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This research focuses on the characterization of the chaotic behaviors, the hyperchaotic behaviors, and
the impact of the fractional-order derivative in a class of fractional chaotic system. The numerical
scheme, including the discretization of the Riemann–Liouville derivative, will be used to depict the phase
portraits of the fractional-order chaotic system when the order of the used fractional-order derivative
takes different values. The impact of the fractional-order derivative in the fractional chaotic system will
be investigated. The proposed numerical scheme proposes a new alternative to obtain the phase portraits
of the fractional-order chaotic systems. The sensitivity of the chaotic systems to the changes in the initial
condition and the variation of the parameters of the considered model will be focussed with precision
using the bifurcation diagrams and the Lyapunov exponent. The stability of the equilibrium points of
the commensurable fractional-order chaotic system will be addressed in the context of fractional calcu-
lus. In other words, we will use the standard Matignon criterion to address the problem of stability. The
main attraction and novelty of this paper will be the use of the Lyapunov exponent to characterize the
nature of chaos and to prove the dissipativity of the considered chaotic system.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Modeling real word problems in fractional calculus continues to
interest many authors and researchers. The interpretations of the
fractional operators used in the modeling physical problems con-
tinue to have many propositions. Nowadays, it is provided that
the fractional operators have memories effects role in the modeling
physical phenomena (Sene, 2020b), finance (Chen et al., 2014; Gao
and Ma, 2009), biological phenomena (Mansal and Sene, 2020;
Naik et al., 2020b; Yavuz and Ozdemir, 2020; Yavuz and Bonyah,
2019; Yavuz and Sene, 2020), fundamental mathematics and appli-
cations (Mekkaoui et al., 2019; Yavuz, 2019) and many other fields
(Naik et al., 2020a). Modeling chaotic systems using fractional
operators have been experienced in fractional calculus by Petras
(xxxx). For applications of chaos in modeling electrical circuits,
see also in Petras (2008), the author finds the fractional operators
are interesting tools that can play an important role in the chaos.
As we will provide in this paper, the role of the fractional operator
in modeling a chaotic system is to obtain various types of chaos for
the same system: chaotic behaviors and hyperchaotic behaviors.
This conclusion is fundamental because a chaotic system with
integer-order derivative can not combine at the same time, the
chaotic and hyperchaotic behaviors for an identical system. The
varieties of fractional operators in fractional calculus give the
importance of this field of mathematics. There exist a fractional
derivative operator with Mittag–Leffler function as the derivative
introduced in Atangana and Baleanu (2016) by Atangana and
Baleanu, the Caputo-Fabrizio derivative proposed by Caputo and
Fabrizio (2015), the Caputo derivative, and the Riemann–Liouville
derivative, which can be found in Kilbas et al. (2006) and
Podlubny (1999). There exist many other fractional operators,
many modified operators, and generalization of the fractional
operators exist, too, see in Fahd et al. (2017). Known as very sensi-
tive to the variations of the initial conditions, this paper will use
the Caputo derivative in modeling a chaotic system. The obtained
equation with the fractional operator will be called fractional-
order chaotic system.

