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In this study we have proposed a multivariate regression-cum-exponential type estimator for estimating
a vector of population variance. In the present study, unknown population variance vector estimation has
been discussed using multi-auxiliary variables in two-phase sampling and different cases have also been
derived. A comparison between existing and the proposed multivariate, bivariate and univariate estima-
tors has been prepared with the help of a real data for estimating population variance. A simulation study
for multivariate estimator using multi-auxiliary variables has also been carried out to demonstrate the
performance of the estimators.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Auxiliary information plays a vital role in illustrating conclusion
about the parameters of population for the characteristics under
study. It is used to enhance estimation of population parameters
of the main variable under study. At the stage of manipulating as
well as estimation, auxiliary information is used for improved esti-
mation. Sometimes auxiliary information is known in prior of a
survey and sometimes it is not known in advanced. There are many
examples in survey sampling where auxiliary information is
known in advance; number of banks in a city, number of employ-
ees, educational status, number of educated male and females in a
city etc.

Graunt (1662) was the first who estimated the population of
England using auxiliary information. Olkin (1958) suggested ratio
estimator based on multi-auxiliary variables for multivariate case.
John (1969) provided multivariate ratio and product type estima-
tors for estimating the population means. Further comprehensive
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contribution of multivariate ratio and regression estimators using
multi-auxiliary variables were taken up by Ahmad and Hanif
(2010) for estimating population mean. Isaki (1983) proposed ratio
and regression type estimators for estimating the population vari-
ance. Cebrian and Garcia (1997) worked on variance estimation by
using auxiliary variables. Following Isaki (1983), Singh et al. (2009)
proposed exponential estimator for estimating population variance
and Abu-Dayyeh and Ahmed (2005) provided some multi-variate
ratio and regression-type estimators in two-phase sampling and
studied some properties of the proposed estimator through simu-
lation study using real data. Kadilar and Cingi (2006) suggested
the regression type estimator for estimating variance using known
population variance of the auxiliary variable. Many other authors
including Upadhyaya and Singh (2006), Ahmed et al. (2000),
Yadav and Kadilar (2013), Singh and Solanki (2013), Ahmad et al.
(2016) and Singh and Pal (2016) etc. have worked on variance esti-
mation for using population variance of the auxiliary information.
Asghar et al. (2014) provided some exponential-type estimator for
variance using population means of multi-auxiliary auxiliary
variables.

In fact, there is no significant work on variance estimation in the
literature for estimating finite population variance under two-
phase sampling using multivariate multi-auxiliary variables.
Therefore to fulfill this gap we proposed a multivariate regression
type exponential estimator for estimating the finite population
variance using multi-auxiliary variables under two-phase sam-
pling for full information case.
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Let S;m . be the population variance and its usual unbiased
estimator is defined as,
to=[tor tez ... toj ... tom),
to; = 2 i=1,2,...m
0j Vi) J gLy ey

The variance of unbiased estimator is defined as,
7,8 mxl S(1xm) Z
Y(mxm)
2
Yj

2
where Sgxm) = [sy1

Var(to) =

s; Jandy, =1/n,. (1)

We develop Isaki’s (1983) uni-variate regression estimator into
a multivariate regression estimator under two- phase i.e.

treg = [tregl tregz .. tregj tregm ],
where,
n
2
tregi = SJZ’J‘(Z) + de(sxk B 5’2‘(1)k)’ J= 172’ M (2)
k=1

The variance covariance matrix of t is,

Y oSSy oYY Y

treg(msxm Y(mxm) YX(mxn)X(nxn)XY (nxm)

Saxm =S and 7y, =1/n;. (3)

where

We modify Shabbir and Gupta’s (2015) estimator into a multi-
variate regression-type estimator for estimating a vector of popu-
lation variance using populations mean of auxiliary information
under two- phase as,

trg = [trgl trgZ ce. trg}' trgm ]’
where,
n _
trg]' = 531(2) + Zﬁk(vk - D(])k)a ]= 1721 S, (4)
k=1

The variance covariance matrix of t, is,

> oesshy on Y S Y| (5)

g (mxm) Y(mxm) YV(nxn) Ynxn) VY (nxm)

