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1. Introduction

A real life problem can be formulated as a mathematical model
involving matrices, system of linear and nonlinear equations, ordi-
nary and partial differential equations and linear and nonlinear
programming problems etc. When the decision parameters of the
model are well-known precisely, the classical mathematical tech-
niques and methods are used successfully for solving such prob-
lems. But, in real world situations, the decision parameters are
unlikely to be certain due to many reasons like errors in data, inad-
equate information, errors in formulation of mathematical models,
changes in the parameters of the system, computational errors etc.
Hence, in order to model the real-world problems and perform
computations, the uncertainty and inexactness must be dealt with.
We cannot successfully use traditional classical mathematical
techniques for modeling real world problems. However, probabil-
ity theory, theory of fuzzy sets, theory of interval mathematics
and theory of rough sets etc deal with the uncertainty and inexact-
ness successfully. The uncertainties in a problem have to be repre-
sented suitably so that their effects on present decision making can
be properly taken into account. In fuzzy approach, the membership
function of fuzzy parameters and in stochastic approach, the prob-
ability distribution of decision parameters have to be made known.
But, in real life situations, it is not simple to define the membership
function or probability distribution in an inexact environment.
Therefore, the use of intervals is more appropriate to an inexact
environment. Intervals are efficient and reliable tools allowing us
to handle such problems effectively.

The role of matrices is all encompassing and ubiquitous in all
disciplines. Hansen and Smith (1967) initiated the importance of
interval arithmetic in matrix computations. Motivated by this,
many authors Alefeld and Herzberger (1983), Deif (1991a),
Ganesan and Veeramani (2005), Ganesan (2007), Goze (2010),
Sengupta and Pal (2000), Jaulin et al. (2003), Neumaier (1990),
Singh and Gupta (2015) etc have studied interval matrices.
Hansen (1969, 1992), Hansen and Walster (2004) discussed the
solution of linear algebraic equations with interval coefficients
and the global optimization using interval analysis.

Deif (1991a) introduced the characterization of the set of eigen-
values of a general interval matrix and obtained the upper and
lower bounds of the eigenvalues. Ganesan and Veeramani (2005)
proposed a new type of arithmetic operations on interval numbers.
Ganesan (2007) studied some important properties of interval
matrices. Sunaga (2009) investigated the algebraic properties of
intervals, interval functions and functionals and their derivatives.
Singh and Gupta (2015) applied the interval extension of the single
step eigen perturbation method and obtained sharp eigenvalue
bounds for real symmetric interval matrices by solving the stan-
dard interval eigenvalue problem. The deviation amplitude of the
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interval matrix is considered as a perturbation around the nominal
value of the interval matrix. Nerantzis and Adjiman (2017) have
presented a branch-and-bound algorithm for calculating bounds
on all individual eigenvalues of a symmetric interval matrix. Qiu
and Wang (2005) evaluates the upper and lower bounds on the
eigenvalues of the standard eigenvalue problem of structures sub-
ject to severely deficient information about the structural parame-
ters. Gavalec et al. (2020) have studied three types of interval
eigenvectors namely the strong, the strongly universal, and the
weak interval eigenvector of an interval matrix in max-plus alge-
bra. Sit (2021) studied some properties of interval matrices. The
author also established some theoretical results on the regularity
and the singularity of an interval matrix using eigenvalues of the
interval matrix. Qiu et al. (1996, 2001, 2005) have studied eigen-
value problems involving uncertain but non-random interval stiff-
ness and mass matrices. They proposed an approximate method
for estimating the bounds of eigenvalues of the standard interval
eigenvalue problem of the real non-symmetric interval matrices
and also the eigenvalue bounds of structures with uncertain-but-
bounded parameters. Also, several authors (Deif, 1991b, Hertz,
1992, Kolev, 2006, Leng and He, 2007, Rump and Zemke, 2004,
Wilkinson, 1961, Yamamoto, 2001, Yuan et al., 2008) contributed
to the study of interval eigenvalue problems.

In this article, we introduce new pairing techniques and arith-
metic operations on intervals in IR and interval matrices in
IRm�n. This paper sets the tone for canonicalization of interval
matrices by determining the most important characteristics of an
interval matrix namely, interval eigenvalues and interval eigenvec-
tors. The specialty of the approach mentioned in this paper is that
the interval eigenvalues and normalized interval eigenvectors are
uniquely determined. We discuss an electric circuit problem under
uncertainty described by a system of interval linear differential
equations. Numerical examples are provided to illustrate theory
developed in this paper.

This paper is arranged as follows: Section 1 is the introduction
part. Section 2 provides some basic necessary preliminaries and
results about closed intervals on the real line. Section 3 contains
the main work on interval linear algebra and in Section 4, some
examples are discussed using the proposed method. Section 5
deals with a real world application of the proposed method on
electric circuit theory under uncertain environment which is mod-
eled as a system of interval linear differential equations. Finally, a
brief conclusion is given in Section 6.
2. Preliminaries

Let IR ¼ a
� ¼ aL; aU

� �
: aL 6 aU and; ;aL; aU 2 R

n o
be the set of all

closed and bounded intervals. If aL ¼ aU , then ~a is a degenerate
interval.

