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A B S T R A C T

There has been a worldwide epidemic of heroin that has affected people, families, societies, and cultures across
the world. Now, the heroin epidemic has transitioned from heroin abuse to the overuse of synthetic narcotics,
which are widely accessible and inexpensively produced. In this work, a novel mathematical approach is
applied to investigate the dynamics of the heroin epidemic model and its harmful effect on society with
different population data. A heroin model has been constructed with the importance of a non-singular kernel
in the sense of a generalized Mittag-Leffler kernel. The well-posedness of the proposed model is proven
via fixed-point theory. To examine the heroin model, two equilibrium states have been determined. These
equilibrium states are proven to be locally and globally asymptotically stable. To analyze the behavior of
heroin, a basic reproduction number and sensitivity analysis are used to determine the impact of different
parameters mathematically as well as through simulations. To find the approximate solution, we implement
the Toufik–Atangana numerical method at different fractional order values. The sensitivity of the heroin model
is carried out, and 3-D graphs show the significance of the parameter involved in the model. Finally, the
numerical outcomes are presented with different values of fractional parameters.
1. Introduction

The escalating intake of drugs and other dangerous substances is a
severe concern. Heroin addiction affects not just the level of life for
the vast majority of people but also, to a greater extent, the overall
picture of world peace and economic prosperity (Xu, 2023; Glicksberg
et al., 2023). Based on data from the United Nations (U.N.) World
Drug Report, 35 million people have severe problems related to drug
misuse, and only around a seventh are receiving a cure (Fabien, 2018).
In addition, it was disclosed that drug addiction occurred globally in
2017, with 3 million cases of HIV and 6.2 million cases of severe
hepatitis B viral infections. Metric records indicate that the detrimental
physiological effects of drug use are more widespread and substantial
than previously thought and that controlling the prevalence of harmful
drugs is essential (Saha and Samanta, 2019; Tolomeo et al., 2021).
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An indispensable mechanism for comprehending and treating drug
addiction challenges is mathematically modeled (Raza et al., 2023).
It has come to light that models are beneficial tools for forecasting
drug users’ behavior patterns and offering practical recommendations
for therapeutic approaches (Chou and D’Orsogna, 2022; Raza et al.,
2022b). Narcotic drug misuse, including heroin consumption, is already
a major societal issue. Wangari and Stone (2017) have investigated
the spread of heroin addiction in society with the saturated treatment
function. Zhang and Xing (2020) have formulated a reaction–diffusion
heroin disease model with stability analysis. The authors in Huang
and Liu (2013) proposed a distributed delay model of heroin and
examined the dynamics in the population. In Liu and Wang (2016),
the authors have modeled the heroin model with the saturating rate of
non-linear occurrence and provided conditions for the global disease
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dynamics. Khan et al. (2021) have discussed preferable control factors
for heroin spread with sensitivity.

A noteworthy advancement has recently been made in fractional
calculus, using new derivative and integral operators with kernels (Butt
et al., 2023a,c; Zafar et al., 2021). The creatively suggested element
takes advantage of a modified version of the Mittag-Leffler function
(MLF), this structure encompasses the keystone and its properties,
which play a vital role in developing innovative methods to attain
various fascinating characteristics, like the expanding variations and
mean square deformation interphase that are found in significant sce-
narios. The authors in Zafar et al. (2021) developed a heroin model
using a fractional operator. Weera et al. (2023) have considered a frac-
tional heroin model for the numerical solutions. The groundbreaking
fractional derivative operator, developed by Atangana and Baleanu in
2016, has widespread use in several scientific and technological fields.
It has been demonstrated that utilizing the AB-fractional operator in
simulation produces a disordered framework. for a brief time (Syam
and Al-Refai, 2019; Bas and Ozarslan, 2018; Gomez-Aguilar et al.,
2016; Owolabi and Atangana, 2019). The AB-fractional derivative is
an excellent mathematical method for modeling progressively complex
critical difficulties in the setting of Caputo since it has now been found
that the MLF is a more significant and effective filtering procedure than
the exponential and power laws.

In this work, we develop an epidemic model of heroin comprising
addiction and enduring immunity, then explore the worldwide patterns
triggered by the previous arguments. We used the new ABC-fractional
method and Toufik–Atangana’s approach (Mekkaoui and Atangana,
2017) to create a fractional representation and evaluate numerical
results. To the researchers knowledge, a few studies have used the
ABC-fractional operator to analyze the heroin epidemic scenario. Addi-
tionally, the researchers claim that there is an absence of appropriate
research that examines robust management of computational structures
from the standpoint of ABC-fractional forms.

The paper’s structure is as follows: In Section 2, we delve into the
dynamics of heroin, providing detailed explanations and introducing
fundamental concepts in fractional calculus. Moving on to Section 3, we
demonstrate the model’s existence and uniqueness using mathematical
approaches. Section 4 is dedicated to analyzing the model’s stability
analytically. Section 5 covers the numerical method and its correspond-
ing results. Finally, Section 6 offers insights into the research’s overall
conclusions.

2. Formulation and configuration of heroin model

This section outlines the creation of the heroin disease epidemic
model (Raza et al., 2022a), and three subgroups comprise the whole
population. 𝑈 (𝑡) represents susceptible persons, 𝑉 (𝑡) shows drug users,
and 𝑊 (𝑡) displays non-drug users, which are the state variables in the
model, respectively. This model considers the following assumptions:

• The total population 𝑁 is the sum of all the subclasses and its size
is assumed to be fixed in the whole period.

• All the biological parameters must be nonnegative or positive.
• Homogeneous mixing is considered.
• All of the individuals are supposed to be identically susceptible

to drug habit.

Therefore, the heroin epidemic’s expansion is visualized in Fig. 1,
and it is elucidated through the accompanying set of ODEs:

⎧

⎪

⎨

⎪

⎩

𝑑𝑈
𝑑𝑡 = 𝜂 − 𝜎1𝑈𝑉

𝑁 − 𝛿1𝑈,
𝑑𝑉
𝑑𝑡 = 𝜎1𝑈𝑉

𝑁 − 𝜌𝑉 + 𝜎2𝑉 𝑊
𝑁 − 𝛿1𝑉 ,

𝑑𝑊
𝑑𝑡 = 𝜌𝑉 − 𝜎2𝑉 𝑊

𝑁 − 𝛿1𝑊 ,
(1)

ubject to initial conditions 𝑈0 ≥ 0, 𝑉0 ≥ 0,𝑊0 ≥ 0 and 𝑁 = 𝑈 +𝑉 +𝑊 .
Due to the complex structure of the population, we equalize the

ystem (1) by subsidizing the state variables:

