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In this paper we consider the modified Helmholtz type equation governing 2D-boundary value problems
for anisotropic functionally graded materials (FGMs) with Dirichlet and Neumann boundary conditions.
The persistently spatially changing diffusion and leakage factor coefficients involved in the governing
equation indicate the inhomogeneity of the material under consideration. And the anisotropic diffusion
coefficients indicate the material’s anisotropy. Some particular examples of problems are solved numer-
ically using a boundary element method (BEM). The results show the accuracy and consistency of the
numerical solutions, the effect of the coefficient b xð Þ values on the solutions, and the impact of the inho-
mogeneity and the isotropy of the materials to the solutions.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Authors commonlydefineanFGMasan inhomogeneousmaterial
having a specific property such as thermal conductivity, hardness,
toughness, ductility, corrosion resistance, etc. that changes spatially
in a continuous fashion. Nowadays FGM has become an important
topic, and numerous studies on FGM for a variety of applications
have been reported (see e.g. Bakhadda et al., 2018; Bounouara
et al., 2016; Hedayatrasa et al., 2014; Karami et al., 2017;
Karami et al., 2018a; Karami et al., 2018b; Karami et al., 2018c;
Karami et al., 2019a; Karami et al., 2019b and Zemri et al., 2015).

The modified Helmholtz equation appears in many kind of
applications such as neutron diffusion problems (Itagaki and
Brebbia, 1993), advection-diffusion problems (Solekhudin and
Ang, 2012), problems governed by Laplace type equation (Chen
et al., 2002), Debye-Huckel theory and the linearized Poisson–
Boltzmann problems (Kropinski and Quaife, 2011), steady-state
groundwater flow (Gusyev and Haitjema, 2011) and unsteady heat
conduction (Guo et al., 2013). So many works which are related to
the modified Helmholtz equation and focusing on finding its
numerical solutions have been done, yet most of the works are lim-
ited to the case of isotropic and/or homogeneous media. The works
by Igarashi and Honma (1992), Itagaki and Brebbia (1993), Singh
and Tanaka (2000), Chen et al. (2002), Cheng et al. (2006),
Gusyev and Haitjema (2011), Kropinski and Quaife (2011), Guo
et al. (2013), Nguyen et al. (2013) and Chen et al. (2014) are among
the examples.

Apparently, BEM has been successfully used for solving many
types of problems of either homogeneous or functionally graded
(inhomogeneous), and either isotropic or anisotropic materials.
Some works using BEM for homogeneous anisotropic media of 2D
diffusion-convection and Helmholtz problems (e.g. Azis et al.
(2018); Azis, 2019a) have been recently reported. And for
inhomogeneous anisotropic media BEM also has been used to
solve elasticity, scalar elliptic, Helmholtz, diffusion-convection
and diffusion-convection–reaction problems (see e.g. Azis and
Clements, 2014; Azis, 2019b; Azis, 2019c; Hamzah et al., 2019;
Lanafie et al., 2019; Haddade et al., 2019; Azis et al., 2019;
Hamzah et al., 2019).

This paper discusses derivation of a BEM for numerically solving
2D problems governed by the modified Helmholtz type equation
for anisotropic FGMs of the form

@

@xi
kij x1; x2ð Þ @/ x1; x2ð Þ

@xj

� �
� b2 x1; x2ð Þ/ x1; x2ð Þ ¼ 0 ð1Þ
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where the coefficients kij and b2 depend on x1 and x2 and the
repeated summation convention (summing from 1 to 2) is
employed. In the steady-state groundwater flow, the value of
1=b xð Þ is called the ‘‘leakage factor” or ‘‘characteristic leakage
length” (see Gusyev and Haitjema, 2011). Eq. (1) is relevant to mod-
elling systems for anisotropic FGMs which are governed by the
modified Helmholtz. The technique of transforming (1) to constant
coefficient equations will be used for obtaining a boundary integral
equation for the solution of (1). It is necessary to place some con-
straint on the class of coefficients kij and b for which the solution
obtained is valid.

For Eq. (1) to be an elliptic partial differential equation through-
out X, the matrix of coefficients kij

� �
is required to be a symmetric

positive definite matrix. The coefficients kij and b are also required
to be twice differentiable functions.

Throughout the paper, the analysis used is purely mathemati-
cal; to develop a BEM for obtaining the numerical solution of prob-
lems governed by Eq. (1) is the main purpose. The analysis in
general applies for anisotropic media, but it is equally applicable
to isotropic materials as a special case occurring when k11 ¼ k22
and k12 ¼ 0. Likewise, the analysis also applies especially for homo-
geneous materials, as a special case of FGMs, that occurs when kij
and b are constant. Therefore the main aim of this paper is to make
the coverage of (1) wider as to cover the case of anisotropic FGMs
as well as the special case of isotropic homogeneous materials
which mostly had been worked on previously.

