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Computational study was carried out to develop a Quantitative structure-activity relationship (QSAR)
model and molecular docking studies on 4-Phenoxynicotinamide and 4-Phenoxypyrimidine-5-carboxa
mide derivatives as potent anti-diabetic agent. Chemical structure of these molecules were optimized
with Density Functional Theory (DFT) utilizing the B3LYP with 6-31G⁄ basis set. Five QSAR models were
generated using Multi-Linear Regression and Genetic Function Approximation (GFA). Model one was
selected as the optimummodel and reported based on validation parameters which were found to be sta-
tistically significant with squared correlation coefficient (R2) of 0.9460, adjusted squared correlation coef-
ficient (R2 adj) value of 0.9352 and cross validation coefficient (Q2

cv ) value of 0.9252. The chosen model
was subjected to external validations and the model was found to have (R2test) of 0.8642. Molecular
docking studies revealed that the binding affinities of the compounds correlate with their pEC50 and
the best compound has binding affinity of �10.4 kcal/mol which formed hydrogen bond and hydrophobic
interaction and with amino acid residues of TGR5 receptor. QSAR model generated and molecular docking
results propose the direction for the design of new anti-diabetic agent with better activity against TGR5
target site.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Non-insulin-dependent diabetes mellitus (NIDDM) which is
usually refers to as type 2 diabetes mellitus (T2DM), is a
metabolic disorder characterized by high glucose level in the
blood. Wide range of anti-diabetic drugs and treatments are
available for this metabolic syndrome problem. Many patients
suffering from this type of diabetes are unable to get
satisfactory glycemic control with these treatment (Saydah
et al., 2004). This led to development and designing of novel
drugs with better activities against multi-drug resistance and
uncontrolled T2DM (See Fig. 1).
TGR5 is a class of G protein-coupled receptor (GPCR) for bile
acids (BAs) which was first identified in 2003. Before its identifica-
tion, farnesoid X receptor (FXR) was the only known receptor acti-
vated by BAs. The TGR5 level among different tissues varies
significantly. The highest level of TGR5 is in the gallbladder, mod-
erate level in the intestine, spleen and placenta and low level
expression in skeletal muscle and liver (Vassileva et al., 2006).
TGR5 activation stimulates Glucagon-like peptide-1 (GLP-1) secre-
tion from intestinal enteroendocrine cells by increasing the intra-
cellular cAMP concentration (Watanabe et al., 2006).

A novel analogue of 4-Phenoxynicotinamide and 4-Phenoxypyr
imidine-5-carboxamide derivatives has been reported as potent
anti-diabetic agent against TGR5 receptor (Duan et al., 2012). Syn-
thesis of novel molecules are typically developed using a trial and
error approach, which is time consuming and costly.

The advent of computational chemistry led to challenges of
drug discovery (Cramer et al., 1988). QSAR establish a relationship
between various molecular properties of molecules and their
experimentally known activities (Ibezim et al., 2009). QSAR tech-
nique alongside with molecular docking approach were employed
to predict the activities of various compounds and elucidate the
specific areas where interaction (steric, electrostatic, hydrogen
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Fig. 1. (A) Prepared structure of TGR5 receptor (B) 3D structure of the prepared ligand.
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bond donor, hydrogen bond acceptor and hydrophobic) may
decrease or increase the activity of the inhibitor molecules. Few
researchers; (Amit et al., 2016; Bajpai and Malik, 2003; Dasoondi
et al., 2008; Dieguez-Santana et al., 2017; Dixit and Saxena,
2008) have carried QSAR studies to established relationship
between some inhibitory compounds and their activities against
diabetic mellitus. However molecular docking study has not been
emphasis to understand the binding mode and binding interac-
tions between the inhibitory compounds and the target site.