In terms of a chaotic system, many investigations exist, we give
in this paragraph a brief review of the literature. In Rajagopal et al.
(2016), the authors have presented works related to brushless DC
motor in the context of fractional order derivative. In Ren et al.
(2018), the authors have proposed a new hyperjerk chaotic system
that has any equilibrium points and finds good results in this type
of chaotic system. In Rajagopal et al. (2017), Rajagopal et al. have
presented using the fractional-order derivative a hyperchaotic cha-
meleon system. In Vaidyanathan et al. (2014), Vaidyanathan et al.
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have proposed a 5D novel hyperchaotic system and studied the
properties of the proposed system as the detection of chaos, the
synchronization, the electrical implementation, and the Lyapunov
exponents. In Akgul et al. (2017), Akgul et al. have investigated a
4D wing chaotic system and have proposed its adaptative control
and its electrical implementation. In Rajagopal et al. (2019), the
authors have proposed a new simple chaotic system with various
topological attractors; they have presented in this work the bifur-
cation diagrams, which are very important in a chaotic system. In
Pham et al. (2017), Pham et al. have presented a new chaotic model
without equilibrium, have proposed its phase portraits, its bifurca-
tion diagrams by analyzing the small variations of the parameters
of the proposed model, and have presented its corresponding Lya-
punov exponents. In Vaidyanathan et al. (2014), the authors have
investigated an adaptative control to stabilize the possible equilib-
rium points of a new nine-term chaotic system. In Jafari and Sprott
(2013), Jafari and Sprott have presented a simple flow chaotic sys-
tem which admits a line equilibrium; they have investigated the
phase portraits, the Lyapunov exponents for the classification of
the types of chaos, and have presented the bifurcation diagrams.
In Sprott et al. (2017), Sprott et al. study a megastability for a class
of chaotic systems. InLu et al. (2004), Lu et al. have proposed a
detailed review and tutorial related to the chaotic systems. For
other investigation related to the chaotic systems, see in Shahiri
et al. (xxxx), Chen et al. (2014), Xu and He (2013), Wang et al.
(2011), Chen (2008), Shaojie et al. (2020), Akgul et al. (xxxx),
Rajagopal et al. (2020) and Diouf et al. (2020). For more applica-
tions of chaotic systems in the context of fractional operators,
see the following papers Solis-Perez et al. (2020), Coronel-
Escamilla et al. (2020), Owolabi et al. (2020) and Emmanuel
Solis-Perez and Francisco Gomez-Aguilar (2020).

The investigations in this paper are motivated by the memory
effect properties and the detection of the chaos, which can be
obtained using the fractional operator. The objective of this paper
will be to propose a numerical scheme to solve a class of
fractional-order chaotic systems. The numerical scheme will be
beneficial to obtain the phase portraits of the considered chaotic
system. The various phase portraits will inform us there exist a sig-
nificant influence of the order of the fractional derivative into mod-
eling the chaotic systems. In other words, news natures in the
dynamics of the chaotic systems are obtained as the chaotic and
hyperchaotic behaviors for the same chaotic system. To detect
the chaotic and hyperchaotic behaviors, the Lyapunov exponents
will be calculated for the different values of the fractional-order
derivative of the considered system. Danca algorithm will be used
to arrives at our end In Danca and Kuznetsov (2018). In this paper,
we will also analyze using bifurcation diagrams the influence of
the parameters of the considered chaotic system in the dynamics.
The main novelty in this paper will be the bifurcation diagrams and
the Lyapunov exponents of the fractional-order chaotic system.
The works presented in this paper can be applied in biology like
modeling disease using chaotic systems because many diseases
cause many dies in the world, like presently the novel coronavirus.
The chaotic system presented in this paper can be used in model-
ing electrical circuits. Note that the main importance of the chaotic
and hyperchaotic system is modeling chaotic electrical circuits and
simulations. The chaotic system also plays many roles in modeling
financial markets.(Diouf et al., 2020).

This paper is divided into the following forms. In Section 2, we
recall the operators used in modeling our chaotic system. In Sec-
tion 3, we present the fractional-order chaotic system considered
in this present work. In Section 4, the numerical scheme used for
the phase portraits has been introduced. In Section 5, the phase
portraits of the fractional chaotic system for different values of
the order of the Caputo derivative are proposed. In this section,
the influence of the fractional-order will be observed. In Section 6,
2

the local stability analysis of the trivial equilibrium point will be
analyzed using the Matignon criterion. In Section 7, we investigate
the variations of the parameters of the fractional-order chaotic sys-
tem using bifurcation diagrams. In Section 8, we characterize the
nature of chaos by calculation the Lyapunov exponents in the con-
text of fractional order derivative. In Section 9, the conclusion and
future directions of works have been provided. In other words, we
summarize all the main findings in this paper and give future
directions for researches.

2. Basic fractional calculus operators

There exist various types of fractional operators in fractional
calculus like the Riemann–Liouville derivative (Kilbas et al.,
2006; Podlubny, 1999), the Caputo derivative (Kilbas et al., 2006;
Podlubny, 1999), the Caputo-Fabrizio derivative (Caputo and
Fabrizio, 2015), the Atangana-Baleanu derivative (Atangana and
Baleanu, 2016), the conformable derivative, the Hilfer derivative,
and many others modifications of the above-cited operators. In
modeling chaotic systems, the Caputo derivative is preferred due
to its physical meaning, and the memory effect can be observed
as well. In this section, we recall the so-called Riemann–Liouville
integral, its associated fractional operator, and the Caputo frac-
tional derivative. We have the following definitions.

