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Abstract In this paper, a novel analytical method is proposed for differential equations with time-

fractional derivative. This method is based on the famous Adomian decomposition method and the

modified Riemann-Liouville derivative. The fractional derivatives are considered in the Jumarie

sense. However, all the previous works avoid the term of fractional derivative and handle them

as a restricted variation. In order to overcome this shortcoming, a fractional decomposition method

is proposed with modified Riemann-Liouville derivative. This method is a more efficient approach

to solve the fractional differential equations. Several illustrative examples are given to demonstrate

the effectiveness of the present method.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

At present, a growing number of works by many authors from
various fields of science and engineering deal with differential
equations described by fractional-order equations which

means equations involving derivatives and integrals of non-
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integer order. Fractional-order derivatives and integrals pro-
vide a powerful instrument for the description of memory

and hereditary properties of different substances. This is the
most significant advantage of the fractional-order models in
comparison with integer-order models, in which, in fact, such

effects are neglected. The fractional differential equations have
been occurring in many physical problems such as electromag-
netic, acoustics, viscoelasticity, electrochemistry and material

science (Miller and Ross, 2003; Oldham and Spanier, 1999;
Podlubry, 1999). A broad class of analytical solutions methods
and numerical solutions methods have been used in to handle
these problems, such as the Backlund transformation (Miura,

1978), the Laplace decomposition method (Khan, 2009; Khan
and Faraz, 2011; Khan and Austin, 2010), the Adomian
decomposition method (George and Chakrabarti, 1995; Arora

and Abdelwahid, 1993; Shawagfeh, 1999, 2002; Saha Ray and
Bera, 2004, 2005a,b,c, 2006; Momani and Odibat, 2006; Jafari
and Daftardar-Gejji, 2006; Daftardar-Gejji and Jafari, 2007),

the homotopy perturbation method (Abdulaziz et al., 2008;
Yildirim, 2008, 2010), variational iteration method (Odibat
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and Momani, 2009; Mustafa Inc., 2008; Das, 2009; He, 1998;

Faraz et al., 2011), and other asymptotic methods (He, 2006)
have been used to solve differential equations.

Large classes of differential equations, both ordinary as
well as partial, can be solved by the Adomian decomposition

method (Adomian, 1988, 1989, 1991, 1994a,b, 1998; Adomian
and Rach, 1991). A reliable modification of ADM has been
done by Wazwaz (1999). This computational method yields

analytical solutions and has certain advantages over standard
numerical methods. It is free from rounding off errors as it
does not involve discretization and does not require large com-

puter-obtained memory or power.
The solution of fractional differential equations has been

obtained through Adomian decomposition method by the

researchers (George and Chakrabarti, 1995; Arora and
Abdelwahid, 1993; Shawagfeh, 1999, 2002; Saha Ray and
Bera, 2004, 2005a,b,c, 2006; Momani and Odibat, 2006; Jafari
and Daftardar-Gejji, 2006; Daftardar-Gejji and Jafari, 2007).

Instead of this variety of different methods, we introduce here
a method which is free of disadvantages and suitable for a wide
class of initial value problems for fractional differential equa-

tions. The method uses the Adomian decomposition method
and is based on modified Riemann–Liouville fractional deriv-
ative. Recently, a new modified Riemann–Liouville left deriv-

ative is proposed by Jumarie (1993). Comparing with the
classical Caputo derivative, the definition of the fractional
derivative is not required to satisfy higher integer-order deriv-
ative than a. Secondly, a-th derivative of a constant is zero.

For these merits, Jumarie’s modified derivative was success-
fully applied in the probability calculus (Jumarie, 2006), frac-
tional Laplace problems (Jumarie, 2009a). With the

Jumarie’s fractional derivative, we propose a new integral in
Adomian decomposition method w.r.t ðdnÞa.

It is the purpose of this paper to introduce a new

decomposition method for fractional differential equations.
We aim to extend the works of Shawagfeh (1999, 2002)
and Saha Ray and Bera (2005b, 2006) and make further

progress beyond the achievements made so far in this re-
gard. The main aim of the present analysis is to extend
the idea of Adomian decomposition method for time-frac-
tional differential equations by using a new modified Rie-

mann–Liouville definition by involving integrals w.r.t ðdnÞa.
Several examples are tested, and the obtained results suggest
that this newly developed technique introduces a promising

tool and powerful improvement for many applications in
scientific fields.

