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Detecting mineralogical alteration by hydrocarbon micro-seepage from trap to surface across the
deformed structure, through Comparative analysis study of hyperspectral image (EO-1, Hyperion), and
multispectral (landsat7 and Advanced land imager (Ali) to map soil alteration by petroleum seepage with
applying remote sensing techniques as (band ratios, supervised, SAM classification, and hydrocarbon
detection and index (HD and HI) calculation to detect the potentiality of hydrocarbon seepage in the area.
The type of spectral resolution accuracy available for each space imaging platform can be used to choose
which is best in determining the target and whether exploration yields oil. Hyperspectral remote sensing
data are integrated with a GIS framework Weighted Sum (Spatial Analyst) classified hydrocarbon seepage
prospects into five potential zones very good, good, intermediate, poor, and very poor probable potential-
ity. The spatial lithologic carbonaceous alteration appears closely coincident along reactivated leaking
faults that cause hydrocarbon micro-seepage and altered surface lithology and mineralogical cement.
The hyperspectral images have proven their worth in identifying and studying hydrocarbon leaks and
the resulting environmental pollution and mineral alteration, as well as use micro-seeps as a pathfinder
to locations of new oil explorations discoveries that can use as a pre-drill prediction of hydrocarbon
occurrence and detected a prospect area for hydrocarbon drill.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hydrocarbons migrate upward from hydrocarbon structure
traps as micro-seepage to the surface causing lithological alter-
ation and environmental pollution. Many oil companies tried to
discover areas where hydrocarbons were leaking, hundreds of
years ago in order to obtain petroleum. Hydrocarbon exploration
is expensive and time-consuming, requiring the employment of
numerous kinds of exploration such as geophysical surveys, geo-
logical interpretation, and geochemical analyses. Recently,
researchers have attempted to employ alternate, less expensive,
and faster approaches to provide early data that advise the pres-
ence of new exploration locations, Garain et al. (2019). Many
researchers investigated the influence of hydrocarbon seepage on
various land cover types such as plant change caused by microbi-
ological anomalies, and soil alterations distinguishable from
nearby soil/rock. Based on an aircraft remote sensing image stud-
ied such as Asadzadeh and de Souza Filho (2017), studied the spec-
tral response for hydrocarbon seepage, Schimmelmann et al.
(2018) in Midwest USA hydrocarbon seepage, Garain et al (2019),
Huang et al. (2019) studied the hydrocarbon micro seepage on
the plant using a hyperspectral image, De la Rosa et al. (2021) also
Tveit et al. (2021), (Tian, 2012) and Ellis (2002)studied hydrocar-
bon seepage reflectance Also, Shu-Fang et al. (2008), studied Spec-
tral indicators of oil seepage on vegetation, Kühn et al. (2004) using
hydrocarbon index for oil indicator, Kruse et al.(2003) compare the
hyperspectral data for mineral mapping, and Schumacher (1996)
studied the hydrocarbon soil alteration. There are no studies in
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the study area or in Egypt that follow the same strategy as this
research.

The present work presents a new approach in geo-remote sens-
ing by integrating subsurface geology from seismic data and wells
with remote sensing and GIS techniques to determine the possibil-
ity to reach the possible places of exploration by studying the min-
eral change of the rocks affected by the leak, by mapping and
identifying some minerals that are considered the evidence and
accompanying the oil leak. Using remote sensing techniques such
as (band ratio, SAM classification, PCA, Hydrocarbon detection cal-
culation, and GIS Weighted sum method) trying to link the results
together and then determine the success of this technology in
achieving the goal or not.

The geological structures of the study area act as petroleum
traps were studied using seismic and oil wells data, which proved
the presence of leakage through structural deformation of some
wells through subsurface study, El-Hadidy et al. (2016) which led
to thinking about completing the research, focusing on dry wells
Fig. 1. Location map of the study area and spatial relationship between different satelli
2016).
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with traces of oil. So, instead of spending a lot of time and money
on traditional geophysical methods, try to get the best remote
sensing data you can and then use Geographic information systems
(GIS) to link and integrate the results.

