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In this paper, we present two new iterative methods, one of them is second derivative free, for solving

nonlinear equations. We derive these methods based on the Taylor series expansion and Halley’s method.

The convergence analysis of the two methods is discussed. It is established that the new methods have

sixth order of convergence. Several numerical examples given show that the new methods are compara-

ble with the well-known existing methods of the same order.
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1. Introduction

One of the most important questions in mathematics is how to
find a solution of the nonlinear equation f(x) = 0. The most famous
method, implemented by Newton, can be derived from the first
two terms of the Taylor series of f(x)

fX) = f(x0) + (x = Xo)f ' (x0)- (1)
As we want f(x) = 0, solving Eq. (1) for x gives us

_ _f(xo)
T ) )
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Hence, we can write it in iterative form as

f(xn)
f'xn)
The order of Newton method is 2, as proved by Traub (1964).
A Large number of researchers try to improve Newton’s method
in order to get more accuracy and higher order of convergence, see
for example Abbasbandy (2003), Chun (2006), He (2003), Medhu
and Jayaraman (2016) and the references therein.
If we stop at the third term in the Taylor series we will have

3)

Xny1 = Xp —

00 = o) + (= xaf (00 + 2 ), 4
Taking (x — Xo) as a common factor, and as f(x) — 0 we obtain

0 = i) + (x—x0) | x0) + K52 ). (5)
Reordering Eq. (5) gives

N f(x) -

f'(%0) +3(x = X0)f"(x0)

From Eq. (2) we have x — xo = —ff,((’j‘z)), and upon substituting this in
Eq. (6) we get
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_ 2f (xo)f (xo) 7)
2(f (x0))" ~ F(Xo)f" (%)
Rewriting (7) in iterative form one obtains
)
Xn+1 =X, — - zf(zxﬂ)f (xn) p , (8)
2(f (%n))" = f(xn)f" (%n)

which is a third order iterative method first introduced by Halley
(1964).

Recently, Kogan et al. (2017) proved that among all one-point
iterative methods without memory of order p, methods of order
p = 3 are the most efficient methods.

A lot of researchers try to modify Halley’s method, either by
increasing the order of convergence or by reducing the number
of functions evaluation in each iteration by writing the new
schemes without using the second derivative; as it is not always
easy to find the second derivative of the function. Noor and Noor
(2007) have implemented a two step Halley’s method using New-
ton’s method as a predictor and Halley’s method as a corrector.
They proved that this two step method has sixth order of conver-
gence. Noor et al. (2007) have modified the method in Noor and
Noor (2007) using the finite difference scheme, and established
their new algorithm without using of second derivative, and they
showed that the implemented scheme is of fifth order of conver-
gence. Hafiz and Al-Goria (2012) have established a two new
methods of order seven and nine, based on the weight combination
of midpoint with Simpson quadrature formulas and using the
predictor-corrector technique. Very recently, Kumar et al. (2017)
developed a parameter based family of sixth order iterations free
from second derivative for solving nonlinear equations.

Commonly in the literature, the efficiency index is used to com-
pare different iterative methods. This index is defined as p'/™,
where p is the order of convergence and m is the total number of
functional evaluations per iteration.

In this paper, we present two new iterative methods, one of
them is free from second derivative. We derive these methods
based on the Taylor series expansion of f(x) and use of Halley’s
method within the expansion. In order to reduce number of func-
tional evaluations at each iteration in the implemented scheme, we
approximate the second derivative in the first scheme and con-
struct a new one of the same order with higher efficiency index.
Both established techniques are of sixth order of convergence.

The rest of the paper is divided as follows. The new methods are
described in Section 2. In Section 3, the convergence analysis is car-
ried out to establish the order of convergence. In Section 4, the
methods are tested on some numerical examples, and comparisons
of the results of our methods with other well-known methods and
methods of the same order are summarized in tables. Finally, the
conclusion of the paper is given in Section 5.

X = Xp

2. The new methods
2.1. Method 1

Consider the nonlinear equation of the type f(x) = 0, where f(x)
is a real function, sufficiently differentiable, defined on a real inter-
val L.