Definition 1 (Kilbas et al. (2006) and Podlubny (1999)). The
Riemann–Liouville fractional integral of z : ½0;þ1½�!R can be
described by the following formula

Iaz
� �ðtÞ ¼ 1

CðaÞ
Z t

0
t � sð Þa�1zðsÞds; ð1Þ

under the assumptions Cð. . .Þ is the so-called Gamma function and
with the order a obeying to the condition that a > 0.
Definition 2 (Kilbas et al. (2006) and Podlubny (1999)). The Rie-
mann–Liouville fractional derivative of z : ½0;þ1½�!R with the
order a can be described by the following formula

DazðtÞ ¼ 1
C 1� að Þ

d
dt

Z t

0
zðsÞ t � sð Þ�ads; ð2Þ

under the assumptions t > 0, the order a 2 0;1ð Þ and Cð. . .Þ is the
so-called Gamma function.
Definition 3 (Kilbas et al. (2006) and Podlubny (1999)). The Caputo
fractional derivative operator of z : ½0;þ1½�!R with the order a
can be described by the following formula

DazðtÞ ¼ 1
C 1� að Þ

Z t

0

dz
ds

t � sð Þ�ads; ð3Þ

with the assumptions t > 0, the order a 2 0;1ð Þ and the function
Cð. . .Þ is the so-called gamma Euler function.

The other definitions of the fractional operators are not enu-
merated in this section, but their explicit forms and properties
can be found in Atangana and Baleanu (2016) and Caputo and
Fabrizio (2015).

3. Fractional-order chaotic system description

Chaotic systems have attracted many researchers due to its
many applications in physics and modeling electrical circuits. In
this present section, we consider the chaotic system recalled in
Lu et al. (2004) and described by the following differential equa-
tion with Caputo fractional derivative
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Da
c x ¼ ax� by� yz; ð4Þ

Da
c y ¼ cx; ð5Þ

Da
c z ¼ �dzþ y2; ð6Þ

the considered initial conditions for the model previously defined
are given by

xð0Þ ¼ x0 ¼ 0:2; yð0Þ ¼ y0 ¼ 0:2; zð0Þ ¼ z0 ¼ 0:2: ð7Þ

In our modeling the order satisfies the condition 0 < a < 1, and the
values of the parameters of the model are given as follows
a ¼ �2; b ¼ �6:4; c ¼ 1 and d ¼ 1. What are the objectives of this
paper? The first objective will be to understand the influence of
the fractional-order derivative into the chaotic model. We will
establish the perfect order under which the chaotic or hyperchaotic
behaviors are more complex and high. The second objective will be
to justify or detect the chaotic and hyperchaotic behaviors using the
Lyapunov exponent when a specific fractional order is chosen. It is
because, as we will notice, there exists some fractional-order where
the chaotic and hyperchaotic behaviors are completely displayed.
The properties of the chaotic system will be focussed; that is, if
all the equilibrium points are unstable and the model considered
will be dissipative. The proof of the dissipativity will be shown
using the values of the Lyapunov exponents. The present paper is
mathematics.
4. Numerical scheme for the fractional order chaotic model

This section will be devoted to describing the numerical scheme
for the fractional chaotic model proposed in Eqs. (4)–(6). The pre-
sent numerical scheme uses the analytical solutions and the stan-
dard scheme proposed for the Riemann–Liouville fractional
integral. In chaotic dynamics, it isn’t easy to obtain the exact solu-
tions due to the nonlinearity of the equations that constitute the
system. Therefore many analytical methods as the Laplace trans-
form, the Sodumu transform, the homotopy analysis method, the
homotopy perturbation can not be applied satisfactorily. For exam-
ple, in the case of the Homotopy method, the problem appears on
the number of iterations to consider and to have stable and con-
verging solutions. The main alternative to the phases portrait of
the chaotic systems is to use the numerical schemes: implicit
scheme, explicit scheme, Adams Bashford scheme, and others. As
can be observed, the method of discretization used in this paper
includes the discretization of the Riemann–Liouville derivative
instead of the discretization of the Caputo derivative described in
Jannelli (2018). The numerical proposed in this section has many
advantages regarding the method previously cited; our method is
stable, consistent, and convergent; see in Garrappa (2019) for more
pieces of information. In this section, we propose a numerical tech-
nique that can be used in the fractional context. The analytical
solutions of the fractional-order chaotic system (4)–(6) is defined
as the forms

