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Accelerated life tests (ALTs) of highly reliable products or materials are effective testing techniques to
gather failure data rapidly in a limited time period. Also, partially accelerated life tests (PALTs) can enable
us to achieve this goal without putting all test units under severe conditions. This article considers both
frequent and Bayesian estimations of the step-stress PALTs model using time-censored data from gener-
alized exponential distribution (GED). The maximum likelihood and Bayesian estimates of the model
parameters are obtained. The posterior means and posterior variances are computed under the squared
error (SE) loss function using Lindley’s procedure. The performance of the estimators is evaluated numer-
ically for different parameter values and different sample sizes via their mean squared error (MSE). In
addition, the average confidence intervals lengths (ACIL) of the model parameters are also obtained.
For illustrative purposes, a simulation study is given.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

‘‘Accelerated life testing of materials or products is used to col-
lect failure data quickly when the lifetime of a specimen under use
conditions is too long. Such method is called fully accelerated life
tests (FALTs) or simply accelerated life tests (ALTs) where all the
test units are put to run under severe conditions. Accelerated test
stresses involve higher than usual temperature, voltage, pressure,
load, humidity, etc., or some combination of them. Sometimes,
only some of test units (not all) are put under severe conditions.
In such cases, the testing method is called partially accelerated life
tests (PALTs). In PALTs the test items are run under both normal
(design/use)- and high-stresses. In this respect readers can refer,
for example, to (Ismail, 2020; 2022).

As indicated by (Nelson, 1990), there are two common ways to
apply stresses. They are step-stress and constant-stress. The step-
stress technique will be adopted in this article. Under step-stress
PALTs (SSPALTs), a test unit is first run at use condition and, if it
does not fail for a specified time, then it is run at accelerated con-
dition until failure occurs or the test is terminated. Accordingly,
one of many advantages of PALTs is to collect more failure data
in a shorted time without necessarily using high stresses to all test
units‘‘.

‘‘In this article, the main aim is to find Bayesian estimates (BEs)
of SSPALTs model based on time-censored data from generalized
exponential distribution (GED) and to compare it with the maxi-
mum likelihood estimates (MLEs) using Monte Carlo simulation
studies”.

‘‘The GED has been introduced by (Gupta and Kundu, 2003b).
Even though it is generally believed that the Weibull distribution
is the obvious generalization of the exponential distribution,
(Gupta and Kundu, 2003a) observed that in many situations the
GED provides a better fit than a Weibull distribution. Further
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Nomenclature

Notation
ALTs ‘‘accelerated life tests”
PALTs ‘‘partially accelerated life tests”
SSPALTs ‘‘step-stress partially accelerated life tests”
GED ‘‘generalized exponential distribution”
MLEs ‘‘maximum likelihood estimates/estimators”
MSE ‘‘mean square error”
ACIL ‘‘average confidence interval length”
NIP ‘‘non-informative prior”
1 - c ‘‘confidence level”
n ‘‘total number of test units in a PALT”
nu, na ‘‘number of units failed at normal (use) and accelerated

conditions, respectively”

r nu + na
nc ‘‘number of censored units (n-r)”
^ ‘‘denotes maximum likelihood estimate”
b ‘‘acceleration factor (b > 1)”
a ‘‘GE shape parameter (a > 0)”
k ‘‘GE scale parameter (k > 0)”
T ‘‘lifetime of a unit at normal (use) condition”
Y ‘‘total lifetime of a unit in SSPALTs”
y ‘‘observed value of the total lifetime Yi of unit i, i = 1, . . .,

n”
s ‘‘stress change-point in SSPALTs”
g ‘‘the time at which the test is terminated”
‘‘y(1) � . . . � y(nu) � s � y(nu +1) �. . .� g ordered failure times‘‘
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properties of the GED have been studied by (Gupta & Kundu, 1999;
2001a; 2001b; 2002). The simple mathematical structure of the
GED enables it to be used effectively for modeling various lifetime
data types with possible censoring or grouping, (Baklizi, 2007)”.