We modify Asghar et al. (2014) into a multivariate exponential
ratio type estimator for estimating for estimating a vector of pop-
ulation variances using multi-auxiliary variables as,

to=[ta to .- tg ... tan],

where,

1 Vk_i/(l)k .
ty =S2 ex § — R | =1,2,....m 6
g e pk:] Vie+ (@ =)Dy | ! ’ ©)

The variance covariance matrix of t, is,

S o5y cn Y S Y | )

ta (mxm) Y(mxm) YV(mxn) Y(nxn) UY (nxm)

The presentation of the paper is as follows; Section 2 is based on
some useful results for multivariate under two-phase sampling
design. Section 3 is based on the derivation of our proposed esti-
mator. Whereas in Sections 4 and 5 numerical study with real data
and simulated study with simulated data are discussed respec-
tively. Finally, conclusion and discussions are presented in
Section 6.

2. Some useful results under two-phase sampling

We consider a finite population with U (<oo) identifiable units.
Let Y be the variable under study taking value y; where
j=1,2,...,m. Let X1,Xa,...,X, be the population means of auxil-
iary variables and S;;,, be the population variance of study vari-

able. Further let S an S be the population variances and C;, C;
be the coefficient of variation and p,, denotes the correlation coef-
ficient between study and auxiliary variables.

Under two-phase sampling design, Xa)y,Xa)2,....Xqn IS
observed by ny and ¥ 51, Y22, - - -, Y(2ym 1S Observed by n,.

In order to derive the expressions of mean square error, let
72=n and 7y;=; be the sampling fractions and 551_(2) =

n

2 2 N _ = _
S (1 + &y))s S)%(l)k = Sy + &x)s Pk = V(1 + €y, ), where

8YJ<2>’ Exyy and ey, = E(&x,,)
— E(e,,,) = 0.

For multivariate estimators, we use following expectation

be the sampling errors and E(gy,, )

results for the derivation of variance covariance matrix
expressions,
Let
Ay:[8Y<2>1 83’(212 gy(sz]v Ax:[gxml SX(X)Z o Sxmn]»
Dy =[€n; vy €y(1)n ]
EiE2i(MA) =71 Y EiEapn(A)A) =7, Y
() Ynxm)
EEon (AAy) =71 Y EiEan(DyDy) =7, )
XY (nxm) Y(nxn)
E:E>1(AD,) =7, > LEiEapn(DyAy) =7, Y

YV(mxn) VY (nxm)

3. Proposed generliazed regression-cum-exponential estimator

A multivariate regression-cum-exponential type estimator is
proposed for full information case using multi-auxiliary variable
in two-phase sampling design. We propose following multivariate
estimator for population variance vector,

ts = [tsj](]xm)7
d N
R 2 . 2 K X)k
where,t;; = Sy T Z(ij(s lek) EXDZ |:S,2( +s7 }’
k=1 —1 kX (1)k
j=12,....m

3.1. Derivation of the mean square error

The Mean Square Error (MSE) is derived by using
sf,}m = Sﬁi(l +oy,), 2 = Sﬁk(l +é&), where &, and &,

Xk]

are the sampling errors,

2 2
5%
— = 2 =
ts = [ty] s b5 = <y(2) +Zwlq Stk )EXPZ A +521>k ’
9)
Consider,
t = |:S;j( (1 +8y](2) +ZCUI<J{ - x, (1 +8X(1]k)}:|
k=
ST —S2(1+&,,)
X exp el [ 10
Z Se. +Se (148, ) "
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-1
X(1)k 8X<1>k
2 ,

(11)

t= <(52 n 32’1<2>?y’ Zw,qs &x, )expz
or

2 2
t = ((sylm YJ(z Syﬂz Zwkfsxkgxﬂ >

2
8X<1>k gxmk gxmk
1+Z{ < Sttt o) (12)

Now retaining terms up to order one, we have,

n_g,
t = (651‘(2; 5} &) Zwkjsxkgxﬂ ) (1 _Z (21)k> (13)

