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In this article, we studied the modeling of a hyperelastic rod during large displacements in the presence
of a frictional self-contact described by the Coulomb’s law. Compared to other works the self-contact sub-
ject with friction is addressed as a problem in itself. This problem generates nonlinear constraints leading
to difficulties in mathematical and numerical analysis. To relax the problem of these constraints, an aug-
mented Lagrangian method was used. As a result, we overcame the implicit nature of the Signorini-
Coulomb-self-contact formulas. We presented, on the one hand, a result of the existence of the solution.
On the other hand, we have proposed an approach that can be useful for a numerical implementation of
this problem.
� 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

l, e Initial length and the initial radius
r0; rr; r Displacements of each configuration
n Internal force
m Internal moment
N, T normal and tangential vectors
f N ; f T Normal and tangential stresses
lN ;lT Normal and tangential penalties parameters

f lN
N ; f lT

T Normal and tangential penalized stresses
Dr Gap vector
dr Gap function
gr Sliding velocity vector
cT Tangential friction coefficient
p, q Admissible displacement and rotation variations
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1. Introduction

Several systems of mechanical structures reveal situations in
which an elastic body undergoes self-contact or come in contact
with other bodies. Among the recently studied systems, is the
DNA supercoiling in chromatin where the change of configuration
can influence their local and global structure (Gilbert and Allan,
2014). Another possible example could be the increased use of
the stent in the biomedical field. For example, the use of stent-
grafts for endovascular repair can lead to serious complications
(Demanget et al., 2012; Demanget et al., 2013), despite the large
experimental and computational studies. Another example of
studying the physical structure of the collision and contact phe-
nomena of different layers of clothing in a virtual garment of the
physically based animation. This type of modelization is important
to enrich realism provided by physics based simulation in anima-
tion (Jiang et al., 2017). Moreover, the nature of the contact plays
a determining role in their behavior. The general theory could be
attributed to (Duvaut and Lions, 1972) who gave the variational
formulations of contact problems and proved the existence and
uniqueness of the solution for bilateral contact problems using
Tresca’s friction law. In Nečas et al. (1980), they have proved the
existence of unilateral contact problem in the static state using a
local Coulomb friction law. This result was extended by Jarušek
(1983). For a static problem, where a law of normal conformity
describes the contact, we can refer to Oden and Martins (1985)
and Klarbring et al. (1989). The unilateral contact problems with
non-local Coulomb friction have been studied by Duvaut (1980),
Demkowicz and Oden (1982), Oden and Pires (1983), Cocu
(1984) and Renard (2006). Besides, we cite the work in Béal and
Touzani (2003) about the contact in large displacements. The
self-contact problem had not been considered analytically as an
autonomous topic in the classic scientific literature, but it is con-
sidered as a special case, which must, therefore, be dealt with
accordingly. Motivated by the self-contact due to the supercoiling
phenomena of DNA, the self-contact caused by the writhing of the
clamped rods has been studied by Van der Heijden et al. (2003). In
Chamekh et al. (2009), a result of the existence for the frictionless
self-contact problem and a numerical approach have been given.

This work presents the great difficulties we face in proving even
the existence of solutions to quasi-static frictional self-contact
problems of elastic rods. One of our basic goals is the aim is to
understand, if possible in physical terms, the meaning of non-
uniqueness and non-existence in the quasi-static case. The fric-
tional Coulomb’s law does not admit of potential, and even for
Tresca’s law does not admit of potential in the case of large dis-
placements. For this reason, we cannot prove the uniqueness and
the existence of solution by the minimization of the total energy
method or even if we rely on the balance equations, because we fall
into a coupling between displacement and rotation, and which
leads to a strong non-linearity.

We propose to extend these results to a particular result of exis-
tence whose the frictional self-contact force is known, fixed and
proposed as a penalized force to ensure the uniqueness result. That
is, solving the non-linear problem in the Uzawa algorithm before
updating the Lagrange multipliers. This force is proposed by regu-
larized normal and tangential vectors, this regularization is applied
to the contact pressure to extend the scope of the results as well.