= 𝑈 , 𝑋 = 𝑉 , 𝑌 = 𝑊

𝑁 𝑁 𝑁 ⎩

2 
Table 1
Interpretation of parameters of the heroin model.

Parameter Interpretation

𝜂 New drug users
𝜎1 Probability rate of infection
𝜎2 Non-drug consumers have a high probability of becoming

drug consumers.
𝛿1 Individuals who quit using drugs as a habit
𝛿2 Rate of drug-related deaths
𝛿3 Death rate for drug-related deaths following treatment
𝜌 Drug users’ transition to becoming non-users

as follows
⎧

⎪

⎨

⎪

⎩

𝑑𝑆(𝑡)
𝑑𝑡 = 𝜂 − 𝜎1𝑆𝑋 − 𝛿1𝑆, 𝑡 ≥ 0,

𝑑𝑋(𝑡)
𝑑𝑡 = 𝜎1𝑆𝑋 − 𝜌𝑋 + 𝜎2𝑋𝑌 − 𝛿1𝑋, 𝑡 ≥ 0,

𝑑𝑌 (𝑡)
𝑑𝑡 = 𝜌𝑋 − 𝜎2𝑋𝑌 − 𝛿1𝑌 , 𝑡 ≥ 0,

(2)

with initial conditions 𝑆0 ≥ 0, 𝑋0 ≥ 0, 𝑌0 ≥ 0 and 𝑆(𝑡)+𝑋(𝑡)+𝑌 (𝑡) = 1. An
laborate explanation of the parameters employed in the study, along
ith a description of their scientific significance and relationship to

ertain physical occurrences to be provided in Table 1.
The traditional derivative neglects memory effects that exist in

umerous biological structures. Therefore, We employ the Atangana–
aleanu fractional derivative in place of the conventional integer-order
erivative in order to enlarge framework (2) for the present study.
his transformation will enable us to track memory effects and get
urther insights into the dynamics of the heroin epidemic. Before
ontinuing, we revisit key aspects of Atangana–Baleanu and Caputo
erivatives (Butt et al., 2023b; Abdeljawad and Baleanu, 2017; Rashid
t al., 2022; Butt et al., 2022).

efinition 1. Consider 𝐰 ∈ C1(a, b), b > a, be a mapping and
hen, the Atangana–Baleanu fractional derivative in Caputo sense is
xpressed (Butt et al., 2023b) as:

𝐵𝐶𝐷𝛼
𝑡 𝐰(𝑡) =

(𝛼)
1 − 𝛼 ∫

𝑡

a
𝐰̇(𝜉)𝐸𝛼

[

−𝛼
(𝑡 − 𝜉)𝛼

1 − 𝛼

]

𝑑𝜉, (3)

where, 0 ≤ 𝛼 ≤ 1 and (𝛼) = 1−𝛼+ 𝛼
𝛤 (𝛼) . 𝐸𝛼(𝜈) shows the Mittag-Leffler

function and expressed as follows:

𝐸𝛼(𝜈) =
∞
∑

𝛽=0

𝜈𝛽

1 + 𝛼𝛽
, 𝛼, 𝛽 ∈ C. (4)

Definition 2. The AB-fractional integral of the function 𝐰 ∈ C1(a, b) is
ritten by Butt et al. (2023b):

𝐵𝐼𝛼𝑡 𝐰(𝑡) =
1 − 𝛼
(𝛼)

𝐰(𝑡) + 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡

a
𝐰(𝜉)(𝑡 − 𝜉)𝛼−1𝑑𝜉. (5)

emma 1. For 𝐰 ∈ C1(a, b), then both the AB-fractional derivative and
ntegral operator satisfies the Newton–Leibniz identity (Abdeljawad and
aleanu, 2017):
𝐵𝐼𝛼𝑡

(𝐴𝐵𝐶
a 𝐷𝛼

𝑡 𝐰(𝑡)
)

= 𝐰(𝑡) − 𝐰(𝑎). (6)

emma 2. For two functions 𝐰,𝐮 ∈ 𝛥(a, b), b > a, then the AB-fractional
perator satisfies the subsequent variant (Abdeljawad and Baleanu, 2017;
ashid et al., 2022):
𝐴𝐵𝐶
a 𝐷𝛼

𝑡 𝐰(𝑡) −
𝐴𝐵𝐶
a 𝐷𝛼

𝑡 𝐮(𝑡) ∥= 𝛥‖𝐰(𝑡) − 𝐮(𝑡)‖. (7)

Therefore, the system (2) can be extended to a fractional frame-
ork of order 𝛼 ∈ (0, 1], with constant transmission rates. Thus, the
tangana–Baleanu fractional derivative defines our proposed model:

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑆(𝑡) = 𝜂 − 𝜎1𝑆𝑋 − 𝛿1𝑆,
𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑋(𝑡) = 𝜎1𝑆𝑋 − 𝜌𝑋 + 𝜎2𝑋𝑌 − 𝛿1𝑋,
𝐴𝐵𝐶𝐷𝛼𝑌 (𝑡) = 𝜌𝑋 − 𝜎 𝑋𝑌 − 𝛿 𝑌 .

(8)
0 𝑡 2 1
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Fig. 1. The heroin epidemic’s expansion within sub populations.
The domain of the proposed model (8) is described by the set 𝛯 as:

𝛯 ∶=

{

(𝑆(𝑡), 𝑋(𝑡), 𝑌 (𝑡)) ∈ R3
+ ∶ 0 ≤ 𝑆(𝑡) +𝑋(𝑡) + 𝑌 (𝑡) ≤ 𝜂

𝛿1

}

. (9)

It is now sufficient to prove that the set of records mentioned in
Tables 1 and (9) are positively constant. The preceding lemma will
serve as the basis for the proof of (9).

Lemma 3. (Abdeljawad and Baleanu, 2017; Rashid et al., 2022) Suppose
that 𝐰 ∈ C1(a, b) and assume 𝐴𝐵𝐶

0 𝐷𝛼
𝑡 𝐰(𝑡) ∈ C1(a, b), 𝛼 ∈ (0, 1]. Then, we

have 𝐰(𝑡) = 𝐰(𝑎) + 1
𝛤 (𝛼)

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝐰(𝑡)(𝑧 − 𝑎)𝛼 , when 𝑡 ∈ [0, 𝑧].

It is noticed that by Lemma 3, if 𝐰(𝑡) ∈ [0, 𝛿], 𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝐰(𝑡) ∈ [0, 𝛿]
and 𝐴𝐵𝐶

0 𝐷𝛼
𝑡 𝐰(𝑡) ≥ 0, for all 𝑡 ∈ (0, 𝛿], 𝛼 ∈ (0, 1], then the function 𝐰(𝑡)

is increasing, and if 𝐴𝐵𝐶
0 𝐷𝛼𝐰(𝑡) ≤ 0, for all 𝑡 ∈ (0, 𝛿], then the function

𝐰(𝑡) is decreasing for all 𝑡 ∈ (0, 𝛿].
Utilizing Lemma 3, we show the accumulation remains positively

invariant, we have

⎧

⎪

⎨

⎪

⎩

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑆|𝑆=0 = 𝜂 ≥ 0,
𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑋|𝑋=0 = 0 ≥ 0,
𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑌 |𝑌=0 = 𝜌𝑋(𝑡) ≥ 0.
(10)

All the solutions to (8) are positive and contained in R3
+ due to (10),

and the set specified in (9) is positively invariant for framework. In
addition, we proceed by adding all framework equations to illustrate
the bounded nature of the solutions in the fractional system (8), that
gives