The aim of this research was to build a QSAR model that will
predict the activity of 4-Phenoxynicotinamide and 4-Phenoxypyri
midine-5-carboxamide derivatives against type 2 diabetes mellitus
(T2DM) and to carry out molecular docking studies to elucidate the
kind of interaction existing between the inhibitor compounds and
the target site (TGR5).
2. Materials and methods

2.1. Data collection

Thirty-six (36) molecules of 4-Phenoxynicotinamide and 4-Phe
noxypyrimidine-5-carboxamide derivatives as potent and orally
efficacious TGR5 agonists that were used in this studies were got-
ten from the literature (Duan et al., 2012).
Table 1
Molecular structure of inhibitor compounds and their derivatives as anti-diabetic agents.

4 Phenoxypyrimidine-5-carboxamide derivatives

S/N Molecules

1a
2.2. Biological activities (pEC50)

The biological activities of 4-phenoxypyridine-5-carboxamide
and 4-phenoxynicotinamide derivatives against TGR5 of type 2
diabetes mellitus measured in EC50 (nMÞ were converted to loga-
rithm unit (pEC50 = �logEC50) in order to increase the linearity
activities values and approach normal distribution. The observed
structures with their biological activities of the molecules were
presented in Table 1.

2.3. Optimization

The optimizations of the compounds were achieved by employ-
ing Density Functional Theory (B3LYP B3LYP/6-31G⁄ basis set) uti-
lizing Spartan 14 Version 1.1.4 software. (Becke, 1993; Lee et al.,
1988).

2.4. Molecular descriptor calculation

The optimized structures were submitted for descriptor calcula-
tion. Molecular descriptors for all the thirty-six (36) molecules of
the inhibitor compounds were calculated utilizing the PaDEL-
Descriptor software V2.20. A total of 1875 molecular descriptors
were calculated.
EC50 (nM) pEC50 Predicted Activity Residual

156 6.8068 6.797241 0.009559

(continued on next page)



Table 1 (continued)

4 Phenoxypyrimidine-5-carboxamide derivatives

S/N Molecules EC50 (nM) pEC50 Predicted Activity Residual

2 20 7.6989 7.901818 �0.20292

3 30 7.5228 7.202141 0.320659

4 710 6.1487 6.138077 0.010623

5 30 7.5228 7.821121 �0.29832

6a 2.9 8.5376 8.254908 0.282692

7a 590 6.2291 6.710226 �0.48113

104 S.E. Adeniji et al. / Journal of King Saud University – Science 32 (2020) 102–115



Table 1 (continued)

4 Phenoxypyrimidine-5-carboxamide derivatives

S/N Molecules EC50 (nM) pEC50 Predicted Activity Residual

8a 23 7.6382 7.688441 �0.05024

9a 164 6.7851 6.489332 0.295768

10 49 7.3098 7.493192 �0.18339

11 127 6.8961 7.005227 �0.10913

12 3.1 8.5086 7.710525 0.798075

13 7.1 8.1487 8.167491 �0.01879

(continued on next page)

S.E. Adeniji et al. / Journal of King Saud University – Science 32 (2020) 102–115 105



Table 1 (continued)

4 Phenoxypyrimidine-5-carboxamide derivatives

S/N Molecules EC50 (nM) pEC50 Predicted Activity Residual

14 69 7.1612 7.784653 �0.62345

15 6.2 8.2076 8.142226 0.065374

16 1.5 8.8239 8.714862 0.109038

17 2.8 8.5528 8.644922 �0.09212

18 3711 5.4305 5.379953 0.050547

19a 535 6.2716 6.536593 �0.26499
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Table 1 (continued)

4 Phenoxypyrimidine-5-carboxamide derivatives

S/N Molecules EC50 (nM) pEC50 Predicted Activity Residual

20a 3151 5.5015 5.079 0.4225

21a 160 6.7958 6.400758 0.395042

22 10,000 5.000 5.056796 �0.0568

23 4886 5.3110 5.351652 �0.04065

24a 451 6.3458 5.388271 0.957529

4 Phenoxynicotinamide derivatives
25 1.5 8.8239 8.612203 0.211697

(continued on next page)
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Table 1 (continued)