2. Geometrically exact rod

2.1. Preliminaries

We consider a direct orthonormal fixed frame
R0 ¼ O; e1; e2; e3f g of the Euclidean space R3. We denote by k � k
the Euclidean norm on R3. For a vector a 2 R3, we associate the
antisymmetric tensor a� ¼ skewðaÞ, i.e. a�b ¼ a� b for all vector
b 2 R3. We denote by axialðAÞ the axial vector associated with
the antisymmetric tensor, that is to say, such that
ðaxialðAÞÞ� ¼ A. The projection of a vector a 2 R3 onto a ball cen-
tered at the origin and with a radius m is defined as:

PBðmÞ½a� ¼
a if kak < m;
m a

kak otherwise:

(
ð1Þ

Throughout this report, for any function G differentiation with
respect to the time and to the curvilinear abscissa are denoted with

a dot _G ¼ @G
@t

� �
and prime G0 ¼ @G

@s

� �
, respectively.

2.2. Configurations of Cosserat rods

Compared to the work of Mlika et al. (2017) that has treated the
frictional self-contact problem by a theory based on Nitsche’s
method, we have used the geometrically exact theory (GET) which
plays an important role in much recent mechanical research. This
theory is based on the Cosserat’s rod (Cosserat and Cosserat,
1909), governed by the equations developed in Reissner (1981)
and Simo and Vu-Quoc (1988). The GET has many benefits, has
of the advantage to parametrize the 3D configuration of the rod
by a 1D parametrization and to take into account the torsion, bend-
ing, elongation and shear. The GET could be based on Simo-
Reissner theory that we have mentioned above, or also on the
Kirchhoff-Love theory (Meier et al., 2016). The studied rod is
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initially defined by a right centerline (untwisted) fixed on the spa-
tial basis ðeiÞi ¼ R0, the reference configuration that is also called
unstressed or stress-free configuration. However, it can be initially
twisted and/or curved on the basis ðd0iÞi ¼ Rr . Under the action of
external efforts, the rod is deformed and moves from the reference
configuration to the deformed configuration defined by the
deformed centerline on the material basis ðdiÞi ¼ R. In this model,
the sections are initially plane and remain plane with an invariant
radius e. The deformed configuration is then described by the posi-
tion of each s 2 ½0; l� (with l is the initial length of the rod) which
moves by a partial translational displacement rr 2 R3, i.e.
rðsÞ ¼ r0ðsÞ þ rrðsÞ, and by translational displacement rr and turns
with the cross-section and therefore with the local frame
ðr0i;d0iÞi by the orthogonal tensor Rr ¼ di � d0i.

Consequently, the transformation R ¼ RrR0 is the orthogonal
tensor which determines the overall orientation of the cross-
section. The diagram Fig. 1 explains the relation between these

tensors.

Thus, the space of all possible configurations of the rod satisfy-
ing a given boundary conditions BC is

C ¼ ðr;RÞ 2 H1 ½0; l�;R3 � SOð3Þ� �
; BC

n o
: ð2Þ
2.3. Balance equations

In what follows, we assume that the transformation is very slow
so that we can neglect the forces of inertia. The time parameter
must not appear even in the equilibrium equations. Nevertheless,
we must use an Euler scheme to discretize the tangential velocity
field in time (Mlika et al., 2017). The balance equations are the
equations, which describe the variation of the internal force nðsÞ
and the internal moment mðsÞ on the centerline of the rod. We
obtain the local form of the balance equations under the action
of external distributed force f and torque ci for the rod writes
Fig. 1. The different configuratio
n0ðsÞ þ f ðsÞ þ f cðsÞ ¼ 0; ð3aÞ

m0ðsÞ þ r0ðsÞ � nðsÞ þ diðsÞ � ciðsÞ ¼ 0; ð3bÞ
with f c is contribution force of frictional self-contact.

Concerning constitutive laws, we suppose that exists an elastic
energy density Wðs;u; vÞ obeys the convexity and coercivity
hypotheses with respect to its last two arguments (Antman,
2004) and which verify the following relationships

nðsÞ ¼ R
@W
@v

ðs;u; vÞ; mðsÞ ¼ R
@W
@u

ðs;u; vÞ; ð4Þ

where u ¼ RTu and v ¼ RTv .

3. Frictional self-contact model

3.1. Self-contact problem

Generally, the self-contact do not be frictionless realized unless
we neglect the tangential and rotational stress on the interface. We
consider for all s 2 ½0; l� of the centerline of the rod the subset I s of
½0; l� of the points likely to come into contact with s. Physically, the
subset I s defined by the points where the self-contact can take
place and avoid very close points that cannot come into contact
with s (Chamekh et al., 2009).