2. The boundary value problem

Referred to a Cartesian frame Ox1x2 a solution to (1) is sought
which is valid in a region X in R2 with boundary @X consisting of
a number of piecewise continuous curves. On @X either / xð Þ or
P xð Þ is specified, where

P xð Þ ¼ kij @/=@xj
� �

ni ð2Þ
x ¼ x1; x2ð Þ and n ¼ n1;n2ð Þ is the normal vector pointing out on

the boundary @X. A boundary integral equation will be sought,
from which numerical values of the dependent variables / and
its derivatives may be obtained for all points in X.

3. The boundary integral equation

The boundary integral equation is derived by transforming the
variable coefficient Eq. (1) to a constant coefficient equation. We
restrict the coefficients kij and b to be of the form

kij xð Þ ¼kijg xð Þ ð3Þ
b2 xð Þ ¼b2g xð Þ ð4Þ
where g xð Þ is a differentiable function and kij and b2 are constant.
Substitution of (3) and (4) into (1) gives

kij
@

@xi
g
@/
@xj

� 	
� b2g/ ¼ 0 ð5Þ

Assume

/ xð Þ ¼ g�1=2 xð Þw xð Þ ð6Þ
therefore Eq. (5) can be written as

kij
@

@xi
g
@ g�1=2w
� �
@xj

� �
� b2g1=2w ¼ 0

which can be further written as

kij
1
4
g�3=2 @g

@xi

@g
@xj

�1
2
g�1=2 @2g

@xi@xj

 !
wþg1=2 @2w

@xi@xj

" #
�b2g1=2w¼0 ð7Þ
Use of the identity

@2g1=2

@xi@xj
¼ �1

4
g�3=2 @g

@xi

@g
@xj

þ 1
2
g�1=2 @2g

@xi@xj

allows Eq. (7) to be written in the form

g1=2kij
@2w
@xi@xj

� wkij
@2g1=2

@xi@xj
� b2g1=2w ¼ 0

So that if g satisfies

kij
@2g1=2

@xi@xj
þ kg1=2 ¼ 0 ð8Þ

where k is a constant, then the transformation (6) brings the vari-
able coefficients Eq. (5) into a constant coefficients equation

kij
@2w
@xi@xj

þ k� b2� �
w ¼ 0 ð9Þ

Moreover, substitution of (3) and (6) into (2) gives

P ¼ �Pgwþ Pwg1=2 ð10Þ

where Pg xð Þ ¼ kij @g1=2=@xj
� �

ni and Pw xð Þ ¼ kij @w=@xj
� �

ni

Three possible multi parameter function g xð Þ satisfying (8) are

g xð Þ ¼ A a0 þ a1x1 þ a2x2ð Þ½ �2 for which k ¼ 0; g xð Þ ¼
A exp amxmð Þ½ �2 for which k < 0 and kijaiaj ¼ �k, and

g xð Þ ¼ A cos amxmð Þ þ sin amxmð Þ½ �f g2 for which k > 0 and
kijaiaj ¼ k. When the material under consideration is a layered
material consisting of several layers where each layer is a specific
type of material of specific constant coefficients kij and b2 then the
discrete variation of the constant coefficients from layer to layer
may certainly accommodate the determination of a continuous
variation of the variable coefficients kij xð Þ and b2 xð Þ by interpola-
tion, that is to determine the parameters am of function g xð Þ.

An integral equation for (9) is

g x0ð Þw x0ð Þ ¼
Z
@X

C x;x0ð Þw xð Þ �U x;x0ð ÞPw xð Þ� �
ds xð Þ ð11Þ

where x0 ¼ a; bð Þ;g ¼ 0 if a; bð Þ R X [ @X, g ¼ 1 if a; bð Þ lies inside
the domain X;g ¼ 1

2 if a; bð Þ is on the boundary @X given that @X
has a continuously turning tangent at a; bð Þ. The function U in
(11) is called the fundamental solution, which is any solution of
the equation kij @

2U=@xi@xj
� �þ k� b2

� �
U ¼ d x� x0ð Þ and the C is

defined as C x;x0ð Þ ¼ kij @U x;x0ð Þ=@xj
� �

ni where d denotes the Dirac
delta function. Following Azis (2017), for 2-D problems U and C
are given by