4 Phenoxypyrimidine-5-carboxamide derivatives

S/N Molecules EC50 (nM) pEC50 Predicted Activity Residual

26 47 7.3279 7.296042 0.031858

27a 27 7.5686 7.974061 �0.40546

28 7.9 8.1023 7.974061 0.128239

29 12 7.9208 7.725444 0.195356

30 12 7.9208 8.154828 �0.23403

31a 12 7.9208 7.840378 0.080422
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Table 1 (continued)

4 Phenoxypyrimidine-5-carboxamide derivatives

S/N Molecules EC50 (nM) pEC50 Predicted Activity Residual

32 0.72 9.1427 8.392342 0.750358

33 0.46 9.3372 9.139482 0.197718

34 0.60 9.2218 8.951027 0.270773

35 0.31 9.5086 9.210468 0.298132

36 0.72 9.1426 9.674048 �0.53145

Where superscript a represent the test set
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2.5. Normalization and data pretreatment

The descriptors’ value for all the molecules were normalized
using Eq. (1) in order to give each variable the same opportunity
at the onset to influence the model (Singh, 2013).

X ¼ X1 � Xmin

Xmax � Xmin
ð1Þ
Where Xi is the value of each descriptor for a given molecule,
Xmax and Xmin are the maximum and minimum value for each
column of descriptors X.

2.6. Data division

The data set was split into training set and test set by employing
Kennard and Stone’s algorithm (Kennard and Stone, 1969). The



Table 2
Generally accepted value for the validation parameters for a given QSAR model.

Parameter Definition Recommended
value

R2 Coefficient of determination �0.6
P(95%) Confidence interval at 95% confidence level <0.05

Q2
cv

Cross validation coefficient >0.5

R2 - Q2
cv Difference between R2 and Q2

cv
�0.3

Next. test set Minimum number of external test set �5

c R2
p

Coefficient of determination for Y-
randomization

>0.5
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training set comprises 70% of the data set which were used to build
the model while the remaining 30% of the data set (test set) were
used to validate the built model.

2.7. Internal validation of model

Material studio software version 8 was used to determine the
internal validation parameters by employing the Genetic Function
Approximation (GFA) method. The validation of the built model
was evaluated by employing the Friedman formula (LOF) which
measured the fitness score of the model. LOF is defined as;
(Friedman, 1991) .

LOF ¼ SEE

1� Cþd�p
N

� �2 ð2Þ

The Standard Error of Estimation (SEE) is equivalent to the mod-
els standard deviation. It’s a measure of model quality and a model
is said to be a better model if it has low SEE value. SEE is defined by
equation below;

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYexp � YpredÞ2
N � P � 1

s
ð3Þ

c is the number of terms in the model, N is the number of
compound that made up the training set, p is the number of
descriptors, d is a user-defined smoothing parameter, (Khaled,
2011).

The correlation coefficient (R2) defines the fraction of the entire
variation in the model. The closer the value of R2 to 1.0, the stron-
ger the model generated. R2 is expressed as:

R2 ¼ 1�
P ðYexp�Ypred

Þ2P ðYexp��Ytraining
Þ2

" #
ð4Þ

Where: �Ytraining Yexp, and Ypred are the mean experimental activ-
ity, experimental activity and the predicted activity in the training
set, respectively.

R2 value varies directly with the increase in number of descrip-
tors, thus, R2 is not reliable to measure the stability of the model.
Therefore, R2 is adjusted in order to have a reliable and stable
model. The R2

adj is defined as:

R2
adj ¼

R2 � Pðn� 1Þ
n� pþ 1

ð5Þ

Where p and n are number of descriptors in the model and
number compounds that made up the training set.

The strength of the QSAR model to predict the activity of a new
compound was determined using cross validation test. The cross-
validation coefficient (Q2

cv ) is defined as:

Q2
cv ¼ 1�

P ðYpred�Yexp Þ2P ðYexp��Ytraining
Þ2

" #
ð6Þ

�Ytraining Yexp, and Ypred are the mean experimental activity, exper-
imental activity and the predicted activity in the training set,
respectively.

2.8. External validation of the model

External validation of the developed model was assessed by the
value R2

test value. The R2
test is defined by as;

R2
test ¼ 1�

P ðYpredtest � Yexptest Þ2P ðYpredtest � �YtrainingÞ2
ð7Þ
Where Ypredtest and Yexptest are the predicted and experimental
activity test set. While �Ytraining is the training set mean values of
the experimental activity.