We define the normal and the tangent vectors to the curve of
the centerline of the rod on the point rð�sÞwhich describe the defor-
mation of the rod by (see Fig. 3)

Nðs;�sÞ ¼ rðsÞ � rð�sÞ
krðsÞ � rð�sÞk ; ð5aÞ

Tðs;�sÞ ¼ r0ð�sÞ
kr0ð�sÞk ; ð5bÞ

where �s is the closest point to s, i.e. �s ¼ argminr2I s
krðsÞ � rðrÞk. The

gap vector, associated with the slave point s is given by

Drðs;�sÞ ¼ rðsÞ � rð�sÞ � 2eNðs;�sÞ: ð6Þ
Whereas, the self-penetration function is given by

drðs;�sÞ ¼ � Drðs;�sÞ � Nðs;�sÞð Þ: ð7Þ
ns of a Cosserat elastic rod.



Fig. 2. Admissible and inadmissible situations of elastic rods.
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Consequently, this constraint of the non-self-penetration of
material leads to the following space of kinematically and physi-
cally admissible configurations (see Fig. 2)

Cc ¼ ðr;RÞ 2 C; suchthatdrðs;�sÞ 6 0; 8s 2 ½0; l�f g: ð8Þ
The minimization problem for get �s the closest point to s can lead to
find the zeros of its gradient, which gives the following orthogonal-
ity condition

r0ð�sÞ � rðsÞ � rð�sÞð Þ ¼ 0: ð9Þ
Then, the search for a point of contact consists of resolving, for all
s 2 ½0; l�, a scalar orthogonal projection problem.

3.2. Characterization of frictional self-contact

The contact force applied between two points, which are found,
respectively, on the cross-sections boundaries AðrðsÞÞ and Aðrð�sÞÞ
so that we can continue the contact pressure (normal force) and
the frictional efforts (tangential and rotational frictional forces)
without falling in the self-penetration problem. If we neglect the
rotational friction, the contact force must be defined by (see Fig. 3)

f cðsÞ ¼ f NðsÞNðs;�sÞ þ f TðsÞ:
The tangential sliding measurement must be carried out on the

plane which is tangent to the cross-section and orthogonal to the
plane ðN;TÞ. If the self-contact during the sliding is assumed per-

sistent, i.e. drðs;�sÞ ¼ 0 and _drðs;�sÞ ¼ 0. Then, we easy obtain
_Drðs;�sÞ ¼ 0. And we have

grðs;�sÞ ¼ _rðsÞ � _rð�sÞ þ 2e _Nðs;�sÞ: ð10Þ
If grðs;�sÞ ¼ 0 then the curve is a tangentially self-sticking; else then
the curve is a tangentially self-sliding.
Fig. 3. Domains of th
3.3. Signorini-Coulomb self-contact problem

Tresca’s law has been added to contact problems when normal
compressions are important. This leads to a quadratic functional
minimization problem. Following Kikuchi and Oden (1988), this
is based on a fixed slip potential, assumed to be known, and which
does not depend on the normal stress. However, it is very sensitive
and can lead to complex instability during large movements. Cou-
lomb’s law generalizes the Tresca friction phenomenon and is able
to analyze this friction of elastic rods even in case of significant dis-
placement. He describes this threshold dependence with the inten-
sity of normal forces. Unfortunately, also the Coulomb’s law does
not admit of potential since its friction potential depends on nor-
mal compression.

The Kuhn-Tucker and the Signorini-Coulomb frictional condi-
tions as following:

drðs;�sÞ 6 0; ð10aÞ

fNðsÞ P 0; ð10bÞ

drðs;�sÞf NðsÞ ¼ 0; ð10cÞ

kf TðsÞk < cTf NðsÞ if grðs;�sÞ ¼ 0; ð10dÞ

f TðsÞ ¼ cTf NðsÞ
grðs;�sÞ

kgrðs;�sÞk
otherwise; ð10eÞ

with cT is a tangential friction coefficient. The condition of the per-

sistence of self-contact is expressed by the equality, _drðs;�sÞf NðsÞ ¼ 0.
This condition is particularly used to develop kinematics of friction.

3.4. Non-uniqueness and non-existence of solutions to quasi-static
frictional self-contact problem

The frictional self-contact problems as a particular case of fric-
tional contact problems have a practical as well as a theoretical
importance, a large number of algorithms for the numerical solu-
tion of the related finite element equations and inequalities as a
minimization problem of potential energy have been presented
in the literature. But theoretically, the quasi-static frictional self-
contact problems are known to exhibit ‘unexpected’ features such
as non-existence and non-uniqueness of solutions.