The mineral change of the surface rocks affected by the hydro-
carbons leaks detects by remote sensing applications and tech-
niques by using comparative analysis for spectral signature and
radiometric calibration for hyperspectral (EO-1) image with 220
spectral bands <10 nm bandwidth and multispectral image (ALI)
with 10 spectral bands and Landsat7 ETM+ with 7bands of 60–
120 nm bandwidth.

Hydrocarbon leakage is associated with subsurface deformed
structure, especially the open fault that acts as corridors through
which oil escapes to the surface. This research utilizes multispec-
tral images Landsat, Ali, and hyperspectral images for mapping,
evaluating, and detecting the leaking potentiality of hydrocarbon
and studying the mineral associated with rock alteration accompa-
nying this leak.
te images used, 3D subsurface fault map with well locations (after El-hadidy et al.,
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1.1. Study area

The study area located in the Western Desert of Egypt, the
north-eastern part of Sallum, at the Mediterranean Sea coast,
bounded by longitudes 25� 400 and 26� 150E, latitudes 31� 50 and
31� 400N, consider a part of Matruh Basin with high hydrocarbon
accumulation, contain many exploration wells (Fig. 1).

The northernWestern Desert is a plateau covered with Neogene
sediments, a Marmarican Homoclinal plateau extending between
Alexandria and El-Sallum with an area of about 216,000 km2, with
different lithological units and structures reflecting various envi-
ronmental conditions, play a significant role in the oil accumula-
Table 1
Different satellite sensor characteristics used in the study.

Attribute Sensors EO-1 (HYPERION)

Sensor type hyperspectral
Acquisition date 2015-08-16
No. of bands 242
VNIR Range Bands.(8–57)

(436 nm–926 nm)
SWIR Range Bands.(8–57)

(932 nm–2395 nm)
Bands for ‘‘HD and HI” calculation B115, B116, B117, B156, 158 and 159
overlapping and inactive bands were

removed
bands (1–7, 58–78, and 225–242, after 3

Subset bands B86, B115, B116, B117, B126, B154, B156
B214
B216, B218

Spectral resolution and range 426–2395 nm
(10 nm)

Spatial resolution 30 m
Swath width 7.6 km
Spectral coverage Continuous
PAN band resolution N/A

Fig. 2. Flow chart for the applied satel

3

tion. The study area was subjected to various tectonic regimes
over varying time intervals, which had an effect on the hydrocar-
bon accumulations affected by the Syrian arc system, which began
in the Cretaceous and progressed through the Tertiary and Quater-
nary periods, with structure trends NW-SE and NE-SW, (Shata,
1955). Late Cretaceous-Eocene is considering the main kitchen
for hydrocarbon, many tectonic deformations and structure control
cause the accumulation of hydrocarbons formed high potential
reservoirs – Cretaceous deposits (Abu El Naga, 1984). The research
region was tectonically paleo-active, folded, and divided into
blocks by intersecting normal faults extending in various trends
(NNW-SSE orientations with right-lateral strike-slip movement),
EO-1 (ALI) Landsat-7

multispectral multispectral
2015-08-16 2015-07-26
10 8
Bands.1–6
(0.433–0.890 nm)

Bands.(1–4)
(0.450–0.890 nm)

Bands.(7–9)
(1.200 nm–2.350 nm)

Bands.(5–7)
(1.550 nm–2.350 nm)

B5-B7 B5-B7
1)

, B158, B159, B175, B195, B205,

433–2350 nm
(variable)

441–2345 nm
(variable)

30 m 30 m
36 km 185 km
Discrete Discrete
10 m 13 � 15 m

lite image processing procedures.
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and NE-SW (ENE-WSW left-lateral strike-slip fault). There are mul-
tiple notable NW-SE, ENE-WSW, WNW-ESE, and N-S fault trends
based on the examination of the two-way time (TWT) structural
contour maps of the Cretaceous and Tertiary rock units, El-
Hadidy et al. (2016).
2. Data and method

Used satellite images downloaded from the USGS website
(https://earthexplorer.usgs.gov), with Path = 180, Row = 38,
(Fig. 1). Hyperion (EO-1) satellite-enabled the work high image
detailed, and (Aster DEM with 30 m resolution) data which was
used for the detailed processing and verification of Landsat pro-
cessing results. Characteristics of satellite images used for this
analysis are summarized in Table 1.