‘‘The two-parameter GED family has the distribution function”

F y; a; kð Þ ¼ 1� e�ky� �a
; y > 0 ð1:1Þ

‘‘The corresponding density function is”

f y; a; kð Þ ¼ ake�ky 1� e�ky
� �a�1

; y > 0; a > 0; k > 0; ð1:2Þ
‘‘where a and k are the shape and scale parameters, respec-

tively”. ‘‘When a = 1 it coincides with the exponential distribution
with mean 1/k. When a � 1 the density function is strictly decreas-
ing and for a > 1 it has a unimodal shape. These densities are illus-
trated in (Gupta and Kundu; 1999). It is witnessed that the GED
density functions are always right skewed. So, the GED can be used
quite effectively to analyze skewed data sets”.

‘‘The hazard rate function of the GED is”

h y; a; kð Þ ¼ ake�ky 1� e�kyð Þa�1

1� 1� e�kyð Þa ð1:3Þ

‘‘and the mean time to failure (MTTF) can take the following
form”

MTTF ¼ 1
k

w aþ 1ð Þ � w 1ð Þf g ð1:4Þ

‘‘where w :ð Þ is the digamma function”.
‘‘The GED can have increasing and decreasing hazard rates

depending on the shape parameter a. The hazard rate increases
from 0 to k if a > 1 and if a < 1 it decreases from 1 to k. This prop-
erty leads to good ability of using this distribution in reliability and
life testing, (Abuammoh and Sarhan, 2007)”.

‘‘In this article, assuming GED, the goal of Bayesian statistical
inference on SSPALTs model is to estimate the failure behavior of
the specimens under use condition using the failure data obtained
under severe condition. To achieve this goal, proper statistical
models are required. The pioneering work for SSPALTs modeling
is by (DeGroot and Goel, 1979). They proposed a tampered random
variable model. This model will be described in Section 300.

‘‘For an overview of the literature on SSPALTs, readers can, for
example, refer to (Goel, 1971; Bai and Chung, 1992; Ismail, 2014;
2016a; 2016b; Ismail and Al-Habardi, 2017; among others). For
those who interested in constant-stress PALTs, they can, for exam-
ple, refer to (Ismail 2013; 2014b; 2015; 2017; Ismail and Al
Tamimi, 2017; 2019; Ismail and Al-Harbi, 2019)”.
2

‘‘The rest of this article can be structured as follows: In Section 2
the test procedure and its necessary assumptions are presented.
MLEs of the model parameters are considered in Section 3. Sec-
tion 4 presents BEs of the model parameters using Lindley’s tech-
nique. In Section 5 simulation studies are provided to
demonstrate the theoretical results given in this article. Finally,
Section 6 concludes the article”.
2. Test procedure and its assumptions

‘‘The test procedure of SSPALTs and its assumptions are
described as follows”

2.1. Test procedure

‘‘Each of the n test units is first run at use condition”.
‘‘If it does not fail at use condition by a pre-specified time s,

then it is put on accelerated condition and run until either it fails
or the test is terminated”.

2.2. Assumptions

1. ‘‘The lifetimes of the n test units are independent and identi-
cally distributed random variables (i.i.d. r.v.’s)”.

2. ‘‘The lifetimes of test units are assumed to follow the GED with
pdf given by equation (1.2)”.

3. Estimation process

‘‘According to (Balakrishnan and Zhu, 2014), the MLEs of the
model parameters are unique when they exist. The method of
proof is based on the monotonicity property of the likelihood
function”.

‘‘The MLEs of the GED parameters uniquely exist. Due to the
invariance property of MLEs, the existence and uniqueness of the
MLEs of the model parameters follow. Both point and interval esti-
mates using the Maximum Likelihood method will be considered
in the next two subsections”.
3.1. The maximum likelihood estimates

‘‘The lifetime of a test unit under SSPALTs can be written as”

Y ¼ TifT � s
sþ T � sð Þ=bifT > s

�
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‘‘where T is the lifetime of the unit under use condition, s is the
stress change time and b is the acceleration factor; b > 1. This
model is called tampered random variable (TRV) model. It was pro-
posed by (DeGroot & Goel, 1979). Therefore, the pdf of Y under
SSPALTs can be given by”

Y ¼
0; y � 0;

f 1 yð Þ ¼ ake�ky 1� e�kyð Þa�1
;0 < y � s

f 2 yð Þ ¼ bake�k sþb y�sð Þ½ � 1� e�k sþb y�sð Þ½ �� �a�1
; y > s > 0

8><>: ð3:2Þ

‘‘where f1(y) is given by equation (1.2) and f2(y) is obtained by
the transformation-variable technique using f1(y) and the model
presented by equation (3.1)”.