After simplification we have,

n n &
) 2 2 2 RV X
ty = (sy}(z Sy B k;w,qsxk B~ iy ; 5 ) (14)
or
) L@ 1 Sx
ty = SJ’j(zu +SYJ(z) & 752 20)/452—k+‘1 Exay | (15)
' k=1 Yi)
or
. 1¢ S
ts — S.yl(z) = syj@ (%ij(z) 2 - (25 + l)sxmk) where ¢y; = 2 -
- Vi)
(16)
2 1¢
ts = [tﬂ'}(lxm = S Syj'(z) - j (2wkj¢kj + ])gxmk
' k=1 (1xm)
j=12,...m (17)
For variance covariance matrix we proceed as,
Z =EiEa1(ts, ., = Saxm) (1, = Si1m)
mxml
1 ! 1
4
:SyE]EZ/l (8}/(lxm) - zgx“xmg(nxm)> (8}’(1me - jgx(lxn)Q(nxm>>7
(18)
where,
Qum) = Qg +1) - (19)
Using the results given in Section 2, we have,
) 1 1.
Z =S5S{ 1, Z *5”/1 Z Qnxm) *iylg(mxn) Z
fs[mxm) Y(mxm) YX(mxn) YX(nxm)
1.
+Zylg(m><n) ZQ(nxnﬂ . (20)

X(nxn)

We differentiate the above expression with respect to Q and get
the optimum value of Q as,

—1
Qopt(nxm) = ZXZ yxz

On using the optimum value of Q in (20) and we get the mini-
mum value of variance covariance matrix of t; as,

min Y =SS(1 Y -0 Y Z > (21)

S(mxm) Y(mxm) YX(mxn)X(nxn)YX(nxm)

and

> = [cov(ty, )] i S k= 1,2,

S(mxm)

cov(tj, ty) = var(tj)

,m forj=k,

Now in following Remark 1, we are discussing some multivari-
ate estimators as special cases which can be obtained directly from
the above results such as tg, t;;, and ts, along with their variance
covariance matrices Zml)’ D tg)e and 37, o using multi-auxiliary

variables.

3.1.1. Remark 1

It is noted that we may get the different multivariate esti-
mators for any number of auxiliary variables assigning differ-
ent values to m and n into (8). For example taking
m=3&n=3 into (8) one may get a trivariate estimator
for variance as,

by = [tﬂj}(lx3)7

where

3 _s2
e (Sﬁim +D_0(Sy, — S ) sz St +s§(”k

k=1 Xk
k=1,23&j=1,2,3 (22)

and the variance covariance matrix may be obtained from (20) as,

Z =SS ))22 77“/1 Z Qi3.3) — 2?1923@) Z

L1535 Y3x3) YX(3x3) YX(3x3)

1.
+ 7371863 > Qa3 | (23)

X(3x3)

Similarly, one may get different bivariate and univariate estima-
tors taking m =2 & 1 respectively into (8) for any number of aux-
iliary variables, and also one may get variance covariance
matrices directly from (20).

A bivariate estimator based on three auxiliary variables can be
obtained from (8) taking m=2 and n =3 as,

ts = [ts2y] 1.2, Where
362 _¢g2
2 X, X,
toj = <S§I(2) + Zwkj(sxk - )k)> exp Zszk zmk : (24)
k=1 k=1 “x + 5% X(1)k

The variance covariance matrix is obtained as,

’

, 1 1
Z =SS VZZ —5M Z Q2 —§V1Q<2x3) Z

25,9 Y2x2) YX(2,3) YX(3x2)

1.
+1V19<zx3)29<3x2> - (25)

X(3x3)

Similarly a univariate estimator based on three auxiliary vari-
ables can be obtained from (8) taking m=1 and n =3 as,

t = [tsgj] 11y where
S: - s
t3j = (5}21(2\ +Zwk(5 )2((1 > expz 2 - Dk , (26)
LS S %