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑁(𝑡) = 𝜂 − 𝛿1𝑁. (11)

Applying Laplace transform, we get


(𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑁(𝑡) + 𝛿1𝑁
)

≤ (𝜂),

 (𝑁)

[

(1 − 𝜎)𝑠𝛼 − 𝜎𝛼
1 − 𝛼

]

− 𝑠𝛼−1𝑁(0) ≤ 1 − 𝛼
(𝛼)

[

𝑠𝛼 + 𝛼
1 − 𝛼

]

𝜂
𝑠
,

which can be written as

 (𝑁) ≤
(

1 − 𝜎𝛼
(1 − 𝛼)(1 − 𝜎)𝑠𝛼

)−1

×

{

1 − 𝛼
(1 − 𝜎)(𝛼)

[

1 − 𝛼 + 𝛼𝑠−𝛼

1 − 𝛼

]

𝜂
𝑠
+

𝑁(0)
(1 − 𝜎)𝑠

}

,

where 𝜎 = − 𝛿1(1−𝛼)
(𝛼) .

On using the inverse Laplace transform, yields

𝑁(𝑡) ≤ 𝜂
𝛿1

−
𝜂

𝛿1(1 − 𝜎)
𝑑
𝑑𝑡∫

𝑡

0
𝐸𝛼

(

𝜎𝛼
(1 − 𝛼)(1 − 𝜎)

(𝑡 − 𝑥)𝛼𝑑𝑥
)

+ 1 𝐸𝛼

(

𝜎𝛼 𝑡𝛼
)

𝑁(0). (12)

(1 − 𝛼) (1 − 𝛼)(1 − 𝜎)

3 
Here, the MLF is represented as 𝐸𝛼1 ,𝛼2 . Taking into account the notion
that the MLF has asymptotic properties, thus

𝐸𝛼1 ,𝛼2 (𝛽) ≈
𝜃
∑

𝑞=1
𝛽−𝑞∕𝛤 (𝛼2 − 𝛼1𝑞) + (| 1

𝛽1+𝜃
|),

for |𝛽| ⟼ ∞, 𝛼1𝜋2 < |𝑎𝑟𝑔(𝛽)| ≤ 𝜋. 𝑁(𝜁 ) ⟼ 𝜂∕𝛿1 is easy to grasp since 𝜁
tends to ∞. As a consequence, (9) demonstrates the biological viability
in domain of model (8).

3. Existence and uniqueness of heroin model

Model (8) provides a framework for analysis that incorporates the
dynamics of the heroin epidemic, and the ABC-fractional derivative
system may be represented as

⎧

⎪

⎨

⎪

⎩

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑆(𝑡) = 𝛺1(𝑡, 𝑆),
𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑋(𝑡) = 𝛺2(𝑡, 𝑋),
𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑌 (𝑡) = 𝛺3(𝑡, 𝑌 ),
(13)

where the kernels are defined as
⎧

⎪

⎨

⎪

⎩

𝛺1(𝑡, 𝑆) = 𝜂 − 𝜎1𝑆𝑋 − 𝛿1𝑆,
𝛺2(𝑡, 𝑋) = 𝜎1𝑆𝑋 − 𝜌𝑋 + 𝜎2𝑋𝑌 − 𝛿1𝑋,
𝛺3(𝑡, 𝑌 ) = 𝜌𝑋 − 𝜎2𝑋𝑌 − 𝛿1𝑌 ,

(14)

supplements with ICs 𝑆(0) = 𝑆0, 𝑋(0) = 𝑋0, 𝑌 (0) = 𝑌0.
Below is a discussion of the alternatives for fractional-order systems,

including their existence and uniqueness of solutions. We employ the
renowned Banach fixed-point theorem (Banach, 1922) to establish the
existence of a solution to problem (8). For an in-depth examination
of some useful results of fixed point and compressions, you can turn
to Ref. Panda (2020), Şahin et al. (2023), Şahin and Alagöz (2023),
Aggarwal et al. (2023).

Theorem 1 (Banach, 1922). Let (𝑋, 𝑑) be a complete metric space and
mapping 𝑓 ∶ 𝑋 → 𝑋 satisfies

𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝛼 𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋,

where 𝛼 ∈ [0, 1) is a constant. Then there exists a unique 𝑥 ∈ 𝑋 such that
𝑥 = 𝑓𝑥. Moreover, for any 𝑥0 ∈ 𝑋, the iterative sequence 𝑥𝑛+1 = 𝑓

(

𝑥𝑛
)

converges to 𝑥.

We shall now show the existence and uniqueness of the solution by
following the procedures listed below. The formulation (8) is handled
using the AB-fractional integral:

⎧

⎪

⎨

⎪

⎩

𝑆(𝑡) − 𝑆(0) = 1−𝛼
(𝛼)𝛺1(𝑡, 𝑆) +

𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡
0 𝛺1(𝜁, 𝑆)(𝑡 − 𝜁 )𝛼−1𝑑𝜁,

𝑋(𝑡) −𝑋(0) = 1−𝛼
(𝛼)𝛺2(𝑡, 𝑋) + 𝛼

(𝛼)𝛤 (𝛼) ∫
𝑡
0 𝛺2(𝜁,𝑋)(𝑡 − 𝜁 )𝛼−1𝑑𝜁,

𝑌 (𝑡) − 𝑌 (0) = 1−𝛼
(𝛼)𝛺3(𝑡, 𝑌 ) +

𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡
0 𝛺3(𝜁, 𝑌 )(𝑡 − 𝜁 )𝛼−1𝑑𝜁.

(15)
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Let us assume that for any Banach space, H(I) = C[0, 𝑡] of real-valued
continuous functions on I, there exists an interval I = [0, 𝑡] such that
W = H(I) × H(I) × H(I). The corresponding norm of these mappings is
as described below:

‖𝑆‖ = sup
𝑡∈I

|𝑆(𝑡)|, ‖𝑋‖ = sup
𝑡∈I

|𝑋(𝑡)|, ‖𝑌 ‖ = sup
𝑡∈I

|𝑌 (𝑡)|.

The contraction and the Lipschitz assumption provide the corner-
stones of our subsequent theorem.

Theorem 2. If the kernels are 𝛺𝑖, 𝑖 = 1, 2, 3 in (8), then there exists 𝜉𝑖,
𝑖 = 1, 2, 3, such that

⎧

⎪

⎨

⎪

⎩

‖𝛺1(𝑡, 𝑆) −𝛺1(𝑡, 𝑆̂)‖ ≤ 𝜉1‖𝑆(𝑡) − 𝑆̂(𝑡)‖,
‖𝛺2(𝑡, 𝑋) −𝛺2(𝑡, 𝑋̂)‖ ≤ 𝜉2‖𝑋(𝑡) − 𝑋̂(𝑡)‖,
‖𝛺3(𝑡, 𝑌 ) −𝛺3(𝑡, 𝑌 )‖ ≤ 𝜉3‖𝑌 (𝑡) − 𝑌 (𝑡)‖

(16)

are contraction mappings for 𝜉𝑖 ∈ [0, 1), 𝑖 = 1, 2, 3.