‘‘The observed values of the total lifetime Y are given by”
y(1) � . . . � y(nu) � s � y(nu + 1) � . . . � g.
‘‘Since the total lifetimes Y1, . . ., Yn of n test units are i.i.d. r.v.’s,

then the total likelihood function for them can be written as”

L b; a; kð Þ /
Ynu
i¼1

ake�kyi 1� e�kyi
� �a�1

�
Ynuþna

i¼1

bake�k sþb yi�sð Þ½ � 1� e�k sþb yi�sð Þ½ �� �a�1

�
Ynuþnaþnc

i¼nuþnaþ1

1� 1� e�k sþb g�sð Þ½ �� �an o
ð3:3Þ

‘‘The natural logarithm of the above likelihood function is given
by”

ln L ¼ nu þ nað Þ lnaþ lnk½ � þ na lnb

� k
Xnu
i¼1

yi þ
Xnuþna

i¼nuþ1

sþ b yi � sð Þ½ �Þ þ a� 1ð Þ
 

�
Xnu
i¼1

ln 1� e�kyi
� �þ Xnuþna

i¼nuþ1

ln 1� e�k sþb yi�sð Þ½ �Þ� �"
þ nc ln 1� 1� e�k sþb g�sð Þ½ ��a

� � ð3:4Þ�
‘‘By taking the partial derivatives of the natural logarithm of

likelihood function with respect to b, a and k, respectively, we get”

@lnL
@b

¼ na

b
� k

Xnuþna

i¼nuþ1

yi � sð Þ þ k a� 1ð Þ
Xnuþna

i¼nuþ1

yi � sð Þe�kwi

1� e�kwi

� nca g� sð Þke�kwr 1� e�kwrð Þa�1

1� 1� e�kwrð Þa ð3:5Þ

Where
wi ¼ sþ b yi�sð Þ and wr ¼ sþ b g�sð Þ;

@lnL
@a

¼ nu þ na

a
þ
Xnu
i¼1

ln 1� e�kyi
� �þ Xnuþna

i¼nuþ1

ln 1� e�kwi
� �

� nc 1� e�kwrð Þaln 1� e�kwrð Þ
1� 1� e�kwrð Þa ð3:6Þ

@lnL
@k

¼ nu þ na

k
þ
Xnu
i¼1

yi �
Xnuþna

i¼nuþ1

wi

þ a� 1ð Þ
Xnu
i¼1

yie
�kyi

1� e�kyi
þ
Xnuþna

i¼nuþ1

wie
�kwi

1� e�kwi

" #

� ncawre
�kwr 1� e�kwrð Þa�1

1� 1� e�kwrð Þa ð3:7Þ
3

‘‘Now, we have a system of three nonlinear equations in three
unknowns b, a and k. It is clear that a closed form solution is very
difficult to obtain. Therefore, iterative procedure such as Newton-
Raphson can be used to find a numerical solution of the above non-
linear system”.

3.2. Asymptotic Confidence Intervals

‘‘In this subsection, we obtain the confidence intervals of the
model parameters based on the asymptotic distribution of the
MLEs of the parameters”.

‘‘It is known that the asymptotic distribution of the MLEs of the
elements of the vector of unknown parameters h = (b, a, k) is given
by (Miller, 1981) as”

bb � b
� �

; ba � a
� �

; bk � k
� �� �

N 0; I�1 b;a; kð Þ
� �

‘‘where I�1 b;a; kð ÞÞ is the variance–covariance matrix of the
unknown parameters h = (b, a, k). The elements of the 3 � 3 matrix

I�1, Iij (b, a, k), i, j = 1, 2, 3; can be approximated by Iij bb; ba; bk� �
Þ,

where”

Iij bh� �
¼ � @2lnL hð Þ

@hi@hj
# h ¼ bh

‘‘From equation (3.4), we get the following”

@2lnL

@b2 ¼ � na

b2 � k2 a� 1ð Þ
Xnuþna

i¼nuþ1

yi � sð Þ2 e�kwi 1� e�kwið Þ þ e�2kwi
� �

1� e�kwið Þ2
�u1u2 þu3u4

u2
2

;