To achieve the Main objectives, analyze the spectral signature of
hydrocarbon seeps and possible associated carbonaceous minerals
as a pathfinder for leaking by detailed classified mapping and dif-
ferent band math calculations to detect the altered minerals act as
good indicators for the presence of micro-seepages. Finally, map-
ping the potential hydrocarbon using multispectral and hyperspec-
tral images, linking the lithological change to the geological
structures in the area (faults) by Gis, and knowing whether the
leakage through the faults can be known in advance by using
remote sensing images and achieve the objective of the study.

Surface geology of the study area extracted from DEM image by
directional filter technique, analysis of the linear features extracted
from these data will help to interpret and understand the surface
geologic structures (faults) in the area by GIS.

Digital image processing for remotely sensed data including,
enhancement and visualization of false-color composite images,
classification method using minimum noise fraction (MNF) and
(SAM), band rating, principal components analysis (PCAs) to pro-
duce a detailed classified mineralogical and structure maps and
extract spectral information that is difficult or impossible to see
from the raw data.

All images processed with ENVI 5.1., spectral library database
(USGS spectral or JPL spectral) to compare the spectral signature,
then used ArcGIS used to link results and maps to reach the best
comparisons and zoning the hydrocarbon probable potentialities.
The work flowchart for the present investigation illustrated in
Fig. 2.
Fig. 3. Band ratio applied in the different remote sensing data for lithological
discrimination, a) Landsat TM+, b) ALI c) hyperspectral.
2.1. Image enhancement

Image enhancement techniques improve and clarify raw data of
interest by introducing subtle differences in spectral characteris-
tics and data signatures, making the features easier to study and
comprehend. Various enhancement procedures were applied to
the remote sensed image, Contrast enhancement, Histogram
equalization, Linear stretch, . . ..Sh.M. El-Hadidy(2020).
2.2. Principal component analysis (PCA):

PCA aims to focus and compress the image’s spectral informa-
tion with different units from n spectral bands to a definite number
of bands, particularly the first four, which contain the image’s high
contrast differences data, calculate and convert to a new coordi-
nate system to improve the display units (Sabins, 1997). This
method is very useful in focusing on the contrasts in the image
and enhancing it (e.g. Farag et al., 2019; Abdelmalik, 2020), Espe-
cially the hyperspectral images that consist of many bands (220
bands), focusing and separating them into a few bands to facilitate
the study.
4

2.3. Band ratio and band algebra

This is a method based on calculating the spectral value (DN) in
one band with high reflectance and dividing it by the qualitative
value in the corresponding band, to show one of the phenomena
as one of the value minerals from the rest of the image’s compo-
nents, mineral separated and evaluated from the image, (Sabins,
1997). Band algebra can apply mathematical equations that com-
bine more than one band and put the output in R, different output
in G, and another calculated output in B instead of using a single
band. Discriminate different geologic rock units better than when
separate bands are used in the RGB color combination images
(Abdelmalik and Abd-Allah, 2018; Fowler et al., 2020).

The following ratios are most widely used, mineral indices cal-
culated clay mineral (B5/B7), ferrous iron minerals (B3/B1), and
iron oxide (B4/B2) to identify possible spectral anomalies related
to hydrocarbon-induced soil alteration in the Landsat-7 image

https://earthexplorer.usgs.gov


Fig. 4. 1) False-color composite principal component analysis image. 2)-Hyperion EO-1 lithological alteration overlay. A) Glauconitic overlay, B) Ferrous overlay, C)
Phosphatic overlay. 3) Spectral signatures of different target rocks and minerals (Andreoli et al., 2007). 4) spectral reflectance behavior of A) phosphatic sand, B) illite shale, C)
Carbonaceous shale, and D)Glauconitic sand. 5) Contaminated and uncontaminated soil reflectance and spectral signature after (Andreoli et al., 2007) and (Rangzan et al.,
2020).
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analysis, hydrocarbon concentration in the soil by the following
ratio [(B2/B3), (B4/B3), ((B2/B3- B4)/B3)) in RGB, This indexes con-
nected to feature attributes can lead to the identification of regions
with anomalous readings and locations with higher hydrocarbon
content. band ratio (B195/B220), and (B205/B218) for Hyperion
data.