2.9. Y-Randomization test

To be assured that the built QSAR model is strong, reliable and
not obtained by chance, the Y-randomization test was carried out
on the compound that made up the training set (Tropsha et al.,
2003). For the built QSAR model to robust and reliable, the model
is expected to have a low R2 and Q2 values for several trials. Coef-
ficient of determination (cR2

p) for Y-randomization is another
parameter calculated which should be greater than 0.5 for passing
this test.

cR2
p ¼ R� R2 � ðRrÞ2

h i2
ð8Þ

cR2
p is Coefficient of determination for Y-randomization, R is

coefficient of determination for Y-randomization and Rr is average
‘R’ of random models.

2.10. Evaluation of the applicability domain of the model

The leverage approach was employed in defining and describing
the applicability domain of the built QSAR models (Veerasamy
et al., 2011). Leverage of a given chemical compound hi, is defined
as follows:

hi ¼ XiðXTXÞ�1
XT

i ð9Þ
Where Xi is training compounds matrix of i. X is the m� k

descriptor matrix of the training set compound. XT is the transpose
matrix of X and XT

i is the transpose matrix Xi used to build the
mode. The warning leverage (h⁄) is the boundary of values for X
outliers and is defined as:

h� ¼ 3
ðdþ 1Þ

m
ð10Þ

Where m is the number of descriptors and d is the number of
compounds that made up the training set.

2.11. Quality assurance of the model

The fitness, reliability, stability, and predictability of the built
models were evaluated by the validation parameters. The mini-
mum recommended value for internal and external validation
parameters for a generally acceptable QSAR model (Veerasamy
et al., 2011) is presented in Table 2.

2.12. Docking studies

Molecular docking study was carried between 4-
Phenoxynicotinamide and 4-Phenoxypyrimidine-5-carboxamide
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derivatives and TGR5 receptor target site. The crystal structure of
TGR5 receptor used in the study was obtained from protein data
bank. The optimized structures of the 4-Phenoxynicotinamide
and 4-Phenoxypyrimidine-5-carboxamide derivatives initially
saved as SDF files were converted to PDB files using Spartan 14
Version 1.1.4. The prepared ligands were docked with prepared
structure of TGR5 receptor using Autodock Vina incorporated in
Pyrx software. The docked results were visualized and analyzed
using Discovery Studio Visualizer.

3. Results and discussion

QSAR investigation was carried out to relate the structure
activity relationship of 4-Phenoxynicotinamide and 4-Phenoxy
pyrimidine-5-carboxamide derivatives as potent inhibitor of
TGR5.

Experimental and predicted activities of the inhibitors and their
derivatives were reported in Table 1. The low residual value
between experimental and predicted activity indicates that the
model has a high predictive power.

Five descriptors were used to build a linear model for predicting
the activities of the inhibitor compounds based on Multi-Linear
Regression and Genetic Function Algorithm (GFA) method
employed. Model one was selected as the best model due to statis-
tical significance and prominent validation parameters.
Table 3
Validation parameters for each model using Genetic Function Approximation (GFA).

S/N Validation parameters Model 1 Mod

1 Friedman LOF 0.432202 0.43
2 R-squared 0.946014 0.94
3 Adjusted R-squared 0.935217 0.93
4 Cross validated R-squared 0.928759 0.91
5 Significant Regression Yes Yes
6 Replicate points 0 0
7 Computed experimental error 0 0
8 Lack-of-fit points 20 20
9 Min expt. error for non-significant LOF (95%) 0.249492 0.24
10 R2 test 0.8642 0.72

Table 4
Calculated descriptors for the training set and predicted Activity.