ð3:8Þ

Where

u1 ¼ ncak2 g� sð Þ2e�kwr 1� e�kwr
� �a�1 a� 1ð Þe�kwr 1� e�kwr

� ��1�1
h i

u2 ¼ 1� 1� e�kwr
� �a

u3 ¼ nca g� sð Þke�kwr 1� e�kwr
� �a�1

u4 ¼ �ak g� sð Þe�kwr 1� e�kwr
� �a�1

@2lnL
@a2 ¼ �nu þ na

a2 �
nc
a

� �
1�u2ð Þ ln 1�u2ð Þ½ � u2

a

� �
ln 1�u2ð Þ½ � þ 1�u2

a

� �
ln 1�u2ð Þ

n o
u2

2

ð3:9Þ

@2lnL

@k2
¼ �nu þ na

k2
� a� 1ð Þ

Xnu
i¼1

y2i e
�kyi

1� e�kyið Þ2
þ
Xnuþna

i¼nuþ1

w2
i e

�kwi

1� e�kwið Þ2
" #

þ ncaw2
r e

�kwr 1� e�kwr
� �a�1

�
"

1� a� 1ð Þe�kwr 1� e�kwrð Þ�1
� �

u2 þ ae�kwr 1� e�kwrð Þa�1

u2
2

#
ð3:10Þ

@2lnL
@b@a

¼ k
Xnuþna

i¼nuþ1

yi � sð Þe�kwi

1� e�kwi
� nck g� sð Þe�kwr 1� e�kwrð Þa�1

u2
2

� 1þ aln 1� e�kwr
� �� �

u2 þ a 1� e�kwr
� �a

ln 1� e�kwr
� �n o

;

ð3:11Þ
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@2lnL
@b@k

¼ �
Xnuþna

i¼nuþ1

yi � sð Þ þ a� 1ð Þ
Xnuþna

i¼nuþ1

� yi � sð Þe�kwi 1� kwið Þ 1� e�kwið Þ � kwie
�kwi½ �

1� e�kwið Þ2

�
nca g� sð Þe�kwr 1� e�kwrð Þa�1 1� kwrð Þ þ a� 1ð Þkwre

�kwr 1� e�kwrð Þ�1
h i

u2

u2
2

� nca2 g� sð Þkwre
�2kwr 1� e�kwrð Þ2 a�1ð Þ

u2
2

;

ð3:12Þ

and

@2lnL
@a@k

¼
Xnu
i¼1

yie
�kyi

1� e�kyið Þ þ
Xnuþna

i¼nuþ1

wie
�kwi

1� e�kwið Þ

� ncwre
�kwr 1� e�kwrð Þa�1 1þ aln 1� e�kwrð Þ½ �u2 þ a 1� e�kwrð Þaln 1� e�kwrð Þ	 


u2
2

ð3:13Þ

‘‘Thus, the approximate 100(1 - c) % two sided confidence inter-
vals for b, a, and k are, respectively, given by”

bb � Zc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1
11

bb� �r
; ba � Zc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1
22 ba� �q

and bk � Zc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1
33
bk� �r

‘‘where Zc/2 is the upper (c/2)th percentile of a standard normal
distribution”.
Table 1
‘‘Average values of the MLEs and BEs with associated MSE and ACIL using b = 3.5,
a = 0.8, k = 2 when s = 5 and g = 900 .