The intervals are identified with an ordered pair m;wh i defined
as follows: Let ~a ¼ aL; aU

� �
#R. Define m a

�� � ¼ aLþ aU
2

� �
and

w a
�� � ¼ aU� aL

2

� �
and hence ~a can be uniquely expressed as

m ~að Þ;w ~að Þh i. Conversly, when m ~að Þ;w ~að Þh i is known, then
m ~að Þ �w ~að Þ ¼ aL and m ~að Þ þw ~að Þ ¼ aU of aL; aU

� �
and hence given

m ~að Þ;w ~að Þh i, the interval aL; aU
� �

is unique.
Note: If m ~að Þ ¼ 0, then ~a is said to be a zero interval. In particu-

lar, if m ~að Þ ¼ 0 and w ~að Þ ¼ 0, then ~a ¼ 0;0½ �. If m ~að Þ ¼ 0 and
w ~að Þ– 0, then ~a � ~0. It is to be noted that if ~a ¼ 0;0½ �, then ~a � ~0,

but the converse need not be true. If a
� 6�0

�
, then ~a is said to be a

non-zero interval. If m ~að Þ > 0 then ~a is said to be a positive interval

and is denoted by ~a � ~0.
2

2.1. Arithmetic operations on intervals

We define a new type of arithmetic operations on intervals
through their mid points and widths. Mid points follows the usual
arithmetic on R and the widths are following the lattice rule which
is least upper bound and greatest lower bound in the lattice L. That
is for a; b 2 L; a _ b ¼ max a; bf g and a ^ b ¼ min a; bf g.

For any two intervals ~a ¼ m ~að Þ;w ~að Þh i, b
�
¼ hmðb

�
Þ;wðb

�
Þi and

� 2 þ;�;�;	f g, the arithmetic operations are defined as

~a � ~b ¼ m ~að Þ;w ~að Þh i � m ~b
� �

;w ~b
� �D E

¼ m ~að Þ �m ~b
� �

;w ~að Þ _w ~b
� �D E

¼ m ~að Þ �m ~b
� �

;max w ~að Þ;w ~b
� �n oD E

In particular for ~a ¼ m ~að Þ;w ~að Þh i and ~b ¼ m ~b
� �

;w ~b
� �D E

in IR, We

have

1. Addition:~aþ ~b ¼ m ~að Þ þm ~b
� �

;max w ~að Þ;w ~b
� �n oD E

2. Subtraction:~a� ~b ¼ m ~að Þ �m ~b
� �

;max w ~að Þ;w ~b
� �n oD E

3. Multiplication:~a� ~b ¼ m ~að Þ �m ~b
� �

;max w ~að Þ;w ~b
� �n oD E

4. Division:~a	 ~b ¼ m ~að Þ 	m ~b
� �

;max w ~að Þ;w ~b
� �n oD E

,provided

m ~b
� �

– 0.
Proposition 1. Ganesan and Veeramani (2005) For any two

~a ¼ m ~að Þ;w ~að Þh i and ~b ¼ m ~b
� �

;w ~b
� �D E

in IR, we have

ið Þ:m ~aþ ~b
� �

¼ m ~að Þ þm ~b
� �

and w ~aþ ~b
� �

¼ w ~að Þ þw ~b
� �

.

iið Þ:m ~a� ~b
� �

¼ m ~að Þ �m ~b
� �

and w ~a� ~b
� �

¼ w ~að Þ þw ~b
� �

.

iiið Þ:m ~a:~b
� �

¼ m ~að Þ:m ~b
� �

and w ~a:~b
� �

¼ 0 if w ~að Þ ¼ 0 or

w ~b
� �

¼ 0.

ivð Þ:m a a
�þbb

�� �
¼ am a

�� �þ bm b
�� �

and w a~aþ b~b
� �

¼

jajw ~að Þ þ jbjw ~b
� �

, where a; b 2 R.

2.2. Exponentiation of intervals

In certain applications, the exponentiation of intervals play a
key role in arriving at the solution. So we can define the exponen-
tial of intervals as follows.

Definition 1. For any interval ~a 2 IR, we define e~a ¼ em ~að Þ;w ~að Þ� 	
.

Result. For any two intervals ~a; ~b 2 IR, we have

e~a ¼ em ~að Þ;w ~að Þ� 	
and e~b ¼ em

~bð Þ;w ~b
� �D E

. Therefore

e~a:e~b ¼ em ~að Þ;w ~að Þ� 	
: em

~bð Þ;w ~b
� �D E

¼ em ~að Þ:em
~bð Þ;max w ~að Þ;w ~b

� �n oD E
¼ em ~að Þþm ~bð Þ;max w ~að Þ;w ~b

� �n oD E
¼ em ~aþ~bð Þ;max w ~að Þ;w ~b

� �n oD E
¼ e~aþ~b sayð Þ:

That is ea
�þ b

�
¼ ea

�
: eb

�
.
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3. Interval linear algebra

Theorem 1. For all ~a; ~b 2 IR, define ~a � ~b if m ~að Þ ¼ m ~b
� �

. Then this

relation � say Rð Þ is an equivalence relation on IR.