xðtÞ ¼ x 0ð Þ þ IaU t; xð Þ; ð8Þ
yðtÞ ¼ y 0ð Þ þ IaV t; yð Þ; ð9Þ
zðtÞ ¼ z 0ð Þ þ IaW t; zð Þ; ð10Þ
where the functions satisfy the following relationships

U t; xð Þ ¼ ax� by� yz; ð11Þ
V t; yð Þ ¼ cx; ð12Þ
W t; zð Þ ¼ �dzþ y2: ð13Þ
We take the time at the point n, which means at tn, replacing in the
above Eqs. (8)–(10), we get the equations given by the relations
3

xðtnÞ ¼ x 0ð Þ þ IaU tn; xð Þ; ð14Þ
yðtnÞ ¼ y 0ð Þ þ IaV tn; yð Þ; ð15Þ
zðtnÞ ¼ z 0ð Þ þ IaW tn; zð Þ: ð16Þ
We introduce tn ¼ nh, where h is the considered step size. The Rie-
mann–Liouville integral presented in Eqs. (14)–(16) can be rewrit-
ten as the forms

IaU tn; xð Þ ¼ ha �jðaÞ
n Uð0Þ þ

Xn
j¼1

jðaÞ
n�jU tj; zj

� �" #
; ð17Þ

IaV tn; yð Þ ¼ ha �jðaÞ
n Vð0Þ þ

Xn

j¼1

jðaÞ
n�jW tj; zj

� �" #
; ð18Þ

IaW tn; zð Þ ¼ ha �jðaÞ
n Wð0Þ þ

Xn
j¼1

jðaÞ
n�jW tj; zj

� �" #
; ð19Þ

where

�jðaÞ
n ¼ n� 1ð Þa � na n� a� 1ð Þ

C 2þ að Þ ; ð20Þ

and if we have the relation n ¼ 1;2; . . .., then the parameters j can
be represented as the form given by

jðaÞ
0 ¼ 1

C 2þ að Þ and jðaÞ
n ¼ n� 1ð Þaþ1 � 2naþ1 þ nþ 1ð Þaþ1

C 2þ að Þ : ð21Þ

We now transfer the numerical approximation in Eqs. (17)–(19) in
Eqs. (14)–(16), we obtain the following numerical scheme in its
implicit form for the fractional-order chaotic system, that is

xðtnÞ ¼ x 0ð Þ þ ha �jðaÞ
n U 0ð Þ þ

Xn
j¼1

jðaÞ
n�jU tj; xj

� �" #
; ð22Þ

yðtnÞ ¼ y 0ð Þ þ ha �jðaÞ
n V 0ð Þ þ

Xn
j¼1

jðaÞ
n�jV tj; yj

� �" #
; ð23Þ

zðtnÞ ¼ z 0ð Þ þ ha �jðaÞ
n W 0ð Þ þ

Xn
j¼1

jðaÞ
n�jW tj; zj

� �" #
; ð24Þ

here we have the relation

U tj; xj
� � ¼ axj � byj � yjzj; ð25Þ

V tj; yj
� � ¼ cxj; ð26Þ

W tj; zj
� � ¼ �dzj þ y2j : ð27Þ

For the stability and the convergence of the numerical scheme, we
set the following assumptions xðtnÞ; yðtnÞ and zðtnÞ be the approxi-
mate solutions of the considered fractional-order chaotic system
(4)-(6) and xn; yn and zn be the exact solutions of Eqs. (4)–(6). The
residual functions in our context and its classical form are repre-
sented in the following equations

x tnð Þ � xnj j ¼ O hminfaþ1;2g
� �

; ð28Þ

y tnð Þ � ynj j ¼ O hminfaþ1;2g
� �

; ð29Þ

z tnð Þ � znj j ¼ O hminfaþ1;2g
� �

: ð30Þ

The above approximations are classic in the Literature in the con-
text of Caputo derivative. The convergence of the method follows
from the convergence to 0 of the step-size h. The stability of our
numerical scheme comes from the fact the functions U; V , and W
are Lipschitz continuous.