and the variance covariance matrix for the estimator in (26) may be
obtained as,
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Table 1
Relative efficiencies of the Proposed Estimators and Existing estimators.
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Estimators Trivariate case Bivariate case Univariate case
Single Two Three Single Two Three Single Two Three
auxiliary auxiliary auxiliary auxiliary auxiliary auxiliary auxiliary auxiliary auxiliary
to 100 100 100 100 100 100 100 100 100
ts 126.719 146.147 337.245 120.601 137.821 234.98 110.234 114.909 125.554
ta 120.962 125.345 135.619 111.019 114.888 119.34 110.158 110.164 110.594
trg 120.962 125.345 135.619 111.019 114.888 119.34 110.158 110.164 110.594
1 1 Table 2
/ /
Z =557 Z —3h Z Qr) — e Qs Z Var-Cov matrices of the estimators under the observed model.
fs3(1x,) Yaxi) YX(1x3) YX(3x1)
ts1 ts2 ts3
1 ’ Vari : : 1 Esti
—n Q) Q 27 ariance Covariance Matrix of Proposed Estimator t;
tgh <“3)XZ 3x1) (27) ta 051432340 011534450 0.19009570
x3) te 0.11534450 0.07561682 0.10896780
Hence one may obtain different estimators along with their b 0.19009570 0.10896780 0.16854950
MSE’s under univariate case for multi-auxiliary variables. for fo2 fos
Variance Covariance Matrix of to Estimator
.. . to1 0.5147962 0.11543237 0.1902855
4. Numerical illustration foz 0.1154324 0.07574655 0.1091623
tos 0.1902855 0.10916228 0.1688723
We conducted an empirical study to demonstrate the efficiency ; ; ¢
. . . . . . . 1 2 3
of the proposed class of Multivariate (trivariate and bivariate) esti- P—— . [y —— . :
. a1 . . . i ‘ariance Covariance Matrix of t, Estimator
maFor using one, two, and three aux111ary varlables. §1m11arly a uni o 05113866 011627633 01917395
variate version from. the propqsed mul.tlvarlate estimator has also to 0.1162763 0.07741426 0.1116057
been presented for its numerical efficiency. This empirical study [ 0.1917395 0.11160569 0.1727231
has been constructed using a real population data and the popula- breg1 breg2 fregs
tion detail is given in A.ppe.ndlx. We consider the three sFudy vari- Variance Covariance Matrix of modified t.e Estimator
ables (Y1_ , Yz_, Ys) fo.r trivariate estimator, th study varlab_les §Y1, tregt 0.5159262 0.11570484 0.1906460
Y,) for bivariate estimator and one study variable Y1 for univariate treg2 0.1157048 0.07580751 0.1092363
estimator and further in each case used three auxiliary variables, Lreg3 0.1906460 0.10923628 0.1689522
two auxiliaries and single auxiliary variable were used. Variances tegt trg2 trg3
and co-variances are presented in Appendix and expressions in Variance Covariance Matrix of tg Estimator
(23), (25) and (27) were used to calculate the MSE values respec- tegt 0.5147965 0.11543233 0.1902858
tively for the trivariate, bivariate and univariate estimators. In case trga 0.1154323 0.07574648 0.1091623
of multivariate estimators traces were compared with. We have Lrg3 0.1902858 0.10916227 0.1688726
computed the percent relative efficiencies (PREs) of our
regression-cum-exponential estimator t; with respect to tp
following,
Table 3
PREs (t., to) = I\‘ZIaSrT((tO)) % 100 Determinants of variance covariance matrices.
t*
Estimators Determinants |} |
Table 1 demonstrates the relative efficiency of each estimator. It ¢ 0.0002516782
is observed that by increasing number of the auxiliary variables we t 0.0002531813
get more efficient results in all three cases i.e. multivariate, bivari- t 0.0002632589
ate and univariate. treg 0.0002536346
tyg 0.0002531837
5. Simulation study
However to assess the performance of our proposed estimators Table 4
we have also computed the results by simulation study. We have MSE values of the univariate estimators.
taken a model for our regression-cum-exponential estimator as, Estimators MSE's
Observed Model Y; = Y "X+& & ~N(0,1) t 0.07561682
to 0.07574655
The three study variables with three auxiliary variables under t 0.07741426
Model are distinct by the equation as, treg 0.07580751
tg 0.07574648

Y, =0.2X; +0.3X; +0.9X;5 + ¢,

Y, =0.6X; +0.5X; +0.3X3 + ¢,

sample of size n, = 0.4n; units from the samples selected at first
phase by SRSWOR using R function when N = 3000. This procedure
is repeated 5000 times to calculate the several values of t. At last
we have calculated the variance covariance matrices as,

Y; =0.5X; +0.7X; + 0.4X5 + ¢,

On the first-phase we selected a sample of size n; = 0.5N units
by SRSWOR using R function. In second-phase, we again selected a



A. Asghar et al./Journal of King Saud University - Science 30 (2018) 223-228 227

. _c_ 2 2 2
Variance Vector =5 =[S, S}, S ](1><3) and

var(ty) cov(tit;) cov(tyts)
> = |cov(tsty) var(ty)  cov(tyts)
(3x3) cov(tits) cov(tyts) var(ts)
where