For simplicity, assume that « € I is a simple zero for f(x), that is
f(a) = 0, and assume that X, is an initial guess sufficiently close to
o. We obtain from Taylor’s series expansion of the function f(x)
that

(X — Xo)?

fx0) + (x — X0)f' (%0) + 3 f"(x0) = 0. 9)

Reordering Eq. (9) gives

o fxe)  (x—x0)*f"(x0)
X =Xp f/(Xo) 2f’(xo) . (10)
Now, from Halley’s method in (7) we have

e 2 (%0)f (Xo) o

2 (x0))” = flx0)f"(%o)

After substituting (11) in (10), we obtain
X=X — fxo) 2(f(x0))*f (%0)f" (xo) .
F%0)  4(F (x0))" — 4f (x0) (' (x0))’F (%) + (F(%0)) (" (%0))°
(12)

Rewriting Eq. (12) in iterative form as a corrector, with Newton’s
method as a predictor gives our main result in this paper, which will
be:

Algorithm 2.1. For a given xo, compute the approximate solution
Xn.1 by the following iterative scheme

_y, o)
= ) i
X1y, SO 200 0" 0) i

FOR a4l ) =4 00 F 00 F 0n) +FO) ' V)
(14)

Algorithm 2.1 is called modified Halley’s method (MH1) and has
sixth order of convergence. At each iteration, (MH1) needs two
evaluations of the function, two evaluations of first derivative,
and one evaluation of the second derivative.Therefore, the effi-

ciency index of this modified method is (6)% ~ 1.431, which is
worse than 3% ~ 1.442 of Halley’s method.

2.2. Method 2

Now, in order to improve the efficiency index of Algorithm 2.1,
we approximate the second derivative to reduce number of func-
tional evaluations needed in each iteration. The method thus
obtained is free from second derivative. Towards this, we will
approximate the second derivative f"(y,) using a combination of
the already known data in the past steps.

Consider the function Q(t)=a+b(t—y,)+c(t—y,)>+d(t—y,)*,
where a, b, ¢, and d are unknowns to be found. With the following
interpolation conditions:

fxa) =Qxn),  fWn) =Q(wWn), f'(xn) = Q'(Xn),
f/(wn) = Q/(Wﬂ)s f"(wn) = QN(WH)'

A system of four linear equations of four variables is obtained from
the above conditions. Solving this system gives

2 3f(Xn) 7f( n)_zf/

Xn_yn Xn_yn

(yn) _f,(xn) = Q(men)
(15)

F'0a) =

Substituting Eq. (15) in Algorithm 2.1, one obtains the modified
algorithm:

Algorithm 2.2. For a given xo, compute the approximate solution
Xn.1 by the following iterative scheme
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o flx)
T ) e
gy A0 2(f(yn))f( Q%)
T AF ) A 00 F ) Qe Ya) + ) Q)
(17)

We call Algorithm 2.2 as the modified Halley’s method (MH2)
which has sixth order of convergence. At each iteration, (MH2)
needs two evaluations of the function, and two evaluations of first
derivative. Therefore, the efficiency index of this modified method
is (6)* ~ 1.565, which is better than (6)* ~ 1.431 of (MH1) and
3% ~ 1.442 of Halley’s method.

Remark 2.3. If f"(x) =
step scheme:

0, then Algorithm 2.1 reduces to the two

o fe
R )

o
TR

Which is the two step Newton’s method considered by Traub
(1964). This technique is of fourth order of convergence. This shows
that (MH1) is a generalization of Newton’s two step method.

3. Convergence analysis

Now, we will discuss the convergence analysis of Algorithms 2.1
and 2.2.

Theorem 3.1. Let o € I be a simple zero of a sufficiently differentiable
function f : | C R — Rin an open interval L. If xq is sufficiently close to
o, then the method defined by Algorithm 2.1 is of sixth order of
convergence.

Proof. Consider « is a root of f(x), and let e, = x, — o be the error at
the n'" iteration. By using Taylor’s series about x = o we have

F(xa) = f'(%)[en + C2€2 + C3€) + Ca€y + -+, (18)
where ¢, =1, W k=23,... From (18) we have
f'(xn) = f(0)[1 +2caen + 3c3€2 + 4cged + - . (19)
Then from (18) and (19) we have
ff((’;)) — ey — C2€2 — (205 — 2¢3)€3 — (3¢4 — Tcacs + AC)el + -

(20)
Using (20) we can write y, in Algorithm 2.1 as
Yo = 00+ 262 + (2c3 — 2¢3)e2 + (3¢q — TCac3 +4C3)er + -, (21)

