)

Anthocyanins 23 MLR 0.85 (Duchowicz et al., 2019)

Phenolic 75 SVM 0.93 (Shi, 2021)

Unclassified 3133 XGBoost 0.81 Our model

4. Conclusion

From the RDKit descriptors, 82 were selected for predicting DPPH 
antioxidant activity among a diverse range of substances. The descriptors 
included in the QSAR model shed light on the structural attributes of 
compounds that contribute to the interactions affecting the antioxidant 
activity of chemicals. The experimental pIC50 value closely aligned 
with the pIC50 predictions made by the GXBoost model, affirming 
the accuracy of the developed QSAR model. DT models demonstrated 
superior predictive capabilities throughout this work. Compared with 
other reported models, our model showed a high predictive ability (R2 
= 0.81) for unclassified compound data. The findings met the validation 
standards suggested by Tropsha et al. Our model was trained using 
3133 compound data. This is about 42 times more than the amount of 
data in the existing literature. Although the prediction performance is 
comparable to or lower than other literature, the model generalization 
performance is high because we used unclassified compounds as data 
rather than selected compounds. The QSAR model emphasizes the 
crucial role and significant impact of the hydroxyl groups connected 
to the phenyl ring in enhancing radical scavenging activity. These 
groups are highlighted for their ability to act as hydrogen atom carriers 
through the compound's functional groups. This implies a considerable 
contribution not only from the hydroxyl groups within the phenyl 
structure but also from the hydroxyl groups within the compound. 
Additionally, details about the scavenging activity of antioxidants 
offer a more profound understanding of the action mechanisms of 
compounds that have not been tested. By utilizing the developed QSAR 

the model across different compound classes. As a result, the XGBoost 
model provides a useful alternative for those looking for a ML solution 
to predict the antioxidant activity of unclassified compounds.
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model for comparison, we can contribute to experiments by predicting 
antioxidant capacity using computer calculations without any influence 
due to environment factors and skill level of the examiner. Although 
the actual DPPH radical scavenging capacity test was not performed in 
this study, we plan to select promising candidate compounds for direct 
experimental verification in a follow-up study to increase the reliability 
of the predicted results. We can further improve the performance of our 
model by including measured data for different antioxidant activities 
(ABTS, FRAP) to make it a comprehensive antioxidant activity model. 
We expect that this will not only improve the accuracy of the QSAR 
model but also its practical industrial and medical applicability.
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