2. Basic definitions

We give some basic definitions and properties of the fractional

calculus theory which are used further in this paper.

Definition 2.1. Assume f : R! R; x! fðxÞ denote a con-
tinuous (but not necessarily differentiable) function and let the
partition h> 0 in the interval [0, 1]. Jumarie’s derivative is

defined through the fractional difference (Jumarie, 2009):

Da ¼ ðFW� 1ÞafðxÞ ¼
X1
0

ð�1Þk
a

k

� �
f½xþ ða� kÞh� ð2:1Þ

where FWfðxÞ ¼ fðxþ hÞ. Then the fractional derivative
(Jumarie, 2009) is defined as the following limit.
fðaÞ ¼ lim
h!0

Da½fðxÞ � fð0Þ�
ha ð2:2Þ

This definition is close to the standard definition of deriva-
tives, and as a direct result, the a-th derivative of a constant,
0 < a < 1; is zero.

Definition 2.2. The Riemann–Liouville fractional integral

operator of order a P 0 is defined (Miller and Ross, 2003;
Oldham and Spanier, 1999; Podlubry, 1999) as

0I
a
xfðxÞ ¼

1

CðaÞ

Z x

0

ðx� nÞa�1fðnÞdn; a > 0; ð2:3Þ

Definition 2.3. The modified Riemann–Liouville derivative
(Jumarie, 2009) is defined as

0D
a
xfðxÞ ¼

1

Cðn� aÞ
dn

dxn

Z x

0

ðx� nÞn�aðfðnÞ � fð0ÞÞdn; ð2:4Þ

where x 2 ½0; 1�; n� 1 6 a < n and n P 1.
The proposed modified Riemann–Liouville derivative as

shown in Eq. (2.4) is strictly equivalent to Eq. (2.2). Mean-

while, we would introduce some properties of the fractional
modified Riemann–Liouville derivative in Eqs. (2.5) and (2.6).

(a) Fractional Leibniz product law.

0D
ðaÞ
x ðuvÞ ¼ uðaÞvþ uvðaÞ: ð2:5Þ

(b) Fractional Leibniz Formulation

0I
a
xD

a
xfðxÞ ¼ fðxÞ � fð0Þ; 0 < a 6 1: ð2:6Þ

Therefore, the integration by part can be used during the

fractional calculus

aI
a
bu
ðaÞv ¼ ðuvÞ=ab � aI

a
buv

ðaÞ: ð2:7Þ

Definition 2.4. Fractional derivative of compounded functions
is defined as

daf ffi Cð1þ aÞdf; 0 < a < 1 ð2:8Þ

Definition 2.5. The integral with respect to ðdxÞa is defined as
the solution of fractional differential equation

dy ffi fðxÞðdxÞa; x P 0; yð0Þ ¼ 0; 0 < a < 1 ð2:9Þ

Lemma 2.4. Let f(x) denote a continuous function then the
solution of the Eq. (2.9) is defined as

y ¼
Z x

0

fðnÞðdnÞa ¼ a
Z x

0

ðx� nÞa�1fðnÞdn; 0 < a 6 1 ð2:10Þ

For example fðxÞ ¼ xc in Eq. (2.10) one obtains

Z x

0

ncðdnÞa ¼ Cðaþ 1ÞCðcþ 1Þ
Cðaþ cþ 1Þ xaþc; 0 < a 6 1 ð2:11Þ

Definition 2.6. Assume that the continuous function
f : R! R; x! fðxÞ has a fractional derivative of order ka,
for any positive integer k and any a; 0 < a 6 1; then the fol-

lowing equality holds, which is
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fðxþ hÞ ¼
X1
k¼0

hak

ak!
fakðxÞ; 0 < a 6 1: 0 < a 6 1 ð2:12Þ

On making the substitution h! x and x! 0 we obtain the
fractional Mc-Laurin series

fðxÞ ¼
X1
k¼0

xak

ak!
fakð0Þ; 0 < a 6 1 ð2:13Þ
3. Modified fractional decomposition method (MFDM)

The principles of the decomposition method and its applicabil-
ity for various kinds of differential equations are given in
George and Chakrabarti (1995), Arora and Abdelwahid

(1993), Shawagfeh (1999, 2002), Saha Ray and Bera (2004,
2005a,b,c, 2006), Momani and Odibat (2006), Jafari and Daf-
tardar-Gejji (2006), Daftardar-Gejji and Jafari (2007) and the
references cited therein. The decomposition method requires

that the linear fractional differential equation be expressed in
terms of operator form as