Proof. We shall commence from the initial category denoted as 𝑆.
In this context, let 𝑆 and 𝑆̂ represent two mappings. It is essential to
consider the following factors:

‖𝛺1(𝑡, 𝑆) −𝛺1(𝑡, 𝑆̂)‖ = ‖ − 𝜎1𝑆𝑋 − 𝛿1𝑆 − (−𝜎1𝑆̂𝑋 − 𝛿1𝑆̂)‖,

= ‖ − 𝜎1𝑋(𝑆 − 𝑆̂) − 𝛿1(𝑆 − 𝑆̂)‖,

≤ (𝜎1𝑚1 + 𝛿1)‖𝑆 − 𝑆̂‖,

≤ 𝜉1‖𝑆 − 𝑆̂‖, (17)

where
𝜉1 = (𝜎1𝑚1 + 𝛿1), ‖𝑆‖ = sup

𝑡∈I
|𝑆(𝑡)| = 𝑚1, ‖𝑋‖ = sup

𝑡∈I
|𝑋(𝑡)| = 𝑚2, ‖𝑌 ‖

= sup
𝑡∈I

|𝑌 (𝑡)| = 𝑚3.

Therefore, 𝑆 satisfies the Lipschitz condition, and it is a contraction if
0 ≤ (𝜎1𝑚1 + 𝛿1) < 1. For the next scenarios, the Lipschitz criteria are
given in the same manner.

Now for 𝑡 = 𝑡𝑛, 𝑛 = 1, 2,…, we present the iterative relationship of
(15) that follows:

⎧

⎪

⎨

⎪

⎩

𝑆𝑛(𝑡)(0) = 1−𝛼
(𝛼)

𝛺1(𝑡, 𝑆𝑛−1) +
𝛼

(𝛼)𝛤 (𝛼)
∫ 𝑡
0 𝛺1(𝜁, 𝑆𝑛−1)(𝑡 − 𝜁 )𝛼−1𝑑𝜁,

𝑋𝑛(𝑡)(0) = 1−𝛼
(𝛼)

𝛺2(𝑡, 𝑋𝑛−1) +
𝛼

(𝛼)𝛤 (𝛼)
∫ 𝑡
0 𝛺2(𝜁,𝑋𝑛−1)(𝑡 − 𝜁 )𝛼−1𝑑𝜁,

𝑌𝑛(𝑡)(0) = 1−𝛼
(𝛼)

𝛺3(𝑡, 𝑌𝑛−1) +
𝛼

(𝛼)𝛤 (𝛼)
∫ 𝑡
0 𝛺3(𝜁, 𝑌𝑛−1)(𝑡 − 𝜁 )𝛼−1𝑑𝜁,

(18)

along with appropriate starting condition 𝑆(0) = 𝑆0, 𝑋(0) = 𝑋0,
𝑌 (0) = 𝑌0.

To determine the difference between the subsequent components,
utilize the following equations:

℧1𝑛(𝑡) = 𝑆𝑛(𝑡) − 𝑆𝑛−1(𝑡)

= 1 − 𝛼
(𝛼)

(𝛺1(𝑡, 𝑆𝑛−1) −𝛺1(𝑡, 𝑆𝑛−2))

+ 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡

0
(𝛺1(𝜁, 𝑆𝑛−1) −𝛺1(𝜁, 𝑆𝑛−2))(𝑡 − 𝜁 )𝛼−1𝑑𝜁, (19)

℧2𝑛(𝑡) = 𝑋𝑛(𝑡) −𝑋𝑛−1(𝑡)

= 1 − 𝛼
(𝛼)

(𝛺2(𝑡, 𝑋𝑛−1) −𝛺2(𝑡, 𝑋𝑛−2))

+ 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡

0
(𝛺2(𝜁,𝑋𝑛−1) −𝛺2(𝜁,𝑋𝑛−2))(𝑡 − 𝜁 )𝛼−1𝑑𝜁, (20)

3𝑛(𝑡) = 𝑌𝑛(𝑡) − 𝑌𝑛−1(𝑡)

= 1 − 𝛼
(𝛼)

(𝛺3(𝑡, 𝑌𝑛−1) −𝛺3(𝑡, 𝑌𝑛−2))

+ 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡

0
(𝛺3(𝜁, 𝑌𝑛−1) −𝛺3(𝜁, 𝑌𝑛−2))(𝑡 − 𝜁 )𝛼−1𝑑𝜁. (21)

Applying the norm on (19)–(21), we obtain

‖℧ (𝑡)‖ = ‖𝑆 (𝑡) − 𝑆 (𝑡)‖
1𝑛 𝑛 𝑛−1

4 
= 1 − 𝛼
(𝛼)

‖𝛺1(𝑡, 𝑆𝑛−1) −𝛺1(𝑡, 𝑆𝑛−2)‖

+ 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡

0
‖𝛺1(𝜁, 𝑆𝑛−1) −𝛺1(𝜁, 𝑆𝑛−2)‖(𝑡 − 𝜁 )𝛼−1𝑑𝜁, (22)

‖℧2𝑛(𝑡)‖ = ‖𝑋𝑛(𝑡) −𝑋𝑛−1(𝑡)‖

= 1 − 𝛼
(𝛼)

‖𝛺2(𝑡, 𝑋𝑛−1) −𝛺2(𝑡, 𝑋𝑛−2)‖

+ 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡

0
‖𝛺2(𝜁,𝑋𝑛−1) −𝛺2(𝜁,𝑋𝑛−2)‖(𝑡 − 𝜁 )𝛼−1𝑑𝜁, (23)

℧3𝑛(𝑡)‖ = ‖𝑌𝑛(𝑡) − 𝑌𝑛−1(𝑡)‖

= 1 − 𝛼
(𝛼)

‖𝛺3(𝑡, 𝑌𝑛−1) −𝛺3(𝑡, 𝑌𝑛−2)‖

+ 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡

0
‖𝛺3(𝜁, 𝑌𝑛−1) −𝛺3(𝜁, 𝑌𝑛−2)‖(𝑡 − 𝜁 )𝛼−1𝑑𝜁. (24)

Furthermore, Eq. (22) can be transformed into the following expres-
sions:

‖℧1𝑛(𝑡)‖ = ‖𝑆𝑛(𝑡) − 𝑆𝑛−1(𝑡)‖,

≤ 1 − 𝛼
(𝛼)

‖𝛺1(𝑡, 𝑆𝑛−1) −𝛺1(𝑡, 𝑆𝑛−2)‖

+ 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡

0
‖𝛺1(𝜁, 𝑆𝑛−1) −𝛺1(𝜁, 𝑆𝑛−2)‖(𝑡 − 𝜁 )𝛼−1𝑑𝜁,

≤ 1 − 𝛼
(𝛼)

𝐿1‖𝑆𝑛−1𝑆𝑛−2‖

+ 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡

0
𝜉1‖𝑆𝑛−1 − 𝑆𝑛−2‖(𝑡 − 𝜁 )𝛼−1𝑑𝜁,

≤
(

1 − 𝛼
(𝛼)