The phase portraits in the next section will be represented using
the proposed numerical scheme in this section. The simplicity of
the numerical scheme proposed in this section comes from the
discretization of the Riemann–Liouville integral, not from the
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discretization of the Caputo derivative. The second advantage is
the stability of the presented numerical scheme comes directly
for the existence of the solutions of the considered system. Note
that because the Lipschitz continuous of the functions U; V , and
W ensure the existence and the uniqueness of the model consid-
ered in this paper.
5. Phase portraits related to the fractional order derivative

In this section, we represent the phase portraits of the
fractional-order chaotic model considering different values of the
order of the Caputo derivative by using the numerical discretiza-
tion used in the previous section. Our objective is to analyze the
impact of the fractional-order derivative in the behaviors of the
fractional-order chaotic system. We consider in the first graphical
representations the order a ¼ 0:94. Due to the sensibility of chaos
to the initial condition, we take time to recall the initial condition
considered in this paper; there are xð0Þ ¼ 0:2; yð0Þ ¼ 0:2, and
zð0Þ ¼ 0:2.

In Figs. 1a, b and 2a, b are represented the dynamics of the
fractional-order chaotic system in different planes. As we can
observe in Figs. 1a, b and 2a, b, at the order a ¼ 0:94, we detect
the presence of chaos. The main question will be, what is the type
of chaos observed at the order a ¼ 0:94? This question will be
addressed in the forthcoming section using the Lyapunov
exponent.

In this present part, we consider the following order a ¼ 0:84 of
the Caputo derivative and depict the phase portraits for our chaotic
system. In Figs. 3a, b and 4a, b are represented the dynamics of the
fractional-order chaotic system in different planes. As we can
observe in Figs. 3a, b and 4a, b, at the order a ¼ 0:84, we detect
presence of high chaos more than at order a ¼ 0:94.The Lyapunov
exponent will justify the presence of high chaos in the next section.
In terms of comparison, we can observe the fractional-order graph-
ically has a significant impact on the behaviors of the chaotic sys-
tem considered in this paper. For confirmations of this influence,
we represent the next graphics with the order a ¼ 0:64.

In Figs. 5a, b and 6a, b are represented the dynamics of the
fractional-order chaotic system in different planes.

In all these three cases, how the differences in the behaviors of
the dynamics will be shown in the next section. Fractional-order
derivative is an excellent compromise to have more complex types
Fig. 1. Behaviors of the fractional chao
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of chaos. In our context the chaotic behaviors or hyperchaotic
behaviors exist when the Caputo derivative a is into the interval
ð0:6;1Þ.

6. Local stability analysis in fractional context

In this section, we focus on the local stability of the equilibrium
points of the fractional-order chaotic system considered in this
paper. As we know, in chaotic systems in general, the equilibrium
points are not stable. This property is one of the main property
respected by chaotic systems. We use the standard criterion used
in fractional calculus for local stability. The criterion is originated
from Matignon, see in Matignon (1996) and Ahmed et al. (2006).
For investigations related to stability analysis, see more pieces of
information in the following papers (Sene, 2019, 2020a). We first
determine the equilibrium points satisfying the following
equations

ax� by� yz ¼ 0; ð31Þ
cx ¼ 0; ð32Þ
� dzþ y2 ¼ 0: ð33Þ
After the resolutions we obtain one equilibrium point given as fol-
lows A0 ¼ 0;0;0ð Þ. The next step is now to determine the Jacobian
matrix given as the following form

J ¼
a �b� z �y

c 0 0

0 2y �d

0
BBB@

1
CCCA: ð34Þ

Note that the Jacobian matrix in the above equations will be com-
bined with the numerical scheme to calculate the values of the Lya-
punov exponents according to the algorithm proposed by Danca in
Matignon (1996). Using the values of the parameters of the consid-
ered fractional-order chaotic system, the matrix in Eq. (34) can be
simplified as the following form

J ¼
�2 6:4� z �y

1 0 0
0 2y �1

0
B@

1
CA: ð35Þ

We evaluate the local stability to the point A0 ¼ 0;0;0ð Þ according
to Matignon criterion. We have the following matrix
tic system for the order a ¼ 0:94.