Da
t uðx; tÞ ¼ L½x�uðx; tÞ þ qðx; tÞ; t > 0; x 2 R;

uðx; 0Þ ¼ fðxÞ; a > 0:
ð3:1Þ

where Da
t ¼ @a

@ta
; L[x] is the linear operator in x, f(x) and q(x, t)

are continuous functions.
According to Adomian decomposition method (George

and Chakrabarti, 1995; Arora and Abdelwahid, 1993; Shaw-
agfeh, 1999, 2002; Saha Ray and Bera, 2004, 2005a,b,c,

2006; Momani and Odibat, 2006; Jafari and Daftardar-Gejji,
2006; Daftardar-Gejji and Jafari, 2007), we apply the operator
Ia, the inverse of the operator Da

t , to both sides of Eq. (3.1)

which yields

uðx; tÞ ¼
Xm�1
k¼0

tak

ak!
uakðx; 0þÞ þ IaðL½x�uðx; tÞ þ qðx; tÞÞ: ð3:2Þ

The initial condition implies

uðx; tÞ ¼ fðxÞ þ IaðL½x�uðx; tÞ þ qðx; tÞÞ ð3:3Þ

The Adomian decomposition method (George and Chak-
rabarti, 1995; Arora and Abdelwahid, 1993; Shawagfeh,
1999, 2002; Saha Ray and Bera, 2004, 2005a,b,c, 2006;

Momani and Odibat, 2006; Jafari and Daftardar-Gejji, 2006;
Daftardar-Gejji and Jafari, 2007) assumes a series solution
for u(x, t) given by

uðx; tÞ ¼
X1
n¼0

unðx; tÞ ð3:4Þ

Using Eq. (3.4) into (3.3) we get

X1
n¼0

unðx; tÞ ¼ fðxÞ þ IaðR½x�
X1
n¼0

unðx; tÞ þ qðx; tÞÞ: ð3:5Þ

Matching both sides of Eq. (3.5), we have the following
relation

u0ðx; tÞ ¼ fðxÞ þ Iaðqðx; tÞÞ;
u1ðx; tÞ ¼ IaðL½x�u0ðx; tÞÞ;
u2ðx; tÞ ¼ IaðL½x�u1ðx; tÞÞ;
u3ðx; tÞ ¼ IaðL½x�u2ðx; tÞÞ;

ð3:6Þ

In general the recursive relation is given by
ujþ1ðx; tÞ ¼ IaðL½x�ujðx; tÞÞ j P 0: ð3:7Þ

Instead of iteration procedure, Eqs. (3.6) and (3.7), by using

the above Eq. (2.10) we suggest the following modification

u0ðx; tÞ ¼ fðxÞ þ Iaðqðx; tÞÞ

ujþ1ðx; tÞ ¼
1

Cðaþ 1Þ

Z t

0

ðL½x�ujðx; nÞÞðdnÞa; j P 0: ð3:8Þ
4. Applications

In order to elucidate the solution procedure of the modified
fractional decomposition method, we consider first the linear
fractional diffusion equation.

Example 4.1. Consider the linear fractional diffusion equation

@auðx; tÞ
@ta

¼ @
2uðx; tÞ
@x2

þ @ðxuðx; tÞÞ
@x

; 0 < a < 1

uðx; 0Þ ¼ fðxÞ ¼ x:

ð4:1Þ

In order to solve this equation by using the modified frac-

tional decomposition method, we simply substitute the initial
condition into Eq. (3.8) to obtain the following recursive
relation:

u0ðx;tÞ¼ x;

unþ1ðx; tÞ¼
1

Cðaþ1Þ

Z t

0

ð@
2unðx;nÞ
@x2

þ@ðxunðx;nÞÞ
@x

ÞðdnÞa; nP 0:

ð4:2Þ

Here source term qðx; tÞ ¼ 0.

In view of the recursive relation (4.2), the first few
components are derived as follows:

u1ðx; tÞ ¼
1

Cðaþ 1Þ

Z t

0

@2u0ðx;nÞ
@x2

þ @ðxu0ðx;nÞÞ
@x

� �
ðdnÞa

u1ðx; tÞ ¼
2xta

Cð1þ aÞ ;

u2ðx; tÞ ¼
22xt2a

Cð1þ 2aÞ ;

u3ðx; tÞ ¼
23xt3a

Cð1þ 3aÞ ;

..