U x;x0ð Þ ¼
K
2p lnR if k� b2 ¼ 0
ıK
4 H

2ð Þ
0 xRð Þ if k� b2 > 0

�K
2p K0 xRð Þ if k� b2 < 0

8>><
>>: ð12Þ

C x;x0ð Þ ¼

K
2p

1
R kij

@R
@xj

ni if k� b2 ¼ 0

�ıKx
4 H 2ð Þ

1 xRð Þkij @R
@xj

ni if k� b2 > 0

Kx
2p K1 xRð Þk 0ð Þ

ij
@R
@xj

ni if k� b2 < 0

8>>><
>>>:

ð13Þ

where K ¼ €s=f;x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jb2=fj

q
, f ¼ k11 þ 2k12 _sþ k22 _s2 þ €s2

� �� �
=2,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x1 � _að Þ2 þ _x2 � _b

� �2r
; _x1 ¼ x1 þ _sx2, _a ¼ aþ _sb; _x2 ¼ €sx2 and

_b ¼ €sb where _s and €s are respectively the real and the positive
imaginary parts of the complex root s of the quadratic

k11 þ 2k12sþ k22s2 ¼ 0 and H 2ð Þ
0 ;H 2ð Þ

1 denote the Hankel function of
second kind and order zero and order one respectively, K0;K1
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denote the modified Bessel function of order zero and order one
respectively and ı represents the square root of minus one. The
derivatives @R=@xj necessary for the calculation of the C in (13)
are given by @R=@x1 ¼ _x1 � _að Þ=R and @R=@x2 ¼ _s _x1 � _að Þþ½
€s _x2 � _b
� �

�=R. Use of (6) and (10) in (11) yields

g x0ð Þg1=2 x0ð Þ/ x0ð Þ¼R
@X g1=2 xð ÞC x;x0ð Þ�Pg xð ÞU x;x0ð Þ� �

/ xð Þ

� g�1=2 xð ÞU x;x0ð Þ� �

P xð Þ�ds xð Þ ð14Þ

Eq. (14) provides a boundary integral equation which is the
starting point of BEM construction for determining the numerical
solutions of / and its derivatives at all points of X.

4. Numerical examples

To illustrate the use of BEM some examples of problems gov-
erned by (1) are considered. For a simplicity, the domain X is taken
to be a unit square for all problems (see Fig. 1). Hankel and the
modified Bessel functions in (12) and (13) are approximated by
their ascending series, and the integral in (14) is evaluated using
Gaussian quadrature (see Abramowitz and Stegun, 1972). A num-
ber of 640 (constant) boundary elements of equal length, that is
160 elements on each side of the unit square domain, are used
for the implementation of BEM.

4.1. Problems with analytical solutions

Some problems with analytical solutions will be considered. The
aim is to evaluate the accuracy and efficiency of the numerical solu-
tions. In addition to this, the impact of an increase of the coefficient
b xð Þ on the accuracy, when appropriate, will also be investigated.
For all test problems considered, the boundary conditions are

/given on the side AB; BC; CD
Pgiven on the side AD
4.1.1. Example 1: anisotropic quadratically graded material
For k ¼ 0 one of the possible forms of g xð Þ satisfying (8) is the

quadratic function g xð Þ ¼ 2 1þ 2x1 þ 3x2ð Þ½ �2 that is when a
quadratically graded material is under consideration. The constant
coefficient kij is

kij ¼
1 1
1 2

� �
Fig. 1. The domain X.
We take several values of b2. The values of b2 and corresponding
maximum value of wave number b xð Þ and analytical solutions are
shown in Table 1.

Table 2 shows convergence of the numerical solutions and
Table 3 indicates efficiency of the BEM. Specifically, the standard
BEM only needs less than a minute time to obtain the solutions
c xð Þ and its derivatives at 19 interior points. From this point for-
ward, all the computation results are obtained using total number
of 640 elements. Fig. 2 shows numerical / absolute errors along the
line x2 ¼ 0:5 for several values of b2. The errors are reasonably
small occurring in the fourth decimal place. Fig. 2 also indicates
that in general the errors increase as the value of b2 gets larger.

4.1.2. Example 2: anisotropic exponentially graded material
When k < 0 in Eq. (8), one of possible forms of g xð Þ is an expo-

nential function of the form g xð Þ ¼ 2exp 0:2x1 þ 0:3x2ð Þ½ �2. The
constant coefficients kij and k are taken to be

kij ¼
1 1
1 2

� �
k ¼ �0:34

Table 4 shows several values of b2 and corresponding maximum
value of wave number b xð Þ and analytical solutions.