Molecule ATS1p ATSC1m

10 95.03083 44.03765
11 89.90462 41.47018
12 101.0936 65.57105
13 106.1096 73.3786
14 106.1096 73.3786
15 103.8825 63.66103
17 111.6874 82.05282
18 91.54652 64.2069
2 97.12432 70.75769
22 90.49977 50.7956
23 81.03962 13.29221
25 106.4529 69.43373
26 101.3988 134.1153
28 103.9259 99.87649
29 106.3046 152.0681
3 102.1403 79.86035
30 111.2104 170.0227
32 111.4308 150.0564
33 111.4689 79.39107
34 116.4468 157.0242
35 108.98 42.78697
36 116.4849 88.65475
4 102.1403 79.86035
5 99.91322 68.77706
6 102.7021 76.71254
Model 1
pEC50 = 0.125973308 ⁄ ATS1p - 0.010504968 ⁄ ATSC1m +

0.097632128 ⁄ X RDF80u - 0.064185438 ⁄ RDF55i - 4.004440770
Model 2
pEC50 = 0.108430945 ⁄ ATS1p - 0.759472864 ⁄ AATSC1m -

0.327839361 ⁄ nHother + 0.311565867 ⁄ RDF80p - 1.845286768
Model 3
pEC50 = 0.127238717 ⁄ RDF80p - 0.010483164 ⁄ ATSC1m -

0.064741508 ⁄ RDF55i + 0.077010983 ⁄ RDF80i - 4.144260897
Model 4
pEC50 = 0.127289414 ⁄ ATS1p - 0.010694802 ⁄ ATSC1m -

0.079815940 ⁄ RDF55u + 0.103816691 ⁄ RDF80u - 4.188809957
Model 5
pEC50 = 0.105099406 ⁄ ATS1p + 28.698005977 ⁄ AATSC0p -

0.068763191 ⁄ RDF55i + 0.080255278 ⁄ RDF80i - 9.976240161
All the validation parameter to confirm the stability and robust-

ness of the model were reported in Table 3 which were all in agree-
ment with validation parameters presented in Table 2. While the
calculated descriptors used in predicting the activity of each com-
pound where reported in Tables 4 and 5.

Pearson’s correlation of the four descriptors employed in the
QSAR Model was reported in Table 6. The correlation coefficient
between each descriptor in the model is very low thus, it can be
inferred that there is no significant inter-correlation among the
descriptors used in building the model.
el 2 Model 3 Model 4 Model 5 Threshold value

3894 0.435663 0.443398 0.445466 0.5
5803 0.945582 0.944616 0.944357 �0.6
4963 0.934698 0.933539 0.933229 >0.6
9402 0.927651 0.926561 0.923921 >0.5

Yes Yes Yes
0 0 0
0 0 0
20 20 20

998 0.250489 0.252702 0.253291
11 0.5322 0.5422 0.4542 �0.6

RDF80u RDF55i Predicted Activity

15.58872 23.88487 7.493192
16.38505 23.05786 7.005227
15.7974 29.19099 7.710525
17.13241 32.66898 8.167491
10.73848 28.90777 7.784653
19.21257 33.44618 8.142226
14.40201 30.60505 8.644922
9.827982 37.90672 5.379953
22.64375 27.98552 7.901818
9.667698 42.83823 5.056796
10.41906 26.95842 5.351652
0 1 8.612203
0 1 7.296042
0 1 7.974061
0 1 7.725444
14.64496 35.07428 7.202141
0 1 8.154828
0 1 8.392342
0 1 9.139482
0 1 8.951027
0 1 9.210468
0 1 9.674048
11.62847 47.06389 6.138077
18.62154 28.9224 7.821121
17.42115 24.51301 8.254908



Table 5
Calculated descriptors for the test set and predicted Activity.

Molecule ATS1p ATSC1m RDF80u RDF55i Predicted Activity

1 95.06158 48.16925 12.16469 28.90358 �0.95502
16 106.6714 72.81042 18.2977 27.10917 2.824743
19 100.4838 43.34609 6.340206 35.53609 1.158496
20 80.4678 35.2542 10.68857 26.89952 0.425606
21 95.37356 49.46837 11.31287 34.18471 1.742684
24 82.99485 18.20398 7.579923 25.10282 �0.56217
27 103.9259 99.87649 0 1 8.056255
31 106.4148 142.449 0 1 12.69045
7 88.15629 88.29171 25.9644 31.1306 2.904864
8 95.71811 87.22781 23.39105 26.99112 3.012702
9 85.9427 56.99298 13.6134 16.56309 0.917058

Table 6
Pearson correlation matrix for the selected descriptors.