.

unðx; tÞ ¼
2rxtna

Cð1þ naÞ ;

ð4:3Þ

Using the above terms, the solution u(x, t) is

uðx; tÞ ¼ xþ 2xta

Cð1þ aÞ þ
22xt2a

Cð1þ 2aÞ þ
23xt3a

Cð1þ 3aÞ þ :::

¼
X1
n¼0

2rxtna

Cðnaþ 1Þ ¼ xEað2taÞ; ð4:4Þ

With the property 0D
a
t EaðtÞ ¼ EaðtÞ, we can readily check

uðx; tÞ ¼ xEað2taÞ is an exact solution of Eq. (4.1).

Example 4.2. Let us consider uðx; 0Þ ¼ fðxÞ ¼ 1. We then
obtain
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u0ðx; tÞ ¼ 1;

u1ðx; tÞ ¼
ta

Cð1þ aÞ ;

u2ðx; tÞ ¼
t2a

Cð1þ 2aÞ ;

u3ðx; tÞ ¼
t3a

Cð1þ 3aÞ ;

..

.

unðx; tÞ ¼
tna

Cð1þ naÞ

ð4:5Þ

In view of the above terms,

uðx; tÞ ¼ 1þ ta

Cð1þ aÞ þ
t2a

Cð1þ 2aÞ þ
t3a

Cð1þ 3aÞ þ :::

¼
X1
n¼0

tna

Cð1þ naÞ ¼ EaðtaÞ ð4:6Þ

where EaðtaÞ ¼
P1

r¼0
tra

Cð1þraÞ is the Mittag-Leffler function in
one parameter.

Example 4.3. Consider the following one-dimensional linear

inhomogeneous fractional wave equation

@auðx; tÞ
@ta

þ @uðx; tÞ
@x

¼ t1�a

Cð2� aÞ sinxþ t cos x;

x 2 R; t > 0; a > 0 ð4:7Þ

Subject to the initial condition

uðx; 0Þ ¼ 0: ð4:8Þ

According to iteration algorithm, Eq. (3.8) we obtain the
following

u0ðx; tÞ ¼ 0þ Ia
t1�a

Cð2� aÞ sinxþ t cos x

� �
;

unþ1ðx; tÞ ¼ �
1

Cð1þ aÞ

Z t

0

@unðx; nÞ
@x

ðdnÞa; n P 0: ð4:9Þ

Using the above recursive relationship and Mathematica,
the first few terms of the decomposition series are given by

u1ðx; tÞ ¼ �
t1þa cos x

Cð2þ aÞ þ
t1þ2a sinx

Cð2þ 2aÞ

u2ðx; tÞ ¼ �
t1þ2a sinx

Cð2þ 2aÞ �
t1þ3a cos x

Cð2þ 3aÞ ð4:10Þ

..

.

Therefore the solution is

uðx; tÞ ¼t sinxþ t1þa

Cð2þ aÞ cos x�
t1þa cos x

Cð2þ aÞ þ
t1þ2a sinx

Cð2þ 2aÞ

� t1þ3a cos x

Cð2þ 3aÞ �
t1þ2a sin x

Cð2þ 2aÞ þ ::: ð4:11Þ

Canceling the noise terms and keeping the non-noise terms

yield the exact solution of Eq. (4.7). If we begin with
u0ðx; tÞ ¼ t sinx then the exact solution follows immediately
by using two iterations.
5. Conclusion

In this paper, the authors propose a very effective and conve-

nient method called modified fractional decomposition method
(MFDM) having integral w.r.t ðdnÞa to solve any order of frac-
tional differential equations. Three typical examples have been
discussed as illustrations. In previous papers (George and

Chakrabarti, 1995; Arora and Abdelwahid, 1993; Shawagfeh,
1999, 2002; Saha Ray and Bera, 2004, 2005a,b,c, 2006;
Momani and Odibat, 2006; Jafari and Daftardar-Gejji, 2006;

Daftardar-Gejji and Jafari, 2007), many authors have already
established as well as successfully exhibited the applicability of
Adomian decomposition method to obtain the solutions of dif-

ferent types of fractional differential equations. In this work,
we demonstrate that modified decomposition method is also
well suited to solve fractional differential equation. The frac-

tional differential equations are described in the Jumarie sense.
The modified version is valid for other fractional differential
equations, and this paper can be used as a standard paradigm
for other applications.
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