Proof: For any a
� 2 IR; m a

�� � ¼ m a
�� �

. Hence ~a � ~a. Thus R is

Reflexive.

Let ~a; ~b 2 IR and ~a � ~b. Hence m ~að Þ ¼ m ~b
� �

) m ~b
� �

¼
m ~að Þ ) ~b � ~a, Thus R is Symmetric.

Let ~a; ~b;~c 2 IR with ~a � ~b and ~b � ~c. Then m ~að Þ ¼ m ~b
� �

and

m ~b
� �

¼ m ~cð Þ. Hence m ~að Þ ¼ m ~cð Þ which implies ~a � ~c. Thus R is

transitive. Hence R is an Equivalence Relation.
Note: Let E ¼ IR

R be the set of all equivalence classes of intervals
under the equivalence relation R on IR and all intervals in an
equivalence class will have the same mid point say m 2 R. We
denote this equivalence class by �m and �m will be identified with
m (or) with ~m where ~m is any closed interval in �m.

Definition 2. On E, we define a binary operation +, called addition
as follows:

Take m1;m2 2 E. Define m1 þm2 ¼ m1 þm2ð Þ. We note that + is
well defined on E and is indeed a binary operation on E.

Define another binary operation 
 on E called multiplication as
follows:

For all m1;m2 2 E, we define m1 
m2 ¼ m1 
m2ð Þ. We note that 

on LHS is a definition on E and on RHS, m1 
m2 denotes the usual
multiplication of real numbers. 
 is well defined on E and turns out
to be a binary operation on E. We may write m1 
m2 interchange-
ably as m1m2 as in the case of multiplication of real numbers.
Definition 3. Any real number a 2 R can be converted into an
interval ~a 2 IR by choosing any non-negative real number b and
defining ~a ¼ a� b;aþ b½ �. This non-negative real number b is said
to pair with a.

In this paper, the crisp eigenvalues and crisp eigenvectors of

m eA� �
are converted into interval eigenvalues and interval eigen-

vectors of eA by judiciously choosing the pairing number b > 0 in
such a way that the interval eigenvalues and normalized interval
eigenvectors are unique.

Theorem 2. E;þ; 
h i is a field.

Proof: Let m1;m2;m3 2 E.
(i). m1 þm2 ¼ m1 þm2ð Þ (by definition). Sum of two real num-

bers m1; m2 is m1 þm2ð Þ which is also a real number and hence
m1 þm2ð Þ 2 E. Hence ’addition’ in E has closure property.

(ii). Since addition in R is associative, we have
m1 þm2ð Þ þm3 ¼ m1 þm2ð Þ þm3 ¼ m1 þm2ð Þþ
m3 ¼ m1 þ m2 þm3ð Þ ¼ m1 þ m2 þm3ð Þ.

(iii). 0 2 R and hence �0 2 E and m1 þ �0 ¼ m1 þ 0ð Þ ¼
m1 ¼ 0þm1ð Þ ¼ �0þm1. Hence �0 is the identity on E and we will
call this identity as the additive identity on E.

(iv). Let m1 2 E, then m1 2 R and so �m1 2 R which gives
�m1 2 E. Also m1 þ �m1ð Þ ¼ m1 þ �m1ð Þ ¼ �0. Similarly
�m1ð Þ þm1 ¼ �0. Thus we conclude that �m1 is the additive inverse
of m1.

(v). Let m1 þm2 ¼ m1 þm2ð Þ ¼ m2 þm1ð Þ ¼ m2 þm1 and hence
we have the commutativity of + on E.
3

(vi). Product of two real numbers is a real number and hence
m1 
m2 ¼ m1 
m2ð Þ 2 E for all m1;m2 2 E. Hence 
 has closure prop-
erty on E.

(vii). Product (usual multiplication) of real numbers is associa-
tive and hence m1m2ð Þm3 ¼ m1m2ð Þm3

¼ m1m2ð Þm3 ¼ m1 m2m3ð Þ ¼ m1 m2m3ð Þ ¼ m1 m2m3ð Þ. Hence 
 is
associative in E.

(viii). 1 2 R. Therefore �1 2 E and �1m1 ¼ 1m1 ¼ m1 ¼ m11 ¼ m1
�1.

Therefore �1 is the identity (multiplicative identity which we will
also call as unity) in E.

(ix). Let m1 – �0. Then m1 – 0. So 9 1
m1

2 R and

m1
1
m1

� �
¼ m1

1
m1

� �
¼ 1 ¼ 1

m1

� �
m1. Hence all non-zero elements in

E have a multiplicative inverse in E.
(x). m1m2 ¼ m1m2 ¼ m2m1 ¼ m2m1. Therefore multiplication is

commutative in E.
(xi). m1 m2 þm3ð Þ ¼ m1 m2 þm3ð Þ ¼ m1m2þ m1m3 ¼ m1m2þ

m1m3 ¼ m1m2 þm1m3. Hence multiplication in E distributes over
addition in E.