+ 𝑡𝛼

(𝛼)𝛤 (𝛼)

)

𝜉1‖℧1(𝑛−1)(𝑡)‖.

s a result, we get

℧1𝑛(𝑡)‖ ≤
(

1 − 𝛼
(𝛼)

+ 𝑡𝛼

(𝛼)𝛤 (𝛼)

)

𝜉1‖℧1(𝑛−1)(𝑡)‖. (25)

n this regard, the subsequent inequalities can be used to simplify all
ther representations of (23)–(24):

℧2𝑛(𝑡)‖ ≤
(

1 − 𝛼
(𝛼)

+ 𝑡𝛼

(𝛼)𝛤 (𝛼)

)

𝜉2‖℧2(𝑛−1)(𝑡)‖, (26)

℧3𝑛(𝑡)‖ ≤
(

1 − 𝛼
(𝛼)

+ 𝑡𝛼

(𝛼)𝛤 (𝛼)

)

𝜉3‖℧3(𝑛−1)(𝑡)‖. □ (27)

The theorem is now described in detail as follows.

heorem 3. The suggested heroin fractional model (8) has exact solutions
if the following suppositions exist: that is, we can workout P𝛼

0 such that

1 − 𝛼
(𝛼)

+
P𝛼
0

(𝛼)𝛤 (𝛼)

)

𝜉𝑖 < 1, 𝑖 = 1, 2, 3. (28)

roof. Utilizing Eqs. (25)–(27), we have

‖℧1𝑛(𝑡)‖ ≤ ‖𝑆(0)‖[( 1−𝛼
(𝛼) +

P𝛼0
(𝛼)𝛤 (𝛼) )𝜉1]

𝑛,

‖℧2𝑛(𝑡)‖ ≤ ‖𝑋(0)‖[( 1−𝛼
(𝛼) +

P𝛼0
(𝛼)𝛤 (𝛼) )𝜉2]

𝑛,

‖℧3𝑛(𝑡)‖ ≤ ‖𝑌 (0)‖[( 1−𝛼
(𝛼) +

P𝛼0
(𝛼)𝛤 (𝛼) )𝜉3]

𝑛.

(29)

his establishes the continued existence of the previously indicated
trategies. Moreover, we proceed as directed to confirm that the func-
ion stated above is a consequence of (8):

𝑆(𝑡) − 𝑆(0) = 𝑆𝑛−1 − ̃𝑎1𝑛(𝑡),
𝑋(𝑡) −𝑋(0) = 𝑋𝑛−1 − ̃𝑎2𝑛(𝑡),
𝑌 (𝑡) − 𝑌 (0) = 𝑌𝑛−1 − ̃𝑎3𝑛(𝑡).

(30)

herefore, we have

̃𝑎1𝑛(𝑡)‖ ≤ 1 − 𝛼
(𝛼)

‖𝛺1(𝑡, 𝑆𝑛) −𝛺1(𝑡, 𝑆𝑛−1)‖

+ 𝛼 𝑡
‖𝛺1(𝜁, 𝑆𝑛) −𝛺1(𝜁, 𝑆𝑛−1)‖(𝑡 − 𝜁 )𝛼−1𝑑𝜁
(𝛼)𝛤 (𝛼) ∫0
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≤ 1 − 𝛼
(𝛼)

𝜉1‖𝑆𝑛 − 𝑆𝑛−1‖ +
𝑡𝛼

(𝛼)𝛤 (𝛼)
𝜉1‖𝑆𝑛 − 𝑆𝑛−1‖. (31)

By continuing the process recursively, gives

‖ ̃𝑎1𝑛(𝑡)‖ ≤
(

1 − 𝛼
(𝛼)

+ 𝑡𝛼

(𝛼)𝛤 (𝛼)

)𝑛+1
𝜉𝑛1‖𝑆𝑛 − 𝑆𝑛−1‖

𝑛. (32)

etting 𝑡𝛼 = P𝛼
0 yields

̃𝑎1𝑛(𝑡)‖ ≤
(

1 − 𝛼
(𝛼)

+
P𝛼
0

(𝛼)𝛤 (𝛼)

)𝑛+1

𝜉𝑛1‖𝑆𝑛 − 𝑆𝑛−1‖
𝑛.

onsidering ‖ ̃𝑎1𝑛(𝑡)‖ ↦ 0. Applying limit as 𝑛 ↦ ∞ to (35), it is noted
that ‖ ̃𝑎1𝑛(𝑡)‖ ↦ 0 for
(

1 − 𝛼
(𝛼)

+
P𝛼
0

(𝛼)𝛤 (𝛼)

)

𝜉1 < 1. (33)

n a similar way, we show that ‖ ̃𝑎2𝑛(𝑡)‖ ↦ 0, and ‖ ̃𝑎3𝑛(𝑡)‖ ↦ 0, then

1 − 𝛼
(𝛼)

+
P𝛼
0

(𝛼)𝛤 (𝛼)

)

𝜉𝑖 < 1, 𝑖 = 1, 2, 3. □ (34)

The existence of fractional model (8) is guaranteed by Theorems 2
and 3 with the implementation of Banach fixed point theorem. Our
following result will demonstrate the singularity of the solutions.

Theorem 4. The suggested heroin fractional model (8) has a unique
solution, if
(

1 − 𝛼
(𝛼)

+
P𝛼
0

(𝛼)𝛤 (𝛼)

)

𝜉𝑖 < 1, 𝑖 = 1, 2, 3. (35)

Proof. Assume that ̂𝑆(𝑡), ̂𝑋(𝑡), and ̂𝑌 (𝑡) are other solutions to (8). Then

𝑆(𝑡) − ̂𝑆(𝑡) = 1 − 𝛼
(𝛼)

(𝛺1(𝑡, 𝑆) −𝛺1(𝑡, 𝑆̂))

+ 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡

0
(𝛺1(𝜁, 𝑆) −𝛺1(𝜁, 𝑆̂))(𝑡 − 𝜁 )𝛼−1𝑑𝜁. (36)

Taking norm on both sides, then we have

‖𝑆(𝑡) − ̂𝑆(𝑡)‖ ≤ 1 − 𝛼
(𝛼)

𝜉1‖𝑆 − 𝑆̂‖ + 𝑡𝛼

(𝛼)𝛤 (𝛼)
𝜉1‖𝑆 − 𝑆̂‖. (37)

Since
(

1 − 1−𝛼
(𝛼) −

P𝛼0
(𝛼)𝛤 (𝛼)

)

> 0, we determine that ‖𝑆(𝑡) − ̂𝑆(𝑡)‖ = 0.
Hence, we find that 𝑆(𝑡) = ̂𝑆(𝑡). Similarly, we can demonstrate that
𝑋(𝑡) = ̂𝑋(𝑡) and 𝑌 (𝑡) = ̂𝑌 (𝑡). With this, we conclude the proof. □

4. Qualitative perspectives of the heroin model

4.1. Equilibrium points and basic reproduction number

The proposed fractional heroin epidemic model (8) has two equilib-
rium points in the feasible region of the model (9). To determine the
equilibrium states of the suggested system, we put

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑆(𝑡) = 0, 𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑋(𝑡) = 0, 𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑌 (𝑡) = 0,

which gives that

⎧

⎪

⎨

⎪

⎩

𝜂 − 𝜎1𝑆𝑋 − 𝛿1𝑆 = 0,
𝜎1𝑆𝑋 − 𝜌𝑋 + 𝜎2𝑋𝑌 − 𝛿1𝑋 = 0,
𝜌𝑋 − 𝜎2𝑋𝑌 − 𝜇1𝑌 = 0.