Fig. 3 shows numerical / absolute errors along the line x2 ¼ 0:5
for several different values of b2. The errors occur in the fourth dec-
imal place, even with large values of b2. Again, the errors increase
as the value of b2 gets larger.

4.1.3. Example 3: anisotropic trigonometrically graded material
Another possible forms of g xð Þ, when k > 0 in Eq. (8), is a

trigonometrical function g xð Þ ¼ 2 cos px1=4þ px2=4ð Þþf½
sin px1=4þ px2=4ð Þg�2 where p ¼ 3:1415. Again, we take the con-
stant coefficients kij and k

kij ¼
1 1
1 2

� �
k ¼ 5p2=16

We intend to set the value of the coefficient k� b2
� �

in (9) to be
negative, zero and positive, so as to consider three different types
of Eq. (9). Therefore we choose b2 ¼ 9p2=16;5p2=16;p2=16 thus
k� b2 ¼ �p2=4;0;p2=4. Table 5 shows the values of b2 and corre-
sponding analytical solutions.

Fig. 4 shows numerical / absolute errors along the line x2 ¼ 0:5
for three different values of b2. As for each b2 represents a different
type of Eq. (9), it is inappropriate to make a conclusion regarding
the effect of b2 values change on the errors.

4.2. Problems without any simple analytical solutions

Two problems will be considered. The boundary conditions are

P ¼ 0 on the side AB
/ ¼ 0 on the side BC
P ¼ 0 on the side CD
P ¼ 100 on the side AD
Table 1
The values of b2 and corresponding maximum b xð Þ and analytical solutions for
Example 1.

b2 maxb xð Þ Analytical solution / xð Þ
0:3125 6.71 exp 0:25 x1þx2ð Þ½ �

2 1þ2x1þ3x2ð Þ
1:25 13.41 exp 0:5 x1þx2ð Þ½ �

2 1þ2x1þ3x2ð Þ
5 26.83 exp x1þx2ð Þ

2 1þ2x1þ3x2ð Þ
20 53.66 exp 2 x1þx2ð Þ½ �

2 1þ2x1þ3x2ð Þ



Table 2
Convergence of solutions for Example 1 of the case b2 ¼ 20.

Point 160 elements 320 elements 640 elements Analytical

(0.1,0.5) 0.6154 0.6153 0.6150 0.6148
(0.3,0.5) 0.7993 0.7993 0.7991 0.7989
(0.5,0.5) 1.0561 1.0560 1.0558 1.0556
(0.7,0.5) 1.4140 1.4137 1.4135 1.4132
(0.9,0.5) 1.9131 1.9129 1.9125 1.9122

Table 3
CPU computation time (in seconds) for Example 1 of the case b2 ¼ 20.

160 elements 320 elements 640 elements

4.59375 16.03125 59.65625

Fig. 2. Numerical / absolute errors along the line x2 ¼ 0:5 for Example 1.

Table 4
The values of b2 and corresponding maximum b xð Þ and analytical solutions for
Example 2.

b2 max b xð Þ Analytical solution / xð Þ
0 0 0.5
0.31 1.84 0:5 exp 0:1x1 þ 0:1x2ð Þ
0.91 3.14 0:5 exp 0:3x1 þ 0:2x2ð Þ
4.66 7.12 0:5 exp 0:8xþ 0:7x2ð Þ
19.66 131.59 0:5 exp 1:8x1 þ 1:7x2ð Þ

Fig. 3. Numerical / absolute errors along the line x2 ¼ 0:5 for Example 2.

Table 5
The values of b2 and corresponding analytical solutions
for Example 3.

b2 Analytical solution / xð Þ
9
16p

2
0:5 exp pffiffiffi

20
p x1þx2ð Þ
h i

cos p
4 x1þx2ð Þ½ �þsin p

4 x1þx2ð Þ½ �
5
16p

2 0:5 1þx1þx2ð Þ
cos p

4 x1þx2ð Þ½ �þsin p
4 x1þx2ð Þ½ �

1
16p

2
cos pffiffiffi

20
p x1þx2ð Þ
h i

þsin pffiffiffi
20

p x1þx2ð Þ
h i

2 cos p
4 x1þx2ð Þ½ �þsin p

4 x1þx2ð Þ½ �f g

Fig. 4. Numerical / absolute errors along the line x2 ¼ 0:5 for Example 3.
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4.2.1. Example 4
Now, the purpose is to show coherence between the flow vector

@/
@x1

; @/
@x2

� �
and the scattering / solutions inside the domain, and the

impact of the inhomogeneity and the anisotropy of the material.
The variable coefficients kij xð Þ and b2 xð Þ for the governing Eq. (1)
are

kij xð Þ ¼ kijg xð Þ
b2 xð Þ ¼ b2g xð Þ
g xð Þ ¼ 2 a0 þ a1x1 þ a2x2ð Þ½ �2
b2 ¼ 20

And we consider two cases regarding the anisotropy kij
� �

and
inhomogeneity g xð Þð Þ of the material as shown in Table 6.