Fig. 2. Behaviors of the fractional chaotic system for the order a ¼ 0:94.

Fig. 3. Behaviors of the fractional chaotic system for the order a ¼ 0:84.
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Fig. 4. Behaviors of the fractional chaotic system for the order a ¼ 0:84.
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Fig. 5. Behaviors of the fractional chaotic system for the order a ¼ 0:64.

Fig. 6. Behaviors of the fractional chaotic system for the order a ¼ 0:64.
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JðA0Þ ¼
�2 6:4 0
1 0 0
0 0 �1

0
B@

1
CA: ð36Þ

As eigenvalues of the matrix in Eq. (36) we have the following val-
ues k1 ¼ �3:7203; k2 ¼ 1:7203 and k3 ¼ �1. We can remark
according to the Matignon criterion described in Matignon (1996),
the equilibrium point A0 ¼ 0; 0;0ð Þ is not stable because the second
eigenvalue satisfies the condition arg k1ð Þj j ¼ 0 < ap=2. It is impor-
tant to mention before continuing the investigations; in terms of
the stability analysis, the fractional-order has no impact on the local
stability of the considered fractional-order chaotic system.
7. Sensibility to the variation of the parameters of the model

This section will be the step to analyze the impact of the varia-
tions of the parameters of the considered model. We use so-called
bifurcation diagrams. Bifurcation studies the impact generated by
the small changes in the parameters of the model. In this section,
we set a ¼ 0:94 with the initial conditions xð0Þ ¼ 0:2; yð0Þ ¼ 0:2,
and zð0Þ ¼ 0:2.
6

Before beginning the study of the variation of the first parame-
ter a, to observe the impact due to the small changes of the param-
eter a, we depict the phase portraits of the considered fractional-
order chaotic system with a ¼ �2:5; b ¼ �6:4; c ¼ 1 and d ¼ 1.
In Figs. 7a, b and 8a, b are represented the dynamics of the
fractional-order chaotic system in different planes. Considering
a ¼ �2 and a ¼ �2:5, we observe comparing the Figs. 1a, b, 2a, b
and Figs. 7a, b, 8a b, the parameter a has a significant impact on
the dynamics of the fractional-order chaotic system. Let’s a small
variation of the parameter a, and we conserve the other parame-
ters as b ¼ �6:4; c ¼ 1 and d ¼ 1. The bifurcation diagram versus
the parameter a is depicted in the Fig. 9. In Fig. 9, we can observe
the chaotic behaviors are more complex at point a ¼ �2 than at
point a ¼ �2:5. We notice the hyperchaotic behaviors when a is
into the interval ð�2:4;2Þ, but at the point a ¼ �2, the behaviors
are chaotic. In interval ð�3;�2:4Þ, we have three double-blind
bifurcations.

Before studying the variation of the second parameter b,we
depict the phase portrait of the fractional-order chaotic system
with a ¼ �2; b ¼ �6:4; c ¼ 1 and d ¼ 1. In Figs. 10a, b and 11a, b
are represented the dynamics of the fractional-order chaotic sys-
tem in different planes. Considering b ¼ �6:4 and a ¼ �7:4, we



Fig. 7. Behaviors of the fractional chaotic system for the order a ¼ 0:94.

Fig. 8. Behaviors of the fractional chaotic system for the order a ¼ 0:94.