ATS1p ATSC1m RDF80u RDF55i

ATS1p 1
ATSC1m 0.341475 1
RDF80u �0.4939 �0.56435 1
RDF55i �0.56598 �0.57235 0.023338 1

Table 7
Y- Randomization Parameters test.

Model R R^2 Q^2

Original 0.73026857 0.5332922 0.320676
Random 1 0.20860711 0.0435169 �0.412234
Random 2 0.74943813 0.5616575 0.3881064
Random 3 0.30303256 0.0918287 �0.326775
Random 4 0.33073537 0.1093859 �0.275737
Random 5 0.39593156 0.1567618 �0.191466
Random 6 0.19624781 0.0385132 �0.40262
Random 7 0.13642358 0.0186114 �0.567249
Random 8 0.35290385 0.1245411 �0.257905
Random 9 0.46995088 0.2208538 �0.062309
Random 10 0.16738226 0.0280168 �0.477468
Random Models Parameters
Average r: 0.33106531
Average r^2 0.13936872
Average Q^2 �0.25856557
cRp^2 0.47534142

Fig. 2. Plot of predicted activity against experimental activity of training set.

112 S.E. Adeniji et al. / Journal of King Saud University – Science 32 (2020) 102–115
Y- Randomization parameter test were reported in Table 7. The
low R2 and Q2 values for numbers of trials confirm that the built
QSAR model is stable, robust and reliable. While the cR2

p value
greater than 0.5 assured that the built model is powerful and not
inferred by chance.

The description and other statistical parameters that influence
the selected descriptors were reported in Table 8. The presence
of 2D and 3D descriptors in the model suggests that these types
of descriptors are able to characterize better anti-diabetic activities
of the compounds. The calculated Variance Inflation Factor (VIF)
values for all the four descriptors in the model were all less than
4 which imply that the descriptors were orthogonal and model
generated was significant. The null hypothesis says there is no
Table 8
List of some descriptors and their statistical influence in the QSAR optimization model.

S/N Descriptors symbol Name of descriptor(s)

1 ATS1p Broto-Moreau autocorrelation - lag 1/weighted by p
2 ATSC1m Centered Broto Moreau autocorrelation - lag 1/weig
3 RDF80u Radial distribution function - 080/unweighted
4 RDF55i Radial distribution function - 055/weighted by relat
significant relationship between the activities of the inhibitor
molecules and the descriptors used in building the model at
p > 0.05. The P-values of the descriptors in the model at 95% confi-
dence limit shown in Table 8 are all less than 0.05. This implies that
the null hypothesis is rejected. Thus we accepted the alternative
hypothesis. Hence we infer that there is a significant relationship
between the activities of the inhibitor molecules and descriptors
used in building the model at p < 0.05.

3.1. Interpretation of selected descriptors

The 2D descriptor, ATS1p which correspond to Average cen-
tered Broto-Moreau autocorrelation - lag 1/weighted by polariz-
abilities, have negative mean effect (MF) which means they have
negative impact on the activity. ATSC1m correspond to Centered
Broto Moreau autocorrelation - lag 1/weighted by mass. It has neg-
ative mean effect which indicates that an increase in the weight of
molecule leads to a decrease in its anti-diabetic activity. RDF80u
and RDF55i are one of the 3D-radial distribution function (RDF)
descriptors which were proposed based on a radial distribution
function. The radial distribution function is probability distribution
to find an atom in a spherical volume of radius. RDF descriptors are
independent of the size and rotation of the entire molecule. They
describe the steric hindrance or the structure/activity properties
of a molecule. The RDF descriptor provides valuable information
about the bond distances, ring types, planar, non-planar systems
and atom types. Having positive mean effect (MF) implies that they
have positive impact on the activity.
Class Statistics

ME VIF P- Value

olarizabilities 2D �0.37338 2.4531 0.00162
hted by mass 2D 0.23434 1.3322 4.4 x 10�10

3D 0.43242 2.4543 7.3 x 10�8

ive first ionization potential 3D 0.55430 2.3221 5.6 x 10�5



Fig. 3. Plot of predicted activity against experimental activity of test set.