The typical example for the elastic energy density
Wð�;u; vÞ ¼ 1

2 fv � Bvþ u � Aug, where BðsÞ and AðsÞ are two coercive,
symmetric and positive-definite matrices inM3ðRÞ. Such an energy
functional involves shear, tension, flexure, and torsion. The
e Coulomb’s law.



Fig. 4. Schematic of the frictional self-contact regularizations: as the penalty
parameters go to zero, the graphs (at the bottom) represent by the method of
penalization coincide with the graphs (at the top) represent by the Kuhn-Tucker
and friction conditions.
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constraints imposed in C are contained so that if f and ci are,
respectively, independent of r and R. By the kinematic equations
and the Darboux vectors derivative (Chamekh et al., 2009), we
are substituting the constitutive laws (4) in the balance equations
(3) for obtaining the following weak form of the problem

Findðr;RÞ 2 Cc such thatR l
0 RBR

Tr0 � p0 dsþ R l
0 f � p dsþ R l

0 f c � p ds ¼ 0R l
0 RAR

Td0
i � ðq�diÞ0 dsþ

R l
0ðr0 � RBRTr0Þ � ðq�diÞ ds

þ R l
0 ci � ðq�diÞ ds ¼ 0; 8ðp;qÞadmissible variation;

8>>>>><
>>>>>:

ð11Þ

where p and q, respectively, are an infinitesimal displacement and
an infinitesimal rotation on the cross-sections Að�Þ, i.e. dR ¼ q�R.

To study the existence and uniqueness of the solution for the
Signorini-Coulomb contact problems, it would be pointless to think
of using classical variational methods, which may also partly
explain why fixed-point theorems are widely used by many
authors as in Nečas et al. (1980) and Jarušek (1983). The inapplica-
ble fixed-point theorems for problem (11) because of the strong
nonlinearity as a coupling between r and R at the level of each
equation, so that we could not prove that this problem even admits
a solution. Note that if we delete the coupling between r and R for
example by delete the rotation R in internal force nðsÞ and moment
mðsÞ given by (4) (which is physically not allowed actually), we
obtain a purely mathematical linear problem who admits a solu-
tion demonstrable by the fixed-point theorem of Schauder for a
penalized frictional self-contact force proposed and defined by

f lc ðsÞ ¼
1
l

Z
I s

½drðs;�sÞ�þ Neðs;�sÞ þ cTT
lðs;�sÞ� �

d�s;

½x�þ ¼ 1
2
ðxþ jxjÞ; ð12Þ

with the following regularizations

Neðs;�sÞ ¼
rðsÞ�rð�sÞ

2e if krðsÞ � rð�sÞk 6 2e;
Nðs;�sÞ otherwise;

(
ð13aÞ

Tlðs;�sÞ ¼
grðs;�sÞ
l if kgrðs;�sÞk 6 l;

grðs;�sÞ
kgrðs;�sÞk otherwise:

8<
: ð13bÞ

After that, we can prove the convergence of the penalized problem
where their solution is in the space of all possible configurations C
because the penalty technique authorizes a small penetration. But,
the solution of the non-penalized problem must be in the space of
kinematically and physically admissible configurations Cc . This pen-
etration cannot be entirely so that cannot exceed or reach the cen-
ter line of the rod, this technique is localized by the penalization
parameter l.

4. Numerical implementation

In the literature, the penalty and the augmented Lagrangian
methods are the methods most used numerically, and which are
able to respect the contact and friction conditions even on a weak
form. In this paper, we are interested in these methods which are
theoretically detailed in Kikuchi and Oden (1988). The penalty
method authorize, firstly, a negligible self-penetration and sec-
ondly a lightweight sliding without respect the friction conditions,
these permissions depend on the normal and tangential penalty
parameters (Fig. 4). The penalty and the augmented Lagrangian
methods were used in Wriggers and Zavarise (1997); Zavarise
and Wriggers, 2000 for frictionless contact between two beams
with circular sections, and recently used in Chamekh et al.
(2014) and Chamekh (2015) for the numerical treatment of
frictionless self-contact of a closed rod with circular sections. We
will extend this study to the frictional self-contact case.