Hydrocarbon contamination and alteration were detected by
two principal computations of band algebra: (HD), (HI) calculation.
A band ratio (index) created from each spectral signature using
average reflectance of two bands, one covering the spectral range
from 2.211 to 2.223 lm and another including the spectral region
between 2.309 and 2.346 lm, hydrocarbon-bearing substance
absorption features peaks centered at 1732 and 2310 nm, Fig. 4.
‘‘Multispectral index”, two bands were used to create an index of
SWIR7/SWIR5, also used [(B2/B3), (B4/B3), ((B2/B3) - B4)) / B3))
in RGB] in ETM+ for hydrocarbon detection anomalies and for
(Ali) apply the following ratio [(B9/B8), (B7/B5), ((B3/B4) – (B5/
B4))] in RGB. The hydrocarbon index is calculated upon the formula
of (Kühn et al. 2004), and Cloutis (1989) ‘‘Hyperspectral index”,
based on the ratio.
5

HI ¼ ððR 2:211� R2:223lmÞ=ðR2:309� R2:326lmÞ ð1Þ

HI ¼ 2=3 R1741lm� R1705lmð Þ
þ R1705lm� R1729lmð Þ ð2Þ

where, if HI > 1 the indices of hydrocarbons detected.

HD ¼ Aþ Cð Þ=2BÞ ð3Þ
where A = band115 (2.297 lm), B = band116 (2.313 lm) and
C = band117 (2.329 lm).

When HD > 1 indicates potential hydrocarbon (after NASA,
2006).

2.4. Weighted Sum (spatial analyst)

Weighted Sum works by multiplying the set weight by the cho-
sen field values for each input raster. It then sums (adds) all of the
input rasters (hyperspectral classified image, HI, HD, alteration
minerals result from band algebra) to produce an output raster
(probable potentiality of the prospect area).



Fig. 5. Supervised classification image for study area. A) Landsat ETM+ B) (ALI) image C)EO-1Hyperion.
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2.5. Data classification

The supervised classification process is used to digitally map
the land cover classes.

2.5.1. Spectral hourglass processing scheme including (The spectral
Angle Mapper (SAM)):

Classify the image based on evaluation of the variance and
covariance of endmember spectral patterns, and evaluate the
unknown pixel. The most accurate classification method depends
on statistical calculations, including many steps such as (Minimum
Noise Fraction) which compress the raw data and decorrelate the
data to a new coordinate dimension to reduce the raw data to a
definite number of bands, and Pixel Purity Index-Mapping (PPI)
which determine the purest pixel to detect and extract the n- end-
member using the n-Dimensional-Visualizer tool, then classified
endmember compared with reference signature from the spectral
libraries, then subset the compressed data from MNF and inverse
MNF with few bands which used in classification, (Research
Systems, Inc., 2005).

The (SAM) classifies image pixels by using the PPI index, map-
ping the specific targets using the previous various minerals or
rocks with different spectral characteristics in the spectral range
from 400 to 2500 nm, the SWIR spectral range (2000–2500 nm)
covers several important spectral features of minerals; we focus
on this range of which the Hyperion has 40 bands.