(38)

After simplifying the above system of equations for the state variables,
the suggested fractional model has heroin free and heroin persistence
equilibrium points which are stated as follows:

𝐻0 =
⎛

⎜

⎜

⎝

𝑆0
𝑋0
𝑌

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

𝜂
𝛿1
0

⎞

⎟

⎟

⎟

(39)

0

⎝
0
⎠

5 
nd

∗
1 =

⎛

⎜

⎜

⎝

𝑆∗
1

𝑋∗
1

𝑌 ∗
1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜌(𝜌+𝛿1)−𝜎2(1+𝜎2)
𝜌𝜎1

𝜂−𝛿1𝑆∗
1

𝜎1𝑆∗
1

𝜎2𝑋∗
1−𝛿1

𝜌𝑋∗
1

⎞

⎟

⎟

⎟

⎟

⎠

. (40)

Basic reproduction number is a principle parameter of infectious
disease models and usually represented by 0. This is referred to as
the estimated count of secondary infections generated by one infected
person within a population entirely susceptible to the infection. For the
proposed heroin fractional epidemic model, 0 is developed utilizing
the upcoming generation matrix strategy (Ahmad et al., 2021; Riaz
et al., 2024; Ain et al., 2024).

The suggested system can be written as
𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑄 = (𝑄) − (𝑄), (41)

where 𝑄 = (𝑋, 𝑌 ) and

 =
(

𝜎1𝑆𝑋 + 𝜎2𝑋𝑌
−𝜎2𝑋𝑌

)

,  =
(

−(𝜌 + 𝛿1)𝑋
𝜌𝑋 − 𝛿1𝑌

)

. (42)

Following are the Jacobian matrices of (42), expressed as

̄ =
(

𝜎1𝑆 + 𝜎2𝑌 𝜎2𝑋
−𝜎2𝑌 −𝜎2𝑋

)

,

̄ =
(

−(𝜌 + 𝛿1) 0
𝜌 −𝛿1

)

.

he spectral radius of ̄̄−1(𝐻0) is 0. Thus, we have

0 = 𝛷(̄̄−1) =
𝜎1𝜂

𝛿1(𝜌 + 𝛿1)
. (43)

4.2. Stability analysis

This section discusses the local and global behavior of the consid-
ered model (8) at the heroin-free and heroin persistence equilibrium
states that by imposing constraints on the 0.

4.2.1. Stability of heroin free equilibrium point 𝐻0

Theorem 5 (Butt et al., 2023a). Heroin free equilibrium point 𝐻0 of system
(8) is locally asymptotically stable if 0 < 1 and unstable when 0 > 1.

Proof. The Jacobian matrix 𝐽0(𝑆0, 𝑋0, 𝑌0) for proposed fractional
odel (8) at heroin free state 𝐻0 is computed as:

0(𝐻0) =

⎛

⎜

⎜

⎜

⎝

−𝛿1
𝜎1𝜂
𝛿1

0
0 𝜎1𝜂

𝛿1
− (𝜌 + 𝛿1) 0

0 𝜌 −𝛿1

⎞

⎟

⎟

⎟

⎠

. (44)

The Jacobian matrix 𝐽0(𝐻0) has the following eigenvalues:

𝜆1 = −𝛿1, (45)
𝜆2 = −𝛿1, (46)

𝜆3 =
𝜎1𝜂
𝛿1

− (𝜌 + 𝛿1). (47)

The first two eigenvalues 𝜆1 and 𝜆2 are clearly less than zero, as 𝛿1 is
ositive. Now, consider Eq. (47), such as:

3 = (𝜌 + 𝛿1)

[

𝜎1𝜂
𝛿1(𝜌 + 𝛿1)

− 1

]

= (𝜌 + 𝛿1)[0 − 1]. (48)

Thus, 𝜆3 is negative if and only if 0 is less than one. Therefore, all
eigenvalues of 𝐽0(𝐻0) are negative, and consequently, 𝐻0 is locally
asymptotically stable which completes the proof. □



M. Vivas-Cortez et al.

(


P
p



T

𝐴
0

i
p
i
a
o

4

T
o


P
m

𝐽

T
s

T
o


P



A
𝐴
0

w

𝛤

1

𝐻
s
b

Journal of King Saud University - Science 36 (2024) 103329 
Theorem 6 (Butt et al., 2023a). Heroin free equilibrium point 𝐻0 of system
8) is globally asymptotically stable (GAS) if 0 < 1 and unstable when
0 > 1.

roof. To examine the global behavior of heroin free equilibrium
oint, we choose a Lyapunov function as:

0 = 𝑆 − 𝑆0 − 𝑆0 ln
𝑆
𝑆0

+𝑋 + 𝑌 . (49)

aking derivative of 0 with respect to time as:

𝐵𝐶𝐷𝛼
𝑡 0 =

(

1 −
𝑆0
𝑆

)

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑆 + 𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑋 + 𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑌 . (50)

Employing model Eqs. (8), we yields

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 0 =
(

1 −
𝑆0
𝑆

)

[𝜂−𝜎1𝑆𝑋−𝛿1𝑆]+𝜎1𝑆𝑋+𝜎2𝑋𝑌−𝛿1𝑋−𝜎2𝑋𝑌−𝛿1𝑌 .

(51)

Above equality, after some calculations takes the form:

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 0 = −
𝛿1
𝑆
(𝑆 − 𝑆0)2 + 𝜎1𝑆0𝑋 − 𝛿1(𝑋 + 𝑌 ), (52)

where 𝜎1𝑆0𝑋 ≥ 0. Therefore

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 0 ≤ −
𝛿1
𝑆
(𝑆 − 𝑆0)2 − 𝛿1(𝑋 + 𝑌 ). (53)

Using the fact that the result of first term is positive when 0 ≤ 1, then

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 0 ≤ 0, (54)

for all (𝑆,𝑋, 𝑌 ) ∈ R3
+. It is observed that 𝐴𝐵𝐶

0 𝐷𝛼
𝑡 0 ≤ 0 if and only if

𝑆 = 𝑆0, 𝑋 = 𝑋0 = 0, and 𝑌 = 𝑌0 = 0. By setting 𝑆 = 𝑆0, 𝑋 = 𝑌 = 0
n (8), we have 𝑆 ↦ 𝜂

𝛿1
when 𝑡 → ∞. Applying LaSalles invariance

rinciple (Lassalle, 1976), every solution of the proposed model having
nitial conditions approaches to 𝐻0, as 𝑡 → ∞. Thus 𝐻0 is globally
symptotically stable in the region 𝛯. As a consequence, the growth
f epidemic disappear from the population. □