The principle of virtual work for the augmented Lagrangian
method, it is a necessary condition for minimizing the total energy
in the space of kinematically and physically admissible configura-
tions C given by:

Gðr;R;p;qÞ¼dJ ðr;R;p;qÞþ
Z l

0
ðf lN

N ðsÞNðs;�sÞþ f lT
T ðsÞÞ � ðpð�sÞ�pðsÞÞ ds¼0;

ð14Þ

where dJ ðr;R;p; qÞ is the virtual work of the internal and external
forces and moments. The integral part in (14) is the virtual work of
frictional self-contact forces given by

f lN
N ðsÞ ¼ 1

lN
drðs;�sÞ þ lNk

n
NðsÞ

� �
þ; ð15Þ
f lT
T ðsÞ ¼ 1

lT
PBT grðs;�sÞ þ lTk

n
TðsÞ

� �
; ð16Þ

where lN and lT are the normal and tangential penalties parame-
ters and BT is a ball centered at the origin and with a radius
lTcTf

lN
N . We define that Bn

TðsÞ ¼ BðlTcTk
n
NðsÞÞ, the iterative

approaches knNðsÞ and knTðsÞ are updated according to the following
iterations:

knþ1
N ðsÞ ¼ 1

lN
drðs;�sÞ þ lNk

n
NðsÞ

� �
þ

knþ1
T ðsÞ ¼ 1

lT
PBnþ1

T
grðs;�sÞ þ lTk

n
TðsÞ

� �
:

Then, the penalized problem that we propose to solve writes

Findðr;RÞ 2 C such that
Gðr;R;p;qÞ ¼ 0; 8ðp;qÞ admissible variation:

�
ð17Þ

Note that the penalty method corresponds to the choice
knNN ¼ knT ¼ 0 in (15). In the next proposition, the augmented
Lagrangian method reassures us about the Kuhn-Tucker and friction
conditions:
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Proposition 4.1. The self-contact and friction conditions (10) are
equivalent to:

f NðsÞ ¼
1
lN

drðs;�sÞ þ lNf NðsÞ
� �

þ ð18aÞ

f TðsÞ ¼ 1
lT

PBT grðs;�sÞ þ lTf TðsÞ
� � ð18bÞ

where BTðsÞ :¼ BðlTcTfNðsÞÞ.
Proof. Let ðr;RÞ be a regular configuration on C such that f cðsÞ,
drðs;�sÞ and grðs;�sÞ verify conditions (10). First, of the condition
(10b) we have fNðsÞ > 0 or fNðsÞ ¼ 0, suppose that fNðsÞ ¼ 0, the
condition (10a) gives that

1
lN

drðs;�sÞ þ lNf NðsÞ
� �

þ ¼ 1
lN

drðs;�sÞ½ �þ ¼ 0 ¼ f NðsÞ:

Now, suppose that fNðsÞ > 0, the condition (10c) implies that
drðs;�sÞ ¼ 0. then

1
lN

drðs;�sÞ þ lNf NðsÞ
� �

þ ¼ 1
lN

lNf NðsÞ
� �

þ ¼ f NðsÞ;

so that (18a) holds. Secondly, from the friction conditions in (10)
consider the case grðs;�sÞ ¼ 0, according to the condition (10d) we
have klTf TðsÞk < lTcTfNðsÞ, then
1
lT

PBT grðs;�sÞ þ lTf TðsÞ
� � ¼ 1

lT
PBT lTf TðsÞ

� � ¼ f TðsÞ:

In the case grðs;�sÞ– 0 we have f TðsÞ ¼ cTf NðsÞ grðs;�sÞ
kgrðs;�sÞk, then

kgrðs;�sÞ þ lTf TðsÞk ¼ kgrðs;�sÞk þ lTcTf NðsÞ
P lTcTf NðsÞ:

Therefore

1
lT
PBT grðs;�sÞ þ lTf TðsÞ

� � ¼ cTf NðsÞ grðs;�sÞþlTf TðsÞ
kgrðs;�sÞþlTf TðsÞk

¼ cTf NðsÞ grðs;�sÞ
kgrðs;�sÞk ¼ f TðsÞ;

so that (18b) holds. Conversely, let ðr;RÞ 2 C such that (18) holds.
From (18a) we obtain fNðsÞ P 0. Consider the first case fNðsÞ ¼ 0,
then fNðsÞdrðs;�sÞ ¼ 0 and 1