Expanding f(y,), f'(v,) and f"(y,) about o and using (21) we get

2 3
F ) =) + 0 — o0f () + Lo gy 4 O B
=f'(o)[c2€2 + (23 — 2¢2)e3 + (3ca — TC03 + 563)eh +--],  (22)
2 3
F 00 =F @)+ 0 - )f @)+ IS gy O B

6
=f"()[1+2c3€2 + (4cacs —4c3)ed + (6caca — 11c3c3 +8c5)eln +--],
(23)

F' ) =" (@) + 0= 2)f" () +Mﬂ‘”(a) +(y“%“)3f‘5’(fx) oo
=f'(a)[2¢2 +6C2¢3€2 + (1262 —12c¢3¢3)e +-- . (24)

Substituting (22)-(24) in x,,1 in Algorithm 2.1 we obtain

Xny1 = 0 — C3c3€8 + O(el),

implying that

—c3c3ed 4+ 0(el).

€ni1 =

Hence, Algorithm 2.1 has at least sixth order of convergence O

Theorem 3.2. Let o € I be a simple zero of a sufficiently differentiable
function f : IC R — R in an open interval I. If xq is sufficiently close to
o, then the method defined by Algorithm 2.2 is of sixth order of
convergence.

Proof. With the same assumptions of the previous theorem, we
have

Q) =25 B IO o) p)
=f'(a )[262 +2(362c3 —ca)e2 —4(3cic3 -3¢ —caca+Cs)ed 4.
(25)

Substituting (22), (23) and (25) in x,,1 in Algorithm 2.2 we obtain

Xni1 = 0+ C3(—Cac3 + Ca)€s +0(e)),

which implies that
eni1 = C5(—C203 + c4)€l + O(e]).

This shows that Algorithm 2.2 has at least sixth order of
convergence [J

4. Numerical examples

In this section we present seven different examples to show the
efficiency of the new methods (14) and (17). We compare the new
methods with the second order Newton’s method, third order Hal-
ley’s method, sixth order (NR) method proposed by Noor and Noor
(2007) and (PCH) method of order six presented by Noor et al.
(2007). To do so, we consider the following seven test examples:

fi) =x*—e*=3x+2, f,(x)=@x-17-1,
f3(%) =x* =10, f,(x) = cos(x) —x,
fs(x) =sin’(x) =¥ + 1, fo(x) =¥ ™30 _ 1,
f,(x) =xe¥ — sin*(x) + 3 cos(x) + 5

We take € = 107" in the following stopping criterium of the com-
puter programs |x, — X, 1| < €. The computations here have been
carried out using Mathematica 9 with 10,000 significant digits.

Table 1 shows the number of iterations n such that the stopping
criterium is satisfied, the approximate zero x,, the distance
between two consecutive approximations for the zero with
[Xn — Xn_1] < 107", the value of the approximate zero after the
required iterations f(x,), and the computational order of conver-
gence (COC) which can be approximated using the formula

In |(Xn1 — Xn)/(Xn — Xn_1)|
In|(Xp —Xn-1)/(Xn-1 — Xn-2)|’