.2.2. Stability of heroin persistence equilibrium point 𝐻1

heorem 7 (Butt et al., 2023a). Heroin persistence equilibrium point 𝐻∗
1

f system (8) is locally asymptotically stable if 0 > 1 and unstable when
0 < 1.

roof. The Jacobian matrix 𝐽1(𝑆∗
1 , 𝑋

∗
1 , 𝑌

∗
1 ) for the considered fractional

odel (8) at heroin persistence 𝐻∗
1 is computed as:

1(𝐻∗
1 ) =

⎛

⎜

⎜

⎝

−𝜎1𝑋∗
1 − 𝛿1 −𝜎1𝑆∗

1 0
𝜎1𝑋∗

1 𝜎1𝑆∗
1 + 𝜎2𝑌 ∗

1 − (𝜌 + 𝛿1) 𝜎2𝑋∗
1

0 𝜌 − 𝜎2𝑌 ∗
1 −𝜎2𝑋∗

1 − 𝛿1

⎞

⎟

⎟

⎠

. (55)

The eigenvalues of the Jacobian matrix 𝐽1(𝐻∗
1 ) is obtained by solving

the following equation:

|𝐽1(𝐻∗
1 ) − 𝜆∗𝐼| = 0, (56)

where 𝐼 is the identity matrix of 3-by-3. Therefore, we obtain the
characteristic equation as:

(−𝜎1𝑋∗
1 − 𝛿1 − 𝜆∗)[(𝜎1𝑆∗

1 + 𝜎2𝑌
∗
1 − (𝜌 + 𝛿1) − 𝜆∗)(−𝜎2𝑋∗

1 − 𝛿1 − 𝜆∗)

−𝜎2𝑋∗
1𝜌 + 𝜎22𝑋

∗
1𝑌

∗
1 ] + 𝜎1𝑆

∗
1𝑋

∗
1 (−𝜎2𝑋

∗
1 − 𝛿1 − 𝜆∗) = 0. (57)

One eigenvalue of 𝐽1(𝐻∗
1 ) is given by

𝜆∗1 = −(𝜎1𝑋∗
1 + 𝛿1) < 0 (58)

and, the remaining two eigenvalues correspond to the solutions of the
following equation:
∗2
𝜆 + (𝑒 + 𝑎𝑏) + (𝑐 − 𝑑𝑎𝑏 + 𝑎𝑒) = 0, (59) 𝛯

6 
where

𝑎 = (𝜎2𝑋∗
1 + 𝛿1) > 0,

𝑏 = (𝜎1𝑆∗
1 + 𝜎2𝑌

∗
1 + 𝜎21𝑆

∗
1𝑌

∗
1 ) > 0,

𝑐 = 𝜎2𝑋
∗
1𝜌 > 0,

𝑑 = 𝜎22𝑋
∗
1𝑌

∗
1 > 0,

𝑒 = 𝜌 + 𝛿1 > 0.

Therefore, according to the Routh–Hurwitz criteria for second degree
polynomials, the following conditions are validated, if 0 > 1.

𝑒 + 𝑎𝑏 > 0, 𝑐 − 𝑑𝑎𝑏 + 𝑎𝑒 > 0.

hus, heroin persistence equilibrium point is locally asymptotically
table. □

heorem 8 (Butt et al., 2023a). Heroin persistence equilibrium point 𝐻∗
1

f system (8) is globally asymptotically stable if 0 > 1 and unstable when
0 < 1.

roof. Let us consider a Lyapunov function candidate as:

1 = 𝑆 − 𝑆∗
1 − 𝑆∗

1 ln
𝑆
𝑆∗
1
+𝑋 −𝑋∗

1 −𝑋∗
1 ln

𝑋
𝑋∗

1
+ 𝑌 − 𝑌 ∗

1 − 𝑌 ∗
1 ln 𝑌

𝑌 ∗
1
. (60)

Differentiating with respect to time yields:

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 1 =
(

1 −
𝑆∗
1
𝑆

)

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑆 +
(

1 −
𝑋∗

1
𝑋

)

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑋

+
(

1 −
𝑌 ∗
1
𝑌

)

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 𝑌 .
(61)

Utilizing the equations of model, then

𝐴𝐵𝐶
0 𝐷𝛼

𝑡 1 =
(

1 −
𝑆∗
1

𝑆

)

[𝜂 − (𝜎1𝑋 − 𝛿1)𝑆∗
1 − (𝜎1𝑋 + 𝛿1)(𝑆 − 𝑆∗

1 )]

+
(

1 −
𝑋∗

1

𝑋

)

[𝜎1𝑆𝑋 + 𝜎2𝑋𝑌 − (𝜌 + 𝛿1)𝑋∗
1 − (𝜌 + 𝛿1)(𝑋 −𝑋∗

1 )]

+
(

1 −
𝑌 ∗
1

𝑌

)

[𝜌𝑋 − (𝜎2𝑋 + 𝛿1)𝑌 ∗
1 − (𝜎2𝑋 + 𝛿1)(𝑌 − 𝑌 ∗

1 )]. (62)

fter some simplification, we reached at:
𝐵𝐶𝐷𝛼

𝑡 1 = 𝛤1 − 𝛤2, (63)

here

1 =𝜂 + (𝜎1𝑋 + 𝛿1)
(𝑆∗

1 )
2

𝑆
+ (𝜎1𝑆 + 𝜎2𝑌 )𝑋 + (𝜌 + 𝛿1)

(𝑋∗
1 )

2

𝑋
+ 𝜌𝑋

+ (𝜎2𝑋 + 𝛿1)
(𝑌 ∗

1 )
2

𝑌
and

𝛤2 = (𝜎1𝑋 + 𝛿1)
(𝑆 − 𝑆∗

1 )
2

𝑆
+ (𝜎1𝑋 + 𝛿1)𝑆∗

1 + 𝜂
𝑆∗
1
𝑆

+ (𝜌 + 𝛿1)
(𝑋 −𝑋∗

1 )
2

𝑋
+ (𝜌 + 𝛿1)𝑋∗

1 + (𝜎1𝑆 + 𝜎2𝑌 )
𝑋∗

1
𝑋

+ 𝜌𝑋

+ (𝜎2𝑋 + 𝛿1)
(𝑌 − 𝑌 ∗

1 )
2

𝑌
+ (𝜎2𝑋 + 𝛿1)𝑌 ∗

1 + 𝜌𝑋
𝑌 ∗
1
𝑌

.