lN
drðs;�sÞ½ �þ ¼ 0 which implies

drðs;�sÞ � 0. In the case fNðsÞ > 0, we have

lNf NðsÞ ¼ drðs;�sÞ þ lNf NðsÞ
� �

þ
¼ drðs;�sÞ þ lNf NðsÞ;

which implies that drðs;�sÞ ¼ 0 and fNðsÞdrðs;�sÞ ¼ 0. So that the
Kuhn-Tucker conditions in (10) holds. Now, from (18b) suppose
that grðs;�sÞ ¼ 0, then f TðsÞ ¼ 1

lT
PBT lTf TðsÞ

� �
which implies that

kf TðsÞk < cT f NðsÞ thereby (10d) holds. In the case grðs;�sÞ – 0 we
obtain kgrðs;�sÞ þ lTf TðsÞk P lTcTfNðsÞ because if kgrðs;�sÞþ
lTf TðsÞk < lTcTf NðsÞ then grðs;�sÞ ¼ 0 which contradicts the hypoth-
esis. Then, the relationship (18b) can now be written:

f TðsÞ ¼ cTfNðsÞ
grðs;�sÞ þ lTf TðsÞ

kgrðs;�sÞ þ lTf TðsÞk
Therefore

f TðsÞ ¼ cTf NðsÞ
kgrðs;�sÞ þ lTf TðsÞk � lTcTfNðsÞ

grðs;�sÞ: ð19Þ

Since PBT grðs;�sÞ þ lTf TðsÞ
� � 2 @BT and from the relationship (18b)

we obtain kf TðsÞk ¼ cTf NðsÞ thereby from (19)

kgrðs;�sÞk ¼ kgrðs;�sÞ þ lTf TðsÞk � lTcTf NðsÞ:
Then
f TðsÞ ¼ cTf NðsÞ
grðs;�sÞ

kgrðs;�sÞk
so that (10e) holds. h
5. Existence and uniqueness solution of penalized frictional
self-contact problem

Here we adopt the augmented Lagrangian formulation
described above and the classical variational formulation of the
self-contact well detailed in Chamekh et al. (2009). More precisely,
the problem of finding the approximated equilibrium configura-
tions leads to the following nonlinear approximated minimization
problem

Findðrnl;Rn
lÞ 2 C such that

J n
lðrnl;Rn

lÞ 6 J n
lðq;QÞ 8ðq;QÞ 2 C:

(
ð20Þ

where

J n
lðr;RÞ ¼

Z l

0
Wð�; v;uÞ � f � r � f l;nc � r� �

ds;

is the energy expression for an elastic rod in balance, and the penal-
ized frictional self-contact force f l;nc given by

f l;nc ðsÞ ¼ knNðsÞNðs;�sÞ þ knTðsÞ; lN ¼ lT ¼ l: ð21Þ
Here, the Lagrange multipliers knN and knT given by (15) have been
used with regularization similar at (13) to ensure that f l;nc is in
L2ð½0; l�;R3Þ.

For the sake of simplicity we restrict ourselves to the cases

where
R l
0 ci � dids ¼ 0, and we recall that Wð�;u; vÞ ¼

1
2 fv � Bvþ u � Aug.

Theorem 5.1. If the external force f 2 L2ð½0; l�;R3Þ, then for each
n 2 N and l 2�0;1½, Problem (20) admits at least one solution.
Proof. A big party of this theorem is proved in Chamekh et al.
(2009) for the frictionless self-contact problem based on a general-
izedWeierstrass minimization theorem (Kikuchi and Oden, 1988 p.
382). The first part of the energy functional is weakly lower semi-
continuous and that it is coercive and the weak closure of the set C
is proved in Bourgat et al. (1988). It remains to prove that the
penalized second part of the energy functional is weakly lower
semicontinuous and that the total energy functional remains coer-
cive after adding the nonlinear terms associated the self-contact.
The frictional self-contact force f l;nc is in L2ð½0; l�;R3Þ. Then, the
mapping

r 2 H1ðð0; lÞ;R3Þ #
Z l

0
f l;nc ðsÞ � rðsÞ ds 2 Rþ;

is convex and weakly lower semicontinuous. Furthermore in
Chamekh et al. (2009), it is proved that, under certain conditions
we assume that they are supported here, there exist constant c1
and c2 such that

J 0ðr;RÞ P c1krk21;2 þ
c2
2
ðkRk21;2 � lÞ � kf k2;2krk1;2;

where J 0 is the first part of the energy functional, and k � k1;2
denotes the usual norm in H1ð½0; l�;R3Þ if the argument is in R3, or
H1ð½0; l�;M3ðRÞÞ if the argument is in M3ðRÞ. Since
f l;nc 2 L2ð½0; l�;R3Þ we have