2.6. Lineament extraction

Lineament extraction and interpretation from satellite images
were done manually or automatically. The mapping of slope and
aspect has been determined for the detection of faults by using
several hill shading and directional filtering techniques with differ-
ent angles (45-60-90-180-270- and 360).
6

2.6.1. Edge enhancement
Edge enhancement, as well as directed filters in various orienta-

tions 90 and 180� with low pass and high pass, emphasizes signa-
tures, identifying linear characteristics such as faults and joints (El-
Hadidy, 2021).
3. Result and discussion

Band ratio results enable to discriminate different soil alter-
ations. The Landsat ETM+ ratio (B3/ B1), (B5/B7) and (B3/B5) in
(RGB) respectively, (B4/B5), (B5/B7) and (B3/B1), (Fig. 3) has a color
variation show more geologic contrast between units to discrimi-
nation lithological unit than a visual false-color image. (B4/B5)
dominate silicate and hydroxyl bearing rocks brighter related to
surrounding, the grayscale (B3/B1) detects iron-bearing rocks with
high reflectance in 600 lm related to other rock types which
appear brighter than surrounding rock.

For mineral mapping band ratio of (B7/B4) dominated
carbonate-bearing lithologic units with high reflectance in
2300 lm show brighter than other units. (B5/B7) appears clay-
bearing rock with high reflectance in 2200 lm will and can be sep-
arated(Fig. 4).

(B195/B220) of hyperspectral data for silica discrimination,
while (B205/B218) for carbonate discrimination, (B207/B220) for
clay discrimination which appears as bright in the image, (Fig. 3).

Various applied techniques and visual interpretations show the
principal component images highlighting the different lithologies’
boundaries (Fig. 4). The PCA1 contains the main topography crite-
ria not used to decrease the topographic effects, PCA 2,3,4 shows
the main data in the image giving high contrast of image informa-
tion enabling to separate lithological units, and the PCA bands
above 4 show noise data, not used in the study. The PCA 1 to 3 con-
sidering the higher Eigenvalues, often contain higher spectral
information content, whereas weak values suggest non-



Fig. 6. 1) Surface faults and lineament from satellite images. The resulting image of a high-pass filter (5 � 5) with directional Azimuth A) 180�, and B) 90�. 2) A)Sub-Surface
block model with faults B) sub-surfce TWT map of modeled tops (Modified after El-Hadidy et al., 2016).
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Fig. 7. Comparison of the EO-1 Hyperion, and Landsat ETM supervised classification maps with overlaid sub-surface faults from seismic data and identified surface faults
from satellite images.
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distinguishing differences that may be ignored. The generated PCA
maps provide the best-selected spectra for determining the min-
eral alteration caused by the oil spill. The Spectral Angle Mapper
(SAM) is considered one of the best classification methods to
map the lithological units and detect altered and unaltered zone.
The resulted ETM+ is classified into main six dominant classes:
seawater, sandstone, limestone, iron as cement, shale, and siltstone
Fig. 8. The hyperspectral remote sensing-derived HD and HI ratio indices, B)micro-s

8

(Fig. 5), results obtained are poor, with restricted separation can
separate vegetation, red-weathered sandstone, and carbonate
classes although the incomplete separation between detrital and
nondetrital alteration minerals.

The classified map of (ALI), (Fig. 5), gives nine different classes
with more separation for lithological alteration, separating the
general basic units into more detailed classes, where the secondary
eepage Hydrocarbon potentialities map result from GIS weighted sum method.



Fig. 9. A) The remote sensing-derived hydrocarbon detection result of ALI image. B) hydrocarbon detection of Hyperion EO1-image overlaid on the hydrocarbon ratio result
for Landsat image in the background.
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components that appeared show the alteration as Glauconitic sand
and carbonaceous shale, considering evidence of hydrocarbon
seepage, than the landsat7 that show the separation on broad
categories.

Hyperspectral has greater discrimination capability for map-
ping minerals, which were split into twelve different classes: lime-
stone, dolomite, carbonaceous shale, illite, Glauconite, and ferrous
mineral, which are important in identifying hydrocarbon seepage.
Accuracy was determined by comparing the signatures of collect-
ing end-members to the signature of the USGS spectral library.
Hyperion EO-1(hyperspectral and Ali) classification are mostly
similar with an overall accuracy of over 90 percent and kappa coef-
ficients of 0.85. Because the presence of more SWIR reflectance
bands leads to better discrimination and lithologic mapping than
ETM+ (Fig. 5).