Fig. 9. Bifurcation diagram versus small variation of the parameter a.
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observe comparing Figs. 1a, b, 2a, b, and Figs. 10a, b, 11a, b, the
parameter b has a significant impact on the dynamics of the frac-
tional chaotic system. Let’s a small variation of the parameter b
and we conserve the other parameters as a ¼ �2; c ¼ 1 and d ¼ 1.
The bifurcation diagram versus the parameter b is depicted in
Fig. 12. In Fig. 12, we can observe a small change in the chaotic
behaviors at point a ¼ �7:4 than at point a ¼ �6:4. The difference
is not so significant as it can be observed in Figs. 1a, b, 2a, b, and
Figs. 10a, b, 11a, b. We notice chaotic behaviors when a is into
the interval ð�7:4;�6:4Þ. Furthermore, in this interval, the chaotic
behaviors are very complex.

Before studying the variation of the parameter c, we depict the
phase portraits of the fractional-order chaotic system with
a ¼ �2; b ¼ �6:4, and c ¼ 1:5. In Figs. 13a, b, and 14a, b are repre-
sented the dynamics of the fractional-order chaotic system in dif-
ferent context. Considering c ¼ 1:0 and c ¼ 1:5, we observe
comparing Figs. 1a, b, 2a, b, and 10a, b, 11a, b, the parameters c
have minor impact in the dynamics of the fractional chaotic sys-
tem. Let’s a small variation of the parameter c and we conserve
the other parameters as a ¼ �2, and b ¼ �6:4. The bifurcation dia-
gram versus the parameter c is depicted in Fig. 15. In Fig. 15, we
can observe minor change in the chaotic behaviors at point c ¼ 1
than at point c ¼ 1:5. The minor difference is not so significant as



Fig. 10. Behaviors of the fractional chaotic system for the order a ¼ 0:94.

Fig. 11. Behaviors of the fractional chaotic system for the order a ¼ 0:94.

Fig. 12. Bifurcation diagram versus small variation of the parameter b.
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it can be observed in Figs. 1a, b, 2a, b, 13a, b, and 14a, b. We notice
chaotic behaviors in all the interval ð1;2Þ when c varies. Further-
more, in this interval, the chaotic behaviors are very complex but
do not differs significantly.
8. Chaotic and hyperchaotic detection with Lyapunov
exponents

As previously announced in this part, we will justify the nature
of the chaos obtained when the orders of the fractional-order
derivative vary. We use the Danca algorithm (Danca and
Kuznetsov, 2018) and the numerical scheme proposed in our inves-
tigations. The values of the Lyapunov exponent versus the time-
series variation are represented in the following Table 1 We can
remark with the table, at all lines, the sum of the Lyapunov expo-
nents is negative, which corresponds to the dissipativity of the
fractional-order chaotic system at order a ¼ 0:94. The second
remark is that at least two Lyapunov exponents are positive; we
can precisely conclude the fractional-order chaotic system at order
a ¼ 0:94 has hyperchaotic behaviors. Note that the value of the
Lyapunov exponent represented in Table depend strongly of the
considered initial condition in this paper xð0Þ ¼ 0:2; yð0Þ ¼ 0:2,
and zð0Þ ¼ 0:2.



Fig. 14. Behaviors of the fractional chaotic system for the order a ¼ 0:94.

Fig. 13. Behaviors of the fractional chaotic system for the order a ¼ 0:94.

Fig. 15. Bifurcation diagram versus small variation of the parameter c.
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In term of comparison, we consider the values of the Lyapunov
exponents versus the time-series variation at order a ¼ 0:84, see
Table 2.
Table 1
Lyapunov exponents at order a ¼ 0:94.

Times LE1 LE2 LE3

19.98 0.0447 0.0963. . . �4.0214
39.98 0.1768 0.0067. . . �4.0501
59.98 0.1939 0.0272. . . �4.1012
79.98 0.1712 0.0270. . . �4.0786
99.98 0.1972 0.0016. . . �4.0790
119.98 0.1959 0.0150. . . �4.0912
139.98 0.1969 0.0164. . . �4.0936
159.98 0.2011 0.0163. . . �4.0978
179.98 0.1978 0.0181. . . �4.0962
199.98 0.2037 0.0096. . . �4.0936
219.98 0.2048 0.0033. . . �4.0884
239.98 0.2080 0.0050. . . �4.0933
259.98 0.2079 0.0102. . . �4.0983
279.98 0.2036 0.0118. . . �4.0957
299.98 0.2021 0.0081. . . �4.0906



Table 2
Lyapunov exponents at order a ¼ 0:84.