Thus E is a Field for the two binary operations + and 
.

Theorem 3. (Frobenius-Perron) Strang (2003) Let A be an n� nð Þ
matrix with non-negative entries. Then the following are true:
(i) A has a non-negative real eigenvalue. The largest such eigen-
value, k Að Þ, dominates the absolute values of all other eigen-
values of A. The domination is strict if the entries of A are
strictly positive.

(ii) If A has strictly positive entries, then k Að Þ is a simple positive
eigenvalue, and the corresponding eigenvector can be nor-
malized to have strictly positive entries.

(iii) If A has an eigenvector m with strictly positive entries, then
the corresponding eigenvalue km is k Að Þ.
Theorem 4. E and R are isomorphic as fields by the natural isomor-
phism which associates m 2 R to m 2 E.

Proof: Define f : E ! R by f mð Þ ¼ m, for all m 2 E. This f is well
defined on E since the midpoint of any interval in an equivalence
class is the same. Also
f m1 þm2ð Þ ¼ f m1 þm2ð Þ ¼ m1 þm2 by definitionð Þ ¼ f m1ð Þþ
f m2ð Þ. Therefore f is additive on E (i.e. f preserves addition on E).
Now f m1 
m2ð Þ ¼ f m1m2ð Þ ¼ m1m2 ¼ f m1ð Þf m2ð Þ. Hence f is multi-
plicative on E. That is f preserves multiplication on E.

Claim (i): f is 1� 1 (injective).
f m1ð Þ ¼ f m2ð Þ ) m1 ¼ m2 ) m1 ¼ m2. Hence f is injective.
Claim (ii): f is onto (surjective).
m 2 R ) m 2 E and f mð Þ ¼ m and hence f is surjective. Thus f is

a bijective Ring homomorphism between the fields E and R which
leads us to conclude that E is isomorphic to R. That is E ffi R.

Note: This isomorphism enables us to identify an element of E
(an equivalence class) with a real number which is the mid point
of any interval in the equivalence class.

Using the identification between intervals and ordered pairs
(i.e. ~a ¼ aL; aU

� �
and m ~að Þ;w ~að Þh i), we get unique solutions to inter-

val equations, eigenvalues and eigenvectors of interval matrices
which in turn leads to canonical forms of interval matrices.

The field isomorphism between E and R enables us to convert
interval matrices into classical matrices. After finding the eigenval-
ues and normalized eigenvectors for these classical matrices
formed by mid points and widths of intervals, we get interval
eigenvalues and normalized interval eigenvectors for the given
interval matrices. This is illustrated by examples (1) and (2).
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3.1. Interval matrices

A classical matrix is a rectangular array of elements of a field F.
whenever impreciseness or uncertainty occurs in the entries of a
matrix, we switch over to Interval matrices, where each entry of
the matrix is a closed and bounded interval in R.

Definition 4. An interval matrix eA is a matrix whose entries are

closed and bounded intervals and is denoted by eA =
~a11 . . . ~a1n
. . . . . . . . .
~am1 . . . ~amn

0@ 1A = ~aij

 �

, where each ~aij ¼ aLij; a
U
ij

h i
.

We use Em�n to denote the set of all equivalence classes of

m� nð Þ interval matrices. By m eA� �
we denote a matrix whose

entries are the corresponding midpoints of the entries of eA. i.e.
m eA� �

=
m ~a11ð Þ . . . m ~a1nð Þ
. . . . . . . . .

m ~am1ð Þ . . . m ~amnð Þ

0@ 1A. The width of an interval matrix

eA is the matrix of widths of its interval elements defined asw eA� �
=

w ~a11ð Þ . . . w ~a1nð Þ
. . . . . . . . .

w ~am1ð Þ . . . w ~amnð Þ

0@ 1A, where each entry of w eA� �
is always

non-negative. We use O to denote the null matrix
0 . . . 0
. . . . . . . . .
0 . . . 0

0@ 1A
and eO to denote the null interval matrix

~0 . . . ~0
. . . . . . . . .
~0 . . . ~0

0@ 1A. Also we

use I to denote the identity matrix
1 . . . 0
. . . 1 . . .
0 . . . 1

0@ 1A and eI to denote

the identity interval matrix
~1 . . . ~0
. . . ~1 . . .
~0 . . . ~1

0@ 1A.