‘‘n parameter Method estimate MSE ACIL

25 b ML
Bayes

3.8498
3.5732

0.3248
0.2736

3.9363
3.2034

a ML
Bayes

1.0907
1.0540

0.1483
0.1046

3.1721
1.9973

k ML
Bayes

2.2090
2.1713

0.2391
0.2097

3.4038
3.1092

50 b ML
Bayes

3.6641
3.5363

0.2433
0.2008

3.3034
2.7345

a ML
Bayes

0.9201
0.9042

0.0768
0.0361

2.6651
1.4959

k ML
Bayes

2.1024
2.0860

0.1509
0.1216

2.8593
2.4869

75 b ML
Bayes

3.6055
3.5209

0.1772
0.1523

2.4559
1.9041

a ML
Bayes

0.8764
0.8532

0.0569
0.0311

1.9799
1.2136

k ML
Bayes

2.0611
2.0501

0.0609
0.0482

2.1251
1.6458

100 b ML
Bayes

3.5748
3.5130

0.1451
0.1257

1.9521
1.5989

a ML
Bayes

0.8217
0.8079

0.0243
0.0154

1.5679
0.9233

k ML
Bayes

2.0455
2.0374

0.0438
0.0277

1.6843
0.443100
4. Bayesian estimates

‘‘In this section, the squared error loss function is considered.
Then, the Bayes estimator of a parameter is its posterior expecta-
tion. The Bayes estimators can’t be expressed in explicit forms.
Approximate Bayes estimates will be obtained under the assump-
tion of non-informative priors (NIP) using Lindley’s technique”.

‘‘In many practical situations, the information about the param-
eters are available in an independent manner, see (Basu et al.,
1999). Thus, it is assumed that the parameters are independent a
priori and let the NIP for each parameter be represented by the
limiting form of the appropriate natural conjugate prior”.

‘‘It follows that a NIP for the acceleration factor b is given by”

p1 bð Þ / b�1;b > 1:

‘‘Also, the NIP’s for the scale parameter k and the shape param-
eter a are respectively as”

p2 kð Þ / k�1; k > 0 and p3 að Þ / a�1;a > 0:
‘‘Therefore, the joint NIP of the three parameters can be

expressed by”

p b; k;að Þ / bkað Þ�1
;b > 1; k > 0;a > 0: ð4:1Þ

‘‘Forming the product of (4.1) and (3.3), the joint posterior den-
sity function of b, a and k given the data can be written as”

p� b; k;a datajð Þ / L b; k;að Þ:p b; k;að Þ

/ bna�1 kað Þnuþna�1
Ynu
i¼1

e�kyi 1� e�kyi
� �a�1

�
Ynuþna

i¼nuþ1

e
�k sþb yi�sð Þ½ � 1�e�k sþb yi�sð Þ½ �Þa�1�

Qnuþnaþnc

i¼nuþnaþ1

1� 1�e�k sþb g�sð Þ½ �ð Þa
� ��

ð4:2Þ
‘‘As stated earlier, under a squared error loss function, the Bayes

estimator of a parameter is its posterior expectation. To obtain the
posterior means and posterior variances of b, a and k non-tractable
integrals will be confronted. It is not possible to compute them
analytically. The marginal posteriors are somewhat unwieldy and
require a numerical integration that may not converge. Instead,
an approximation due to (Lindley, 1980) via an asymptotic expan-
4

sion of the ratio of two non-tractable integrals is used to obtain the
approximate Bayes estimates. Lindley’s approximation is evaluated
at the MLEs of the model parameters”.

‘‘Now, letH be a set of parameters H1;H2; � � � ;Hmf g, where m is
the number of parameters, then the posterior expectation of an
arbitrary function u Hð Þ can be asymptotically estimated by”

E u Hð Þ½ � ¼
R
u Hð Þp Hð ÞelnL y Hjð ÞdHR
p Hð ÞelnL y Hjð ÞdH

	 uþ 1
2

� 
 X
i;j

u 2ð Þ
ij þ 2u 1ð Þ

i q 1ð Þ
j

� �
rij þ

X
i;j;k;s

L 3ð Þ
ijk rijrksu 1ð Þ

s

" #( )
# bH

ð4:3Þ
‘‘Which is the Bayes estimator of u Hð Þ under a squared error

loss function, where p Hð Þ is the prior distribution of H, u 
 u Hð Þ,
L 
 L Hð Þ is the likelihood function, q 
 q Hð Þ ¼ logp Hð Þ, rij are
the elements of the inverse of the asymptotic Fisher’s information
matrix of H and”

u 1ð Þ
i ¼ @u

@Hi
, u 2ð Þ

ij ¼ @2u
@Hi@Hj

, q 1ð Þ
j ¼ @ logp Hð Þ

@Hj
and.L 3ð Þ

ijk ¼ @3 lnL y Hjð Þ
@Hi@Hj@Hk

‘‘Such an approximation is easy to use and does not require
innovative programming and extensive computer time. According
to (Green, 1980), the linear Bayes estimator in (4.3) is a ”very good
and operational approximation for the ratio of multi-dimension
integrals‘‘. As indicated by (Sinha, 1986), it has led to many useful
applications. The Derivations of posterior means and posterior
variances are presented in the Appendix”.