COC ~

firstly introduced by Weerakoon and Fernando (2000).
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Table 1
Comparisons between different methods.
Method n Xn Xn — Xn_1 f(xn) CcocC
f1(%), x0=2
Newton 6 0.257530285439860760455 9.1E—28 2.93E - 55 2
Halley 5 0.257530285439860760455 ~1.51E-29 6.27E — 88 3
NR 4 0.257530285439860760455 —3.42E-93 —2.38E — 559 6
PCH 4 0.257530285439860760455 —3.81E - 94 —3.72E — 565 6
MH1 4 0.257530285439860760455 —2.44E - 92 —3.72E - 554 6
MH2 3 0.257530285439860760455 —8.73E - 22 —2.85E — 130 6
f2(x), X0 =2.5
Newton 7 2 —1.29E - 28 5.03E - 56 2
Halley 5 2 —6.66E — 41 5.91E — 121 3
NR 3 2 ~1.86-17 6.86E — 101 6
PCH 4 2 —3.75E — 87 1.39E — 518 6
MH1 3 2 9.62E — 22 —~7.91E — 127 6
MH2 3 2 9.62E — 22 —~7.91E — 127 6
f3(x), X0 =2
Newton 5 2.15443469003188372176 —2.26E - 18 3.29E - 35 2
Halley 4 2.15443469003188372176 3.61E 33 —9.41E - 98 3
NR 3 2.15443469003188372176 —4.5E— 42 1.67E — 249 6
PCH 3 2.15443469003188372176 —2.61E-39 1.59E — 232 6
MH1 3 2.15443469003188372176 3.01E — 44 —7.51E — 263 6
MH2 3 2.15443469003188372176 3.01E—44 —7.51E — 263 6
fax), x0=1.7
Newton 5 0.739085133215160641655 —2.34E - 16 —2.03E - 32 2
Halley 5 0.739085133215160641655 —2.25E — 44 —2.22E-132 3
NR 3 0.739085133215160641655 —5.72E - 34 —7.33E - 203 6
PCH 3 0.739085133215160641655 —5.53E - 33 —8.44E — 197 6
MH1 3 0.739085133215160641655 ~1.89E - 35 —5.49E - 212 6
MH2 3 0.739085133215160641655 1.68E — 34 6.67E — 207 6
fs(x), xo =1
Newton 7 1.40449164821534122604 —7.33E-26 —1.04E — 50 2
Halley 5 1.40449164821534122604 1.02E — 38 1.38E- 114 3
NR 4 1.40449164821534122604 —6.66E — 86 —5.49E — 512 6
PCH 4 1.40449164821534122604 —4.7E-76 —1.47E — 452 6
MH1 3 1.40449164821534122604 9.04E — 19 5.71E—110 6
MH2 3 1.40449164821534122604 1.67E - 19 6.53E — 114 6
fe(x), X0 =3.5
Newton 13 3 —4.21E-25 1.52E — 47 2
Halley 7 3 —~5.19E - 16 2.56E — 44 3
NR 5 3 —~9.94E — 18 5.03E — 98 6
PCH 6 3 —~1.37E-38 1.43E - 222 6
MH1 5 3 3.54F — 56 —2.12E 328 6
MH2 5 3 1.22E - 27 —~1.71E - 157 6
f7(%), X0 = -2
Newton 9 —1.20764782713091892701 2.73E-21 —2.27E - 40 2
Halley 5 —1.20764782713091892701 3.12E-17 —1.56E — 49 3
NR 4 —1.20764782713091892701 1.77E - 31 —5.37E— 184 6
PCH 4 —1.20764782713091892701 5.54E — 17 —4.99E — 96 6
MH1 4 —1.20764782713091892701 —3.74E - 39 3.76E — 229 6
MH2 4 —1.20764782713091892701 —2.12E-35 3.1E - 207 6
The second column in Table 1 shows the number of iterations n Table 2 illustrates the number of iterations needed to obtain an
needed to reach the stopping criterium. It is clear that the new approximation of the solution using the stopping criterium
methods need less iterations than the other methods to reach the [Xn — Xn_1| < 1072, Setting the same convergence criterium for
stopping criteria, or the same number of iterations in some cases  all methods, the number of iterations required for the new meth-
when comparing with (NR) and (PCH) methods. Therefore, the  ods is either less than or equal the number of iterations needed
approximate solutions obtained by the two new methods are com- by the other methods of the same order.

parable with the well-known existing methods.

Table 2
Comparisons of number of iterations needed for different methods such that |x, — x, 1| < 107,
fi(%) fa(x) f3(x) fa(x) fs(x) fs(®) f7(%)
Xo =2 X0 =2.5 Xo =2 Xo=1.7 X0 =1 X0 =3.5 Xo=—-2
Newton 9 10 9 9 10 17 13
Halley 7 7 6 7 7 10 8
NR 5 5 4 4 5 7 6
PCH 5 5 4 5 5 7 6
MH1 5 5 4 4 5 6 5
MH2 5 5 4 4 5 7 5
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5. Conclusion

In this paper we implemented two new efficient root finding
methods to solve nonlinear equations. The first one was derived
using Taylor’s expansion together with Halley’s method, and in
the second one we used some approximations for the second
derivative to increase the efficiency index of the first method.
Overall, the two implemented methods are comparable to other
well-known methods of the same order. The convergence of the
two algorithms has been proved, and the convergence order has
been established to be of the sixth order. Seven examples were
tested, showing the capability of the methods.
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