1¢ 1
var(t) = - (t—=T)*,T=—> t; and

q i=1 q i=1

1 q
cov(t;) = — ti—T)(ti—T

(t:) qZ( )t —=T)

I
—_

5.1. Simulated population

Xi ~N(12,2), X, ~N(15,3), X5 ~ N(18,4),

In Table 3 variance-covariance matrices for each multivariate
estimator are given. Table 3 shows the results of the determinants
for the variance-covariance matrices (given in Table 2). From
Table 3 it is found that the determinant for the proposed multivari-
ate estimator is less than the determinant of any other existing
multivariate estimator which is providing evidence that the pro-
posed estimator is more efficient. Table 4 shows the values of the
MSE’s of the univariate estimator obtained through the simulation
study.

We performed simulation study at various sample sizes, but in
order to avoid length of the paper and also complexion of the sim-
ulation results it is difficult to show the results of all possible sim-
ulations. We presented simulation results only for one sample size

that the proposed estimator is asymptotically normal and also
the MSE’s remain less than existing estimators as the sample size
increases which reveals that proposed estimator is more consistent
and further it is noted that MSE of the proposed estimators gradu-
ally decreases by increasing the sample size from 1% to 50% (as 1%,
2.5%, 5%, 10%, 20%, 50%) of population size (N) which reflected the
consistency of the proposed estimator and this gain in consistency
is more than the other existing estimators.

6. Concluding remarks

From empirical study given in Table 1 it is concluded that our
proposed estimator (trivariate/bivariate/univariate) t; is more effi-
cient than to, t,, t; estimators. From Table 1, itis also observe that
by increasing the auxiliary information, our proposed estimator
gives more efficient result. From results of the simulation study
presented in Tables 2 and 3 it is concluded that proposed multi-
variate estimator are more efficient as they have less MSE values
as well as values of the determinants are minimum than the deter-
minant values of the existing estimators. Table 4 reveals that uni-
variate version of the proposed estimator has minimum value of
the MSE than the MSE'’s of the existing estimator and therefore it
is concluded that our proposed regression-cum-exponential esti-
mator performs more efficiently. In simulation it is confirmed that
proposed estimator is asymptotically normal and more consistent
the existent estimators.

Appendix A

(i.e. n; =0.5N) and taking iterations of k = 5000 samples and Source of Population: Gujarati (2004), pg. 385 N =35,
results are shown in Table 2. In simulation study it is confirmed ™ = 18 & n2 =9 (see Tables A1-A3).
Table A1
Details of variables for Population.
Population Y, Y, Y3 X1 X3 X3
1 Hours (average hours Assets ERSP Rate School (average highest grade  NINE (average yearly

worked during the year) (average family

assets holdings)

(Average yearly

earnings of spouse)

(average
hourly wage)

of school computed) non-earned income)

Table A2
Covariance and correlation covariance matrix.
Cov Y; Y, Y3 X1 Xa X3
Y, 4110.787 132319.6 2041.883 17.43723 51.01613 5953.167
Y, 132319.584 8229167.3 201899.782 985.23859 2113.56387 387062.227
Ys 2041.883 201899.8 65934.879 64.51825 164.66193 8224.772
X1 17.43723 985.23859 64.51825 0.2116820 0.4508139 4331764
X3 51.01613 2113.56387 164.66193 0.4508139 1.3638151 86.03345
X3 5953.167 387062.227 8224.772 43.3176387 86.0334454 18669.06387
Table A3
Correlation matrix.
Population Y, Y, Y3 X1 Xy X3
Y, 1.0000000 0.7194220 0.1240255 0.5911166 0.6813454 0.6795546
Y, 0.7194220 1.0000000 0.2740945 0.7464858 0.6308988 0.9875102
Ys 0.12402545 0.2740945 1.0000000 0.54611367 0.5491081 0.2344256
X1 0.5911166 0.7464858 0.5461137 1.0000000 0.8390302 0.6890672
X5 0.6813454 0.6308988 0.5491081 0.8390302 1.0000000 0.5391732
X3 0.6795546 0.9875102 0.2344256 0.6890672 0.5391732 1.0000000
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