5. Simulation studies

‘‘This section presents a simulation study to demonstrate the
theoretical results introduced in this article and to evaluate the
performance of both MLEs and BEs of the model parameters via
their mean squared errors (MSE) and the associated average confi-
dence intervals lengths (ACIL). The posterior means and variances
of the model parameters b, a and k are obtained assuming NIP
for each parameter under a squared error loss function using
type-I censored data from GED. Since the BEs of the model param-



Table 2
‘‘Average values of the MLEs and BEs with associated MSE and ACIL using b = 3.5,
a = 1.5, k = 2 when s = 5 and g = 900 .

‘‘n parameter Method estimate MSE ACIL

25 b ML
Bayes

3.8572
3.5504

0.2391
0.2014

4.1164
3.3521

a ML
Bayes

1.6341
1.5829

0.1092
0.0773

3.3113
2.0769

k ML
Bayes

2.2192
2.1798

0.1759
0.1544

3.5532
3.2562

50 b ML
Bayes

3.6621
3.5320

0.1792
0.1477

3.4505
2.8586

a ML
Bayes

1.5600
1.5355

0.0565
0.0266

2.7847
1.5628

k ML
Bayes

2.0953
2.0788

0.1143
0.0894

2.9872
2.5974

75 b ML
Bayes

3.6007
3.5156

0.1305
0.1119

2.5667
1.9901

a ML
Bayes

1.5412
1.5253

0.0418
0.0229

2.0685
1.2677

k ML
Bayes

2.0638
2.0524

0.0448
0.0353

2.2208
1.7196

100 b ML
Bayes

3.5791
3.5171

0.1035
0.0926

2.0379
1.6712

a ML
Bayes

1.5309
1.5188

0.0147
0.0113

1.6374
0.9649

k ML
Bayes

2.0480
2.0396

0.0322
0.0204

1.7631
1.508700
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eters can’t be obtained analytically, approximate BEs are obtained
numerically using the technique of Lindley. Different sample sizes
and Different parameter values are used to compare the perfor-
mance of both MLEs and BEs of the model parameters”.

‘‘As shown from the simulation results reported in Tables 1 and
2, the BEs perform better than the MLEs. That is, the BEs have smal-
ler MSE than that of MLEs. In addition, the confidence intervals of
the model parameters obtained using Lindley’s technique at confi-
dence level 95 % are narrower than those by MLEs. These results
coincide with the note of (Achcar, 1994). That is, the use of approx-
imate Bayesian methods could be a good alternative for the usual
asymptotically classical methods in accelerated life testing. How-
ever, as expected, the performance of both BEs and MLEs become
better when the sample size increases”.
6. Conclusion

‘‘In this article both MLEs and BEs of the parameters of GED and
the acceleration factor have been considered under SSPALTs model
using time-censored data. The MLEs have been obtained numeri-
cally using Newton-Raphson method as an iterative technique.
Under the assumptions of squared error loss functions and non-
informative priors BEs have been calculated. The performance of
the estimators has been evaluated in terms of MSE and ACIL
numerically using different parameter values and different sample
sizes”.

‘‘BEs using Lindley’s technique produces smaller MSE than that
of the MLEs. In addition, the confidence ACIL of the model param-
eters obtained using Lindley’s technique with confidence level 95 %
are narrower than those by MLEs. That is, the BEs performs better
than the MLEs. It can be concluded that the intrinsic appeal of that
method can be expressed in is its being a sort of adjustment to the
maximum likelihood approach to reduce variability”.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
5

Acknowledgement

‘‘This project was funded by the Deanship of Scientific Research
(DSR) at King Abdulaziz University, Jeddah, under grant no. (G:099-
130-1442).The authors, therefore, acknowledge with thanks DSR
for technical and financial support”.
Appendix

‘‘Here, there are three parameters in the model. That is, m = 3.
Let the subscripts 1, 2 and 3 refer to b, a and k, respectively”.
‘‘Therefore, the posterior means (BEs) of the three parameters
can be expressed by”