Times LE1 LE2 LE3

19.98 0.2475 0.1041. . . �6.2604
39.98 0.2312 0.0727. . . �6.2154
59.98 0.2482 0.0344. . . �6.1948
79.98 0.2948 0.0094. . . �6.2162
99.98 0.2857 0.0183. . . �6.2161
119.98 0.3053 0.0083. . . �6.2252
139.98 0.2988 0.0160. . . �6.2265
159.98 0.3038 0.0131. . . �6.2287
179.98 0.2956 0.0186. . . �6.2260
199.98 0.3055 0.0091. . . �6.2263
219.98 0.3097 0.0016. . . �6.2231
239.98 0.3055 0.0081. . . �6.2256
259.98 0.3015 0.0075. . . �6.2212
279.98 0.3052 0.0040. . . �6.2213
299.98 0.3081 0.0042. . . �6.2243

Table 3
Lyapunov exponents at order a ¼ 0:64.

Times LE1 LE2 LE3

19.98 0.4025 0.0638. . . �13.6144
39.98 0.4295 0.0819. . . �13.6688
59.98 0.4608 0.0285. . . �13.6495
79.98 0.5075 �0.0114. . . �13.6543
99.98 0.4963 0.0119. . . �13.6680
119.98 0.5162 0.0075. . . �13.6795
139.98 0.5157 0.0125. . . �13.6834
159.98 0.5257 0.0117. . . �13.6901
179.98 0.5328 0.0104. . . �13.6958
199.98 0.5334 0.0039. . . �13.6912
219.98 0.5216 0.0121. . . �13.6879
239.98 0.5219 0.0108. . . �13.6883
259.98 0.5312 0.0056. . . �13.6916
279.98 0.5264 0.0052. . . �13.6870
299.98 0.5182 0.0070. . . �13.6821
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We can observe with the values in the previous table, at all
lines, the sum of the Lyapunov exponents is negative, which also
corresponds to the dissipativity of the fractional-order chaotic sys-
tem at order a ¼ 0:84. The second remark is that at least two Lya-
punov exponents are positive at all lines, we can precisely conclude
the fractional chaotic system at order a ¼ 0:84 has hyperchaotic
behaviors. In term of comparison between a ¼ 0:84 and a ¼ 0:94,
we can compare the values of LE1 in Table 2 and Table 2, we clearly
observe the hyperchaotic behaviors are more complex at a ¼ 0:84
then at order a ¼ 0:84. This remark is confirmed by the figures in
the phase portraits section.

For the order a ¼ 0:64, it is difficult to predict the nature of the
chaos, but we note high concentrations of the dynamics of the
fractional-order chaotic system. For more analysis, we give in the
following table the values of the Lyapunov exponents at the order
a ¼ 0:64; we have As it can be confirmed with the Table 3, there
exist at time t ¼ 79:98 under which the hyperchaotic behaviors
change to chaotic behaviors. Chaotic because there exist at this
step, one positive Lyapunov exponent. The dissipativity of the sys-
tem is also conserved because the sum of the Lyapunov exponents
is at all step negative.
9. Conclusion and futures directions of works

The properties of the fractional-order chaotic system as the
phase portraits, the bifurcation diagram, and the Lyapunov expo-
nent have been analyzed. The main result is the Caputo derivative
plays a significant role in the nature of the chaos processes. In
10
other words, according to the variations of the values of the Caputo
derivative, we can detect with the considered system the chaotic
behaviors and the hyperchaotic behaviors. We also find the
fractional-order does not impact the local stability of the trivial
equilibrium point. The Matignon criterion was used in the stability
investigations. The commensurable fractional-order chaotic sys-
tem has been considered in the present paper; it will be interesting
in the future works to investigate the phase portraits, the bifurca-
tion diagram, and the Lyapunov exponent in the context of an
incommensurable chaotic system with fractional order derivative.
The used derivative can also be changed to see the real impact of
the Caputo-Fabrizio derivative and the Atangana-Baleanu deriva-
tive in modeling chaotic systems.
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