J n
lðr;RÞ P c1krk21;2 þ

c2
2
ðkRk21;2 � lÞ � kf k2;2krk1;2 � kf l;nc k2;2krk1;2:
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Therefore the functional J n
l remains coercive which ends the

proof. h
6. Linearization of the virtual work of frictional self-contact
forces

The integral part in (14) is the virtual work of the problem (17)
that is nonlinear, to solve it, we have used the Newton-Raphson
method. This method consists in solving the next linearized prob-

lem for ðg; hÞ at the iteration k with an estimate ðrk;RkÞ.
The frictional self-contact forces rewrites

Gcðr;p;gÞ ¼
Z l

0
f lN
N ðsÞNðs;�sÞ þ f lT

T ðsÞ� � � ðpð�sÞ � pðsÞÞ ds: ð22Þ

It follows from that

DGcðr;p;gÞ¼
R l
0 � Df lN

N ðsÞNðs;�sÞþ f lN
N ðsÞDNðs;�sÞþDf lT

T ðsÞ� � � �pðsÞ�
þD�s f lN

N ðsÞNðs;�sÞþ f lT
T ðsÞ� � �p0ð�sÞ�ds ð23Þ

where �hðsÞ ¼ hðsÞ � hð�sÞ, for any vector-valued function hð�Þ.
In the following, it is necessary to calculate the directional

derivatives Df lN
N , Df lT

T , D�s and DN. For the directional derivative
of f lT

T is given by (see Chamekh et al., 2009):

Df lT
T ðsÞ ¼ 1

lT
F grðs;�sÞ þ lTk

n
TðsÞ

� �
Dgrðs;�sÞ:

where the function F is defined by:

FðxÞ ¼ 1 if kxk 6 lTcTf
lN
N ;

0 otherwise:

(

Using the Euler approximation of the tangential sliding velocity, we
obtain:

Dgrðs;�sÞ ¼
1
Dt

�gðsÞ � D�sr0ð�sÞ þ 2eDNðs;�sÞð Þ: ð24Þ

Therefore

Df lT
T ðsÞ ¼ F grðs;�sÞ þ lTk

n
TðsÞ

� �
lTDt

�gðsÞ � D�sr0ð�sÞ þ 2eDNðs;�sÞð Þ: ð25Þ

We get

DGcðr;p;gÞ ¼
R l
0

H drðs;�sÞþlNk
n
NðsÞð Þ

lNð2e�dr ðs;�sÞÞ QNðr;p;gÞ þ Q Tðr;p;gÞ
	

þ F grðs;�sÞþlTk
n
TðsÞð Þ

lTDtð2e�dr ðs;�sÞÞ �gðsÞ � ð2eNðs;�sÞ � Nðs;�sÞ � drIÞ�pðsÞ


ds;

ð26Þ

with QN is described in Chamekh et al. (2009) and

Q Tðr;p;gÞ¼XðsÞ
�gðsÞ

g0ð�sÞ

0
B@

1
CA �

NðsÞr0ð�sÞ�r0ð�sÞ r0ð�sÞ� f lT
T ðsÞ

NðsÞ�rðsÞ�r0ð�sÞ �rðsÞ� f lT
T ðsÞ

0
B@

1
CA

�pðsÞ

p0ð�sÞ

0
B@

1
CA

NðsÞ ¼ F grðs;�sÞ þ lTk
n
TðsÞ

� �ð4e� drðs;�sÞÞ
lTDtð2e� drðs;�sÞÞ ; and

XðsÞ ¼ 1

kr0ð�sÞk2 � r00ð�sÞ � �rðsÞ
:

7. Conclusions

The fusion of self-contact and friction induces a strong nonlin-
ear problem and rich modeling, along with the nonlinearity of
the modeling of a hyperelastic rod in large displacements in
three-dimensional space. Theoretically, the existence and unique-
ness of the solution to the problem is a major challenge. We have
used the augmented Lagrangian method to address the mathemat-
ical study of the Signorini-Coulomb-self-contact problem. We have
overcome the significant obstacles encountered in the implicit nat-
ure of formulations linked the use of Coulomb’s law. In addition,
we have developed some formulations for the frictional self-
contact problem, which can be, implemented numerically in future
research.
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