Fig. 4. Plot of Standardized residual activity versus experimental activity.

Fig. 5. The Williams plot of the standardized residuals versus the leverage value.
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Plot of predicted activity against experimental activity of train-
ing and test set where shown in Figs. 2 and 3 respectively. The R2

value of 0.9460 for training set and R2 value of 0.8642 for test set
Table 9
Binding Affinity, Hydrogen bond and hydrophobic interaction formed between ligands wi

Ligand Binding Affinity
(kcal/mol)

22a

4-(2,5-dichlorophenoxy)-N-(o-tolyl)pyrimidine-5-carboxamide
�6.5

23a

4-(2,5-dichlorophenoxy)-N-ethyl-N-(o-tolyl)pyrimidine-5-
carboxamide

�7.2

27b

(4-cyclopropyl-3,4-dihydroquinoxalin-1(2H)-yl)(4-(2,5-
dichlorophenoxy)pyridin-3-yl)methanone

�8.5

28b

(4-(4-chlorophenoxy)pyridin-3-yl)(4-cyclopropyl-3,4-
dihydroquinoxalin-1(2H)-yl)methanone

�8.1

Where superscript a and b represent 4 Phenoxypyrimidine-5-carboxamide and 4 Pheno
reported in this study was in agreement with Genetic Function
Approximation (GFA) derived R2 value reported in Table 2. This
confirms the robustness and reliability of the model. Plot of stan-
dardized residual versus experimental activity shown in Fig. 4 indi-
cates that there was no systematic error in the model built as the
spread of standardized residual values were on both sides of zero
(Jalali-Heravi and Kyani, 2004).

The leverage values for the entire compounds in the dataset
were plotted against their standardized residual values leading to
discovery of outliers and influential compound in the models.
The Williams plot of the standardized residuals versus the leverage
value is shown in Fig. 5 which an evident that all the compounds
were within the square area � 3 of standardized cross-validated
residual produced by the model. Therefore no compound is said
to be an outlier. However, only one compound is said to be an
influencing compound since its leverage value is greater than the
warning leverage (h⁄ = 0.60). This was attributed to difference in
its molecular structure compared to other compounds in the
dataset.
3.2. Molecular docking

Molecular docking studies were carried out in order to analysis
and understand the interaction formed between the targets (TDG5)
and inhibitor ligands that have the least and best pEC50. The dock-
ing results reported in Tables 9 and 10 shows that the binding
affinities of the ligands with best pEC50 were greater than the
binding affinity of the ligands with least pEC50 which indicates
that the binding affinities of these ligands correlate with their
pEC50. Ligand 27 with least binding affinity (�8.5 kcal/mol) and
ligand 35 with best binding affinity (-10.4 kcal/mol) were visual-
ized and analyzed in Discovery Studio Visualizer as shown in Figs. 6
and 7 below. Ligand 27 formed one hydrogen bond (2.15425A�)
with ASN69 of the target. Hydrophobic interaction is a bond
formed between the ligand and the binding pocket of the target
site (receptor). It adhere the ligand to the surface of target site.
Ligand 27 formed hydrophobic bond with ALA271, ALA271,
ALA271, UNK1, PRO330, LEU275, LYS267, ALA271of the target site.
Ligand 35 also formed two hydrogen bonds (2.43479, 2.15121A�)
with ARG131 of the target. While hydrophobic interactions were
observed with ALA271, LEU275, PHE332, LEU275, VAL67of the tar-
get site.

Hydrogen bond between the ligand 27 and target site is shown
in Fig. 8. The C=O of the ligand also act as hydrogen acceptor and
formed only one hydrogen bond with ASN69 of the target. Fig. 9
shows the hydrogen bond interaction between the ligand 35 and
th least PEC50 and the active site of the TGR5 receptor.