Figs. 5 and 6 show a coherence between the flow vector and
scattering / solutions. This verifies that the developed FORTRAN
code computes the flow vector correctly.
Table 6
Two cases regarding the anisotropy kij

� �
and inhomogeneity g xð Þð Þ for Example 4.

Material kij g xð Þ

Isotropic homogeneous 1 0
0 1

� �
4

Anisotropic inhomogeneous 1 1
1 2

� �
2 1þ 2x1 þ 3x2ð Þ½ �2



Fig. 5. Flow and scattering solutions for Example 4 of the isotropic homogeneous material.

Fig. 6. Flow and scattering solutions for Example 4 of the anisotropic inhomogeneous material.

Table 7
The values of constant matrix kij and the parameters am for Example 5.

Material kij g xð Þ

Isotropic homogeneous 1 0
0 1

� �
A ¼ 2;a0 ¼ 1;a1 ¼ 0;a2 ¼ 0

Isotropic inhomogeneous 1 0
0 1

� �
A ¼ 2;a0 ¼ 1;a1 ¼ 7p

16 ;a2 ¼ 7p
16

Anisotropic homogeneous 1 1
1 2

� �
A ¼ 2;a0 ¼ 1;a1 ¼ 0;a2 ¼ 0

Anisotropic inhomogeneous 1 1
1 2

� �
A ¼ 2;a0 ¼ 1;a1 ¼ 7p

16 ;a2 ¼ 7p
16
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4.2.2. Example 5
The aim is to see comparison of solutions for quadratically,

exponentially and trigonometrically graded materials by keeping
the parameters A;am of the function g xð Þ, and the constant coeffi-
cients kij; b2 the same for all types of graded materials. Three types
of material’s gradation and their forms of function g xð Þ are

quadratical g xð Þ ¼ A a0 þ amxmð Þ½ �2; k ¼ 0

exponential g xð Þ ¼ A exp amxmð Þ½ �2; k ¼ �kijaiaj

trigonometrical g xð Þ ¼ A cos amxmð Þ þ sin amxmð Þf g½ �2; k ¼ kijaiaj

The parameter b2 chosen is b2 ¼ 20 and the values of constant
matrix kij and the parameters am associated with the anisotropy
and inhomogeneity of the material are shown in Table 7.

Table 8 shows a comparison of / solutions inside the unit
square domain for each combination of isotropy and homogeneity,
and each type of types of material’s gradation. The results in Table 8
may be described as follows:
� for each type of material, the impact of the anisotropy and inho-
mogeneity on the solutions is evident. This suggests that it is
important to take into account the anisotropy as well as the
inhomogeneity in application.

� when the material is homogeneous (ie. a1 ¼ 0;a2 ¼ 0 so that
k ¼ 0), either the material is isotropic or anisotropic, all the
three types of material give identical solutions since the prob-
lems are identical.

� contrarily, when the material is inhomogeneous (ie.
a1 ¼ 7p

16 ;a2 ¼ 7p
16) the scattering solutions of the three types of

material’s gradation are different. This is due to that the prob-
lems are not identical (the value k in Eqs. (8) and (9) is different)
for each type of material’s gradation.

5. Conclusion

It is possible to find numerical solutions of problems gov-
erned by an equation of variable coefficients such as the modi-
fied Helmholtz type Eq. (1) by using a standard BEM. Being
adopted in this work, transformation of the variable coefficient
equation into a constant coefficient equation is among way to
derive a boundary integral equation. A BEM may then be con-
structed from the boundary integral equation. The standard
BEM provides an ease of implementation, timeless computation
and accurate solutions.

Modeling physical application for an anisotropic FGM always
involves a variable coefficients governing equation such as (1). In
this paper, quadratically, exponentially and trigonometrically
graded materials are considered as the FGMs.

In addition to its accuracy, the BEM has also been working prop-
erly. This is indicated by the consistency between the flow vectors
and scattering solutions. Moreover, it is also observed that the



Table 8
Comparison of / solutions for Example 5.
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anisotropy and inhomogeneity of the material effect the results.
This suggests both anisotropy and inhomogeneity should be taken
into account in applications.
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