If m eA� �
¼ m eB� �

, then the interval matrices eA and eB are said to be

equivalent and this equivalence is denoted by eA � eB. In particular if

m eA� �
¼ m eB� �

and w eA� �
¼ w eB� �

, then eA ¼ eB. If m eA� �
¼ O, then

we say that eA is a zero interval matrix which is denoted by eO. In
particular if m eA� �

¼ O and w eA� �
¼ O, then

eA ¼
0;0½ � . . . 0;0½ �
. . . . . . . . .
0;0½ � . . . 0;0½ �

0@ 1A ¼ O. Also if m eA� �
¼ O and w eA� �

– O,

then eA ¼
~0 . . . ~0
. . . . . . . . .
~0 . . . ~0

0@ 1A � eO. If eA 6�fO. (i.e. eA is not equivalent to

eO), then eA is said to be a non-zero interval matrix. If m eA� �
¼ I then

we say that eA is an identify interval matrix and is denoted by eI.
In particular if m eA� �

¼ I and w eA� �
¼ O, then.

eA= 1;1½ � . . . 0;0½ �
. . . 1;1½ � . . .
0;0½ � . . . 1;1½ �

0@ 1A.

Remark 1. An interval vector ~x ¼ ~x1; ~x2; ~x3; 
 
 
 ; ~xnð Þt is a column
vector whose components are closed intervals. We use IRn to
denote the set of all n-dimensional interval vectors. By m ~xð Þ we
denote a vector whose entries are the corresponding mid points of
the entries of ~x. i.e)m ~xð Þ ¼ m ~x1ð Þ;m ~x2ð Þ;m ~x3ð Þ; 
 
 
 ;m ~xnð Þð Þt and the
width of interval vector is defined by
w ~xð Þ ¼ w ~x1ð Þ;w ~x2ð Þ;w ~x3ð Þ; 
 
 
 ;w ~xnð Þð Þt .
4

3.2. Interval matrix operations

If eA; eB 2 IRm�n; x
� 2 IRn, where ~x ¼ ~x1; ~x2; 
 
 
 ; ~xnð Þt and ~a 2 IR,

then

ið Þ:eA þ eB ¼ m eA� �
þm eB� �

;
D
max min

w ~aijð Þ–0
w eA� �

; min
w ~bijð Þ–0

w eB� �( )+
iið Þ:eA � eB ¼ m eA� �

�m eB� �
;

D
max min

w ~aijð Þ–0
w eA� �

; min
w ~bijð Þ–0

w eB� �( )+
iiið Þ:eA 
 eB ¼ m eA� �


m eB� �
;

D
max min

w ~aijð Þ–0
w eA� �

; min
w ~bijð Þ–0

w eB� �( )+
ivð Þ:eA 	 eB ¼ m eA� �

	m eB� �
;

D
max min

w ~aijð Þ–0
w eA� �

; min
w ~bijð Þ–0

w eB� �( )+

vð Þ: ~aeA ¼ m ~að Þ 
m eA� �
;max w ~að Þ; min

w ~aijð Þ–0
w eA� �( )* +
3.3. Eigenvalues and eigenvectors of interval matrices

Let eA be an interval matrix. A non-zero interval vector ~v satis-

fies eA~v � ~k~v for some ~k 2 IR is said to be an interval eigenvector

of eA and such ~k is called an interval eigenvalue of eA.
Note: In the case of interval matrices eA, we note that the width

matrix w eA� �
contains only non-negative entries. Hence the

Perron-Frobenius Theorem for such matrices guarantees the exis-

tence of a non-negative eigenvalue for the width matrix w eA� �
which in turn will give a unique eigenvalue for an interval matrix

corresponding to every real eigenvalue of m eA� �
. The hallmark of

this procedure is that the set of eigenvalues obtained for a given
interval matrix is unique.

Theorem 5. eA is an n� nð Þ interval matrix.

(a). Corresponding to every real eigenvalue m kð Þ of m eA� �
, we

get a unique interval eigenvalue for eA.
(b). Corresponding to every normalized eigenvector m mð Þ for

eigenvalue m kð Þ, we get a unique normalized interval eigenvector

for eA.
Proof: (a). Let m kð Þ be a real eigenvalue of m eA� �

. Find all eigen-

values of w eA� �
. Two cases arise.

Case (i): w eA� �
has a positive eigenvalue. In this case, we take

w k0ð Þ ¼ min w kð Þ=w kð Þ > 0;w kð Þ is an eigenvalue of w eA� �n o
:

The pair m kð Þ;w k0ð Þh i will give a unique interval eigenvalue of eA
namely m kð Þ �w k0ð Þ;m kð Þ þw k0ð Þ½ �.

Case (ii): If w eA� �
does not have positive eigenvalue, the non-

negativity of the entries of w eA� �
ensures the applicability of the
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Perron-Frobenius theorem for w eA� �
and hence the matrix w eA� �

is

nilpotent. Hence all eigenvalues of w eA� �
are zero which implies

that the interval eigenvalues of eA is degenerate.
(b). The unique interval eigenvector corresponding to m kð Þ is

computed as follows:

Let m mð Þ be the normalized eigenvector of m eA� �
corresponding

to the eigenvalue m kð Þ. Find the normalized eigenvector w m0ð Þ cor-
responding to w k0ð Þ given in case(i) or corresponding to 0 which
arises in case(ii). Since an eigenvector is non-zero and w m0ð Þ and
�w m0ð Þð Þ are normalized eigenvectors for the same eigenvalue

w k0ð Þ. For a normalized eigenvector w m0ð Þ ¼ m01; m02; . . . ; m0n

 �t of

w k0ð Þ, define

l ¼ min jm0ij=m0i – 0; i ¼ 1;2; . . . ;n
� 


:

Pairing this l with m mð Þ will produce the unique interval eigenvec-

tor

m m1ð Þ � l;m m1ð Þ þ l½ �
m m2ð Þ � l;m m2ð Þ þ l½ �
..
.

m mnð Þ � l;m mnð Þ þ l½ �

0BBB@
1CCCA.