Target Hydrogen bond Hydrophobic

Amino
acid

Bond
length
(Ao)

TGR5 – – ALA271, ALA271, ALA271, UNK1,
PRO330, LEU275, LYS267, ALA271

TGR5 – – PHE194, ALA200, HIS178, PHE194PHE194,
LYS305, VAL297, LYS305

TGR5 ASN69 2.15425 ALA271, ALA271, ALA271, UNK1,
PRO330, LEU275, LYS267, ALA271

TGR5 – – PHE194, ALA200, LYS305, HIS178, PHE194

xynicotinamide derivative



Table 10
Binding Affinity, Hydrogen bond interaction and hydrophobic interaction formed between ligands with best PEC50 and the active site of the TGR5 receptor.

Ligand Binding Affinity
kcal/mol

Target Hydrogen bond Hydrophobic

Amino acid Bond
length (Ao)

16a

(1-cyclopropyl-1,2,3,4-tetrahydroquinolin-4-yl)(4-(2,5-
dichlorophenoxy)pyrimidin-5-yl)methanone

�9.2 TGR5 TRP10
SER104

1.06624
2.31227

LYS267, LYS267, ALA271, ALA271,
PHE332

17a

(1-cyclopropyl-1,2,3,4-tetrahydroquinolin-4-yl)(4-(2,5-
dichlorophenoxy)pyrimidin-5-yl)methanone

�8.8 TGR5 TRP10
SER104

2.81227 PHE194, ALA200, LYS305, HIS178,
PHE194, VAL297

33b

(4-cyclopropyl-3,4-dihydroquinoxalin-1(2H)-yl)(4-(2,4,5-
trichlorophenoxy)pyridin-3-yl)methanone

�9.7 TGR5 TYR141 2.7432
1.86624

LYS267, LYS267, ALA271, ALA271
PHE332

35b

(4-cyclopropyl-3,4-dihydroquinoxalin-1(2H)-yl)(4-(2,4,5-
trimethylphenoxy)pyridin-3-yl)methanone

�10.4 TGR5 ARG131
ARG131

2.43479
2.15121

ALA271, LEU275, PHE332, LEU275
VAL67

Where superscript a and b represent 4 Phenoxypyrimidine-5-carboxamide and 4 Phenoxynicotinamide derivatives

Fig. 6. (27a) and (27b) show the 3D and 2D interactions between TGR5 and Ligand 27.

Fig. 7. (35a) and (35b) show the 3D and 2D interactions between TGR5 and Ligand 35.
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Fig. 8. H-bond between the ligand 27 and TGR5 receptor.

Fig. 9. H-bond between the ligand 35 and TGR5 receptor.
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the target site. A total of two hydrogen bonds were formed. The
ether functional group (–O–) of the ligand acts as hydrogen accep-
tor and formed one hydrogen bond with ARG131 of the target. The
C=O of the ligand also act as hydrogen acceptor and formed one
hydrogen bond with ARG131 of the target. The hydrogen bond for-
mation alongside with the hydrophobic interaction provides an
evidence that ligand 35 of the inhibitor compounds is potent
against TGR5 receptor.

4. Conclusion

In this research, QSAR model was generated with descriptor
(ATS1p, ATSC1m, RDF80u, RDF55i) which were highly correlated
with biological activities of 4-Phenoxynicotinamide and 4-Phenox
ypyrimidine-5-carboxamide derivatives. These descriptors pro-
duced a robust model to predict the anti-diabetic activities of these
compounds. The internal and external validation tests for the QSAR
model generated were in agreement with recommended value of
validation parameters for a generally acceptable QSAR model.
The Molecular docking studies showed that the binding affinities
of the inhibitors correlate with their pEC50 and the best compound
has binding affinity of �10.4 kcal/mol which formed H-bond and
hydrophobic interactions with amino acid of the target. The QSAR
technique alongside with molecular ducking study provides a valu-
able approach for medicinal and pharmaceutical researchers to
design and synthesis new anti-diabetes agent against TGR5 recep-
tor of type 2 diabetes mellitus (T2DM).
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