}b� ¼ E b yj½ �

¼ b� r11

b
þ r12

k
þ r13

a

� 

þ 1

2

� 

r11w1 þ r12w2 þ r13w3ð Þ

� �
# bH}

ð4:4Þ

}k� ¼ E k yj½ �

¼ k� r21

b
þ r22

k
þ r23

a

� 

þ 1

2

� 

r21w1 þ r22w2 þ r23w3ð Þ

� �
# bH}

ð4:5Þ

}a� ¼ E a yj½ �

¼ a� r31

b
þ r32

k
þ r33

a

� 

þ 1

2

� 

r31w1 þ r32w2 þ r33w3ð Þ

� �
# bH}

ð4:6Þ
‘‘Thus, the posterior variances can be obtained by”

}Var b yjð Þ ¼ E b2 yj� �� b�ð Þ2

¼ r11 � r11

b
þ r12

k
þ r13

a

� 

� 1

2

� 

r11w1 þ r12w2 þ r13w3ð Þ

� �2
# bH}

ð4:7Þ

}Var k yjð Þ ¼ E k2 yj� �� k�ð Þ2

¼ r22 � r21

b
þ r22

k
þ r23

a

� 

� 1

2

� 

r21w1 þ r22w2 þ r23w3ð Þ

� �2
# bH}

ð4:8Þ

}Var a yjð Þ ¼ E a2 yj� �� a�ð Þ2

¼ r33 � r31

b
þ r32

k
þ r33

a

� 

� 1

2

� 

r31w1 þ r32w2 þ r33w3ð Þ

� �2
# bH}

ð4:9Þ
where

w1 ¼
X
i;j

rijL
3ð Þ
ij1


 r11L
3ð Þ
111 þ 2r12L

3ð Þ
121 þ 2r13L

3ð Þ
131 þ r22L

3ð Þ
221 þ 2r23L

3ð Þ
231 þ r33L

3ð Þ
331;

w2 ¼
X
i;j

rijL
3ð Þ
ij2


 r11L
3ð Þ
112 þ 2r12L

3ð Þ
122 þ 2r13L

3ð Þ
132 þ r22L

3ð Þ
222 þ 2r23L

3ð Þ
232 þ r33L

3ð Þ
332

and

w3 ¼Pi;j rijL
3ð Þ
ij3 
 r11L

3ð Þ
113 þ 2r12L

3ð Þ
123 þ 2r13L

3ð Þ
133 þ r22L

3ð Þ
223þ

2r23L
3ð Þ
233þ r33L

3ð Þ
333;

for i, j = 1,2,3.
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‘‘To compute the posterior means and the posterior variances of
the three parameters b, a and k, the third derivatives of the natural
logarithm of the likelihood function are required. The third deriva-
tives of ln L with respect to b, a and k can be represented as
follows”.

L 3ð Þ
ijk ¼ @3lnL y Hjð Þ

@Hi@Hj@Hk
:

‘‘That is,

}L 3ð Þ
111 ¼ @3 ln L

@b3 ; L 3ð Þ
222 ¼ @3 ln L

@a3 ; L 3ð Þ
333 ¼ @3 ln L

@k3
;

L 3ð Þ
112 ¼ L 3ð Þ

121 ¼ L 3ð Þ
211 ¼ @3 ln L

@b2@a
;

L 3ð Þ
113 ¼ L 3ð Þ

131 ¼ L 3ð Þ
311 ¼ @3 ln L

@b2@k
;

L 3ð Þ
123 ¼ L 3ð Þ

213 ¼ L 3ð Þ
132 ¼ L 3ð Þ

231 ¼ L 3ð Þ
312 ¼ L 3ð Þ

321 ¼ @3 ln L
@b@a@k

;

L 3ð Þ
221 ¼ L 3ð Þ

212 ¼ L 3ð Þ
122 ¼ @3 ln L

@a2@b
;

L 3ð Þ
223 ¼ L 3ð Þ

232 ¼ L 3ð Þ
322 ¼ @3 ln L

@a2@k
;

L 3ð Þ
331 ¼ L 3ð Þ

313 ¼ L 3ð Þ
133 ¼ @3 ln L

@k2@b
;

L 3ð Þ
332 ¼ L 3ð Þ

323 ¼ L 3ð Þ
233 ¼ @3 ln L

@k2@a
:}
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