In case the geometric multiplicity of an eigenvalue
w k0ð Þ ¼ k > 1, then the k crisp normalized eigenvectors corre-
sponding to w k0ð Þ form an n� kð Þ rectangular matrix say w�. In this
case

l ¼ min jw�
ijj=w�

ij – 0; i ¼ 1;2; 
 
 
 ;n; j ¼ 1;2; 
 
 
 ; k
n o

:

The k normalized eigenvectors corresponding to l give a unique set
of k linealy independent interval eigenvectors. Again we can ensure
the interval eigenvectors to be unique with the same geometric
multiplicity. Hence the theorem.
3.4. Algorithm for eigenvalues and eigenvectors of an interval matrix

Given an n� nð Þ interval matrix eA.
Step (1). Find m eA� �

and w eA� �
.

Step (2). Find eigenvalues of m eA� �
and w eA� �

over R.

Step (3). Find w k0ð Þ ¼ min w kð Þ=w kð Þ > 0;w kð Þf is an eigenvalue

of w eA� �
g. By Perron-Frobenius, there exist a minimum positive

eigenvalue for w eA� �
is w k0ð Þ failing which w eA� �

is nilpotent.

Step (4). Corresponding to every real eigenvalue m kið Þ of m eA� �
,

we consider the pair m kið Þ;w k0ð Þh i (i ¼ 1;2 . . . :;n) to find interval

eigenvalues for eA. In case w eA� �
is nilpotent the crisp real eigenval-

ues of m eA� �
give degenerate interval eigenvalues for eA.

Step (5). Find the normalized eigenvectors corresponding to

every real eigenvalue m kið Þ of m eA� �
and the normalized eigenvec-

tor corresponding to w k0ð Þ of w eA� �
. In this case, the eigenvector

pairing number is l ¼ min jm0ij=m0i – 0; i ¼ 1;2; . . . ; n
� 


, where

w m0ð Þ ¼ m01; m02; . . . ; m0n

 �t of w k0ð Þ.

Step (6). When the geometric multiplicity of an eigenvalue
w k0ð Þ ¼ k > 1,then the k crisp normalized eigenvectors corre-
sponding to w k0ð Þ form an ðn� kÞ rectangular matrix say w�. In this
case, the eigenvector pairing number is

l ¼ min jw�
ijj=w�

ij – 0; i ¼ 1;2; 
 
 
 ; n; ; ;j ¼ 1;2; 
 
 
 ; k
n o

.

The k normalized eigenvectors corresponding to l give a unique
set of k linealy independent normalized interval eigenvectors, thus
5

exhibiting the same geometric multiplicity for the crisp and inter-
val eigenvalues.

4. Numerical examples
Example 1. Find the eigenvalues and eigenvectors of the interval
matrix
eA ¼ 1;2½ � 1;2½ �
1;3½ � 2;5½ �

� �
Solution: Consider the midpoint matrix

m eA� �
¼ 1:50 1:50

2 3:50

� �
. The eigenvalues of m eA� �

are 4:50;0:50

and the corresponding normalized eigenvectors are
0:45
0:89

� �
;

0:83
�0:56

� �
. Also consider the width matrix

w eA� �
¼ 0:50 0:50

1 1:50

� �
. The eigenvalues of w eA� �

are 1:87;0:14.

Both eigenvalues are positive, so choose minimum positive eigen-
value 0.14 and the corresponding normalized eigenvector is
0:81
�0:59

� �
. Here ~v is an eigenvector and hence �~v is also an eigen-

vector and in order to reach absolute minimum, we consider
�0:81
0:59

� �
as the normalized eigenvector.

Now the unique interval eigenvalues of the given interval

matrix eA are:

1. 4:50;0:14h i ¼ 4:50� 0:14;4:50þ 0:14½ � ¼ 4:36;4:64½ �
2. 0:50;0:14h i ¼ 0:50� 0:14;0:50þ 0:14½ � ¼ 0:36;0:64½ �

This is justified because we are interested in minimising vague-
ness or error. The interval eigenvalues of the given interval matrixeA are 4:36;4:64½ � and 0:36; 0:64½ �. The normalized interval eigen-

vectors of the given interval matrix eA are computed as follows:
Case 1: The normalized interval eigenvector corresponding to

the interval eigenvalue 4:50;0:14h i is
0:45
0:89

� �
;

�0:81
0:59

� �� �
¼ 0:45

0:89

� �
; 0:59ð Þ

� �
¼ 0:45� 0:59;0:45þ 0:59½ �

0:89� 0:59;0:89þ 0:59½ �

� �
¼ �0:14;1:04½ �

0:30;1:48½ �

� �
;

since 0:59 is the absolute minimum. Hence for the interval eigen-
value ~k1 ¼ 4:36;4:64½ �, the corresponding normalized interval

eigenvector is ~m1 ¼ �0:14;1:04½ �
0:30;1:48½ �

� �
.