The area is dissected by various fractures and faults that serve
as structural traps for oil accumulation in the area (NNE, NNW,
E-W, and ENE) directions formed from rejuvenations of deformed
structures overtime to reach the surface with varying stress trends,
and hydrocarbon leakage through them is visible (Fig. 6). The inte-
gration of the results maps using GIS reveals that high hydrocarbon
occurrence with high soil contamination is localized around faults
that cut the oil well, with fault numbers (1, 2, and 3) indicating
leaky faults (Fig. 7). The HD and HI calculation results from (EO-
1) data, including ALI multispectral and hyperspectral data, show
a good result for detecting hydrocarbon seeps, allowing us to infer
the places of alteration that occur from them (Fig. 8). Hydrocarbon
potentiality is created by overlays of multiplying rasters by their
assigned weight according to criteria importance and adding them
together using Weighted Sum (Spatial Analyst). The number of
reclassified that can be utilised is limited to five categories in terms
of five potential zones very good, good, intermediate, poor, and
very poor probable prospecting zones) (Fig. 8). Unlike Hyperion,
which provides reliable data, Landsat7 does not indicate hydrocar-
bon seepage concentrations. The Landsat classification results
show that the lithology around these faults is shale and clay, but
9

the Hyperion results with the hyper bands and 10 nm spectral res-
olution show that the shale around these faults is carbonaceous
with an abundance of illite, ferrous, phosphates, and kaolinite min-
erals due to hydrocarbon seeps across these faults to the earth’s
surface, and the wells drilled in the area to the east are oil shows.
The HD and HI calculations confirm the hydrocarbon value
increased around the rejuvenated leaking faults which seep the
oil from the trap, (Fig. 9).

From all results, Hyperion images provide accurate results in
mapping mineral alteration, and the (HD and HI) equation pre-
cisely reveals oil seeps and lithological pollution, followed by mul-
tispectral images of EO-1 (ALI), and the least successful is Landsat7.
Recommendations of this research possibility of studying oil leak-
age and its environmental pollution as well as in petroleum explo-
ration operations to detect new exploratory places by Hyperion,
consider more efficient in time, money, and effort.

4. Conclusion

The maps produced by various processes and techniques (PCA,
supervised classification, different band ratios for mineralogical
separation and HI, HD computation of Hyperion EO-1 (hyper-
spectral and Ali images) and landsat7 ETM+) show good,
detailed maps detecting lithological alteration contamination
by hydrocarbon seeps and deformed geological structures that
cause the hydrocarbon spill.
Landsat ETM 7+ cannot separate rock and its mineral alteration
completely or accurately due to the limited number of reflected
spectral bands, which causes some conflict, in contrast to
hyperspectral of high and narrow spectral resolution and more
SWIR bands, which enables complete and accurate separation
between different rocks and metallic alteration.
Mineralogical alterations (Glauconite, carbonaceous, abun-
dance of illite, phosphate, iron, and kaolinite) are concentrated
near reactivated faults, and wells were drilled in the area to the
east with oil showing indicating the faults were leaking.
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Calculation results of HD and HI from EO-1 (ALI multispectral
and hyperspectral data), show a good result that can detect
the hydrocarbon seeps occurrence, It is reasonable to conclude
that the higher the index value, the higher the hydrocarbon
content. Nonetheless, the assessment of oil abundance is qual-
itative rather than quantitative.
The hydrocarbon potentiality map is classified as very poor,
poor, moderate, good, and very good prospecting zones.
Hydrocarbon micro-seepage in the study area is spatially closed
due to reactivated faults causing upward migration from trap to
surface, alteration not visible with sealed faults, seepage from
faults 1,2, and 3 to surface, which is interpreted as potential
oil-contaminated soil with a high hydrocarbon index value.
According to research, high-resolution spectral remote sensing
images may be employed in petroleum reconnaissance opera-
tions with good results, saving time, money, and effort.
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