Case 2: The normalized interval eigenvector corresponding to
the interval eigenvalue 0:50;0:14h i is

0:83
�0:56

� �
;

�0:81
0:59

� �� �
¼ 0:83

�0:56

� �
; 0:59ð Þ

� �
¼ 0:83� 0:59;0:83þ 0:59þ½ �

�0:56� 0:59;�0:56þ 0:59½ �

� �
¼ 0:24;1:42½ �

�1:15;0:03½ �

� �
:

Hence for the interval eigenvalue ~k2 ¼ 0:36; 0:64½ �, the correspond-

ing normalized interval eigenvector is ~m2 ¼ 0:24;1:42½ �
�1:15;0:03½ �

� �
. From

the above cases, we see that, the interval eigenvalues of eA are



Fig. 1. Electric circuit.

Fig. 2. Current eI tð Þ for t ¼ 0 to 5 hours.

Fig. 3. Voltage eV tð Þ for t ¼ 0 to 5 hours.
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~k1 ¼ 4:36;4:64½ � and ~k2 ¼ 0:36;0:64½ � and the corresponding nor-

malized interval eigenvectors are ~m1 ¼ �0:14;1:04½ �
0:30;1:48½ �

� �
and

~m2 ¼ 0:24;1:42½ �
�1:15;0:03½ �

� �
.

Example 2. Find the eigenvalues and eigenvectors of the sym-
metric interval matrix

eA ¼ 1;1½ � �4;1½ �
�4;1½ � 1;1½ �

� �
:

Solution: Consider midpoint matrix m Að Þ ¼ 1 �1:50
�1:50 1

� �
.

The eigenvalues of m eA� �
are 2:50;�0:50 and the corresponding

normalized eigenvectors are 0:71
�0:71

� �
;

0:71
0:71

� �
. Also consider

width matrix w eA� �
¼ 0 2:50

2:50 0

� �
. The eigenvalues of w eA� �

are 2:50;�2:50. Here choose positive eigenvalue 2.50 and the cor-

responding normalized eigenvector is 0:71
0:71

� �
.

Now the unique interval eigenvalues of the given interval

matrix eA are:

1. 2:50;2:50h i ¼ 2:50� 2:50;2:50þ 2:50½ � ¼ 0;5½ �
2. �0:50;2:50h i ¼ �0:50� 2:50;�0:50þ 2:50½ � ¼ �3;2½ �

Therefore the interval eigenvalues of eA are k1 ¼ 0;5½ � and
k2 ¼ �3;2½ �.

The normalized interval eigenvectors of the given interval

matrix eA are computed as follows:
Case 1: The normalized interval eigenvector corresponding to

the interval eigenvalue 2:50;2:50h i is
0:71
�0:71

� �
;

0:71
0:71

� �� �
¼ 0:71

�0:71

� �
; 0:71ð Þ

� �
¼ 0:71� 0:71;0:71þ 0:71½ �

�0:71� 0:71;�0:71þ 0:71½ �

� �
¼ 0;1:42½ �

�1:42;0½ �
� �

, since 0:71 is the absolute minimum. For the eigenvalue ~k1 ¼ 0;5½ �,
the corresponding normalized eigenvector is ~m1 ¼ 0;1:42½ �

�1:42;0½ �
� �

.

Case 2: The normalized interval eigenvector corresponding to
the interval eigenvalue of �0:50;2:50h i is

0:71
0:71

� �
;

0:71
0:71

� �� �
¼ 0:71

0:71

� �
; 0:71ð Þ

� �
¼ 0:71� 0:71;0:71þ 0:71½ �

0:71� 0:71;0:71þ 0:71½ �
� �

¼ 0;1:42½ �
0;1:42½ �

� �
For the interval eigenvalue ~k2=[-0.50,2.50], the corresponding nor-

malized interval eigenvector is ~m2=
0;1:42½ �
0;1:42½ �

� �
. Therefore the inter-

val eigenvalues of eA are ~k1 ¼ 0;5½ �; ~k2 ¼ �3;2½ � and the
corresponding normalized interval eigenvectors are

m1 ¼ 0;1:42½ �
�1:42;0½ �

� �
; m2 = 0;1:42½ �

0;1:42½ �
� �

.
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5. An application on electric circuits

Systems of differential equations can be used to model a variety
of physical systems, such as predator–prey interactions, vibration
of mechanical systems, electrical circuits etc. In real-life problems,
the systems are usually complex and have to be modelled as mul-
tiple degrees-of-freedom systems, resulting in systems of linear
ordinary differential equations. In real life phenomenon, some or
all the decision parameters of the problems may not be known pre-
cisely and it may frequently be treated as suitable intervals.

Consider the following electric circuit given in Fig. 1 witheC ¼ �0:333;1:667½ �; ~R1 ¼ �1;3½ �; ~R2 ¼ �0:400;1:600½ � andeL ¼ 0;4½ �. (see Figs. 2 and 3).
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The given system is modeled as a system of interval linear dif-
ferential equations as

deI
dt ¼ �2:500;1:500½ �eI þ �1:500;2:500½ �eV
deV
dt ¼ �2:500;�0:500½ �eI þ �3:500;�1:500½ �eV ð1Þ

i:eð Þ d
dt

eIeV
 !

¼ �2:500;1:500½ � �1:500;2:500½ �
�2:500;�0:500½ � �3:500;�1:500½ �

� �
eIeV

 !

We solve this system using the concept of interval eigenvalues and
interval eigenvectors, for which the interval eigenvalues and inter-
val eigenvectors are computed using the proposed pairing
techniques.

The interval matrix eA corresponds to the given system of inter-
val linear differential equations (1) is

eA ¼ �2:500;1:500½ � �1:500;2:500½ �
�2:500;�0:500½ � �3:500;�1:500½ �

� �
:

By applying the proposed pairing techniques, the interval eigen-

values of eA are ~k1 ¼ �4;2½ � and ~k2 ¼ �5;1½ � and the corresponding

normalized interval eigenvectors are~m1 ¼ 0:260;1:154½ �
�1:154;�0:260½ �

� �
and

~m2 ¼ �0:763;0:131½ �
0:502;1:396½ �

� �
respectively.

The solution of the given system of interval linear differential
equations (1) iseI tð ÞeV tð Þ

 !
¼ ~c1e �4;2½ �t 0:260;1:154½ �

�1:154;�0:260½ �
� �

þ ~c2e �5;1½ �t �0:763; 0:131½ �
0:502;1:396½ �

� �
:

ð2Þ

Suppose that initially the voltage across eC and loop current

through eL are approximately ~0 and ~2 respectively, we have the ini-

tial conditions eV 0ð Þ ¼ 1:750;2:250½ � and eI 0ð Þ ¼ 0;0½ �. Applying
these initial conditions in equation (2), we get

0:260;1:154½ �~c1 þ �0:763;0:131½ �~c2 ¼ 0;0½ �
�1:154;�0:260½ �~c1 þ 0:502;1:396½ �~c2 ¼ 1:750;2:250½ �: ð3Þ

Solving equation (3) by applying Gauss elimination method and the
proposed pairing technique, we get ~c1 ¼ 0:967;1:861½ � and
~c2 ¼ 2:715;3:609½ �. The current and the voltage at any time t is
given byeI tð Þ ¼ 0:553;1:447½ �e �4;2½ �t þ �1:447;�0:553½ �e �5;1½ �teV tð Þ ¼ �1:447;�0:553½ �e �4;2½ �t

þ 2:553;3:447½ �e �5;1½ �t:

ð4Þ

After simplification, we geteI tð Þ ¼ e�t � e�2t ;3
� 	 ¼ e�t � e�2t � 3; e�t � e�2t þ 3

� �
eV tð Þ ¼ �e�t þ 3e�2t ;3

� 	 ¼ �e�t þ 3e�2t � 3;�e�t þ 3e�2t þ 3
� �

:

The above example refers to a system of interval linear differen-
tial equations arrived at based on the premise that the entries are
uncertain which explains the system of interval linear differential
equations which is solved.

With this choice of initial conditions eV 0ð Þ ¼ 1:750;2:250½ � andeI 0ð Þ ¼ 0;0½ �, our solution shows that as time progresses the capac-
itor discharges exponentially quickly through the circuit. In case
7

the entries are precisely known, then the above solution automat-
ically transforms to the solution of the crisp system of linear differ-
ential equations if we replace intervals in the solution by their
corresponding mid points.
6. Conclusion

On the collection IR of all closed intervals in R, a relation is
defined which turns out to be an equivalence relation on IR. The
collection of all equivalence classes under the defined equivalence
relation is a field E which is isomorphic to R. This field E in turn
induces a vector space En over E which is a finite dimensional vec-
tor space over E for n ¼ 1;2; 
 
 
. A whole gamut of ideas which are
available in classical linear algebra can now be applied to En over E
including canonicalization of interval matrices to Diagonal form,
Jordan form and Rational form. We can extend this study to Bilin-
ear and Quadratic forms also and investigate some interesting
applications of these forms.

In En over E, we are able to obtain unique eigenvalues and nor-
malized eigenvectors of interval matrices as in the classical case.
We have provided the methodology for obtaining the eigenvalues
and normalized eigenvectors of interval matrices with two suitable
examples. The distinct advantage of the Field and Vector space
structure introduced in this paper guarantees the applicability of
celebrated theorems in classical linear algebra to interval linear
algebra. By applying the proposed pairing techniques, we also dis-
cussed a real life example on electric circuit theory under uncertain
environment which is modelled as a system of interval linear dif-
ferential equations. Numerical examples are provided to illustrate
the theory developed in this paper.
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