Since all the models parameters are non-negative, thus we have 𝐴𝐵𝐶
0 𝐷𝛼

𝑡 
≤ 0, for 𝛤1 ≤ 𝛤2, and the equality 𝐴𝐵𝐶

0 𝐷𝛼
𝑡 1 = 0, satisfies if and only

if 𝑆 = 𝑆∗
1 , 𝑋 = 𝑋∗

1 , 𝑌 = 𝑌 ∗
1 . The heroin persistence equilibrium point

∗
1 exist, when the basic reproduction number 0 > 1, the resulting

cenario establishes that the sole invariant set 𝐻∗
1 attains the status of

eing the most significant invariant set encompassed within
3 𝐴𝐵𝐶 𝛼
∶= {(𝑆,𝑋, 𝑌 ) ∈ R+ ∶ 0 𝐷𝑡 1 = 0}. (64)
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Thus, in accordance with LaSalle’s invariance principle (Lassalle, 1976),
it is affirmed that 𝐻∗

1 achieves global asymptotic stability within the
et 𝛯. This indicates that individuals afflicted by heroin addiction will
isseminate in the population, ultimately leading to a pandemic. □

. Numerical analysis

This section is devoted for the numerical results and simulations
f heroin epidemic model using a well known approach constructed
y Toufik and Atangana (Mekkaoui and Atangana, 2017). We now
mplement this scheme to each equation of the system (8) to get the
umerical solutions of the proposed system, we obtain the following
esults:

(𝑡) − 𝑆(0) = 1 − 𝛼
(𝛼)

𝛺1 (𝑡, 𝑆(𝑡)) +
𝛼

(𝛼)𝛤 (𝛼) ∫

𝑡

0
𝛺1(𝜁, 𝑆(𝜁 ))(𝑡 − 𝜁 )𝛼−1𝑑𝜁.

(65)

At a given point 𝑡 = 𝑡𝑗+1, 𝑗 = 0, 1, 2…, then the Eq. (65) becomes

𝑆(𝑡𝑗+1) − 𝑆(0) = 1 − 𝛼
(𝛼)

𝛺1
(

𝑡𝑗 , 𝑆(𝑡𝑗 )
)

+ 𝛼
(𝛼)𝛤 (𝛼) ∫

𝑡𝑛+1

𝑡𝑛
𝛺1(𝜁, 𝑆(𝜁 ))(𝑡𝑗+1 − 𝜁 )𝛼−1𝑑𝜁.

The above equation can be written as:

𝑆(𝑡𝑗+1) − 𝑆(0) = 1 − 𝛼
(𝛼)

𝛺1
(

𝑡𝑗 , 𝑆(𝑡𝑗 )
)

+ 𝛼
(𝛼)𝛤 (𝛼)

𝑗
∑

𝑛=0
∫

𝑡𝑛+1

𝑡𝑛
𝛺1(𝜁, 𝑆(𝜁 ))(𝑡𝑗+1 − 𝜁 )𝛼−1𝑑𝜁.

(66)

Applying two-step Lagrange polynomial interpolation on the function
𝛺1(𝜁, 𝑆(𝜁 )) in the interval [𝑡𝑗 , 𝑡𝑗+1]. Therefore, we obtain

𝑆𝑗+1 = 𝑆0 +
1 − 𝛼
(𝛼)

𝛺1
(

𝑡𝑗 , 𝑆𝑗
)

+ 𝛼
(𝛼)𝛤 (𝛼)

𝑗
∑

𝑛=0

𝛺1(𝑡𝑛, 𝑆(𝑡𝑛))
ℎ ∫

𝑡𝑛+1

𝑡𝑛
(𝜁 − 𝑡𝑛−1)(𝑡𝑗+1 − 𝜁 )𝛼−1𝑑𝜁

−
𝛺1(𝑡𝑛−1, 𝑆(𝑡𝑛−1))

ℎ ∫

𝑡𝑛+1

𝑡𝑛
(𝜁 − 𝑡𝑛)(𝑡𝑗+1 − 𝜁 )𝛼−1𝑑𝜁, (67)

where

𝛱𝑛−1 = ∫

𝑡𝑛+1

𝑡𝑛
(𝜁 − 𝑡𝑛−1)(𝑡𝑗+1 − 𝜁 )𝛼−1𝑑𝜁,

= ℎ𝛼+1

𝛼(𝛼 + 1)

[

(𝑗 + 1 − 𝑛)𝛼 (𝑗 − 𝑛 + 2 + 𝛼) − (𝑗 − 𝑛)𝛼 (𝑗 − 𝑛 + 2 + 2𝛼)

]

and

𝛱𝑛 = ∫

𝑡𝑛+1

𝑡𝑛
(𝜁 − 𝑡𝑛)(𝑡𝑗+1 − 𝜁 )𝛼−1𝑑𝜁,

= ℎ𝛼+1

𝛼(𝛼 + 1)

[

(𝑗 + 1 − 𝑛)𝛼+1 − (𝑗 − 𝑛)𝛼 (𝑗 − 𝑛 + 1 + 𝛼)

]

.

The above integrals substituted into the Eq. (67), then we have the
solution 𝑆(𝑡) as follows:

𝑆𝑗+1 = 𝑆0 +
1 − 𝛼
(𝛼)

𝛺1
(

𝑡𝑗 , 𝑆𝑗
)

+ 𝛼
(𝛼)𝛤 (𝛼)

𝑗
∑

𝑛=0

[

ℎ𝛼𝛺1(𝑡𝑛, 𝑆𝑛)
𝛤 (𝛼 + 2)

((𝑗 + 1 − 𝑛)𝛼 (𝑗 − 𝑛 + 2 + 𝛼)

− (𝑗 − 𝑛)𝛼 (𝑗 − 𝑛 + 2 + 2𝛼))

−
ℎ𝛼𝛺1(𝑡𝑛−1, 𝑆𝑛−1)

𝛤 (𝛼 + 2)
(

(𝑗 + 1 − 𝑛)𝛼+1 − (𝑗 − 𝑛)𝛼 (𝑗 − 𝑛 + 1 + 𝛼)
)

]

. (68)

Similarly, for the other state variables, we evaluate the following
schemes:

𝑋𝑗+1 = 𝑋0 +
1 − 𝛼 𝛺2

(

𝑡𝑗 , 𝑋𝑗
)

(𝛼)

7 
+ 𝛼
(𝛼)𝛤 (𝛼)

𝑗
∑

𝑛=0

[

ℎ𝛼𝛺2(𝑡𝑛, 𝑋𝑛)
𝛤 (𝛼 + 2)

((𝑗 + 1 − 𝑛)𝛼 (𝑗 − 𝑛 + 2 + 𝛼)

− (𝑗 − 𝑛)𝛼 (𝑗 − 𝑛 + 2 + 2𝛼))

−
ℎ𝛼𝛺2(𝑡𝑛−1, 𝑋𝑛−1)

𝛤 (𝛼 + 2)
(

(𝑗 + 1 − 𝑛)𝛼+1 − (𝑗 − 𝑛)𝛼 (𝑗 − 𝑛 + 1 + 𝛼)
)

]

, (69)

𝑌𝑗+1 = 𝑌0 +
1 − 𝛼
(𝛼)

𝛺3
(

𝑡𝑗 , 𝑌𝑗
)

+ 𝛼
(𝛼)𝛤 (𝛼)

𝑗
∑

𝑛=0

[

ℎ𝛼𝛺3(𝑡𝑛, 𝑌𝑛)
𝛤 (𝛼 + 2)

((𝑗 + 1 − 𝑛)𝛼 (𝑗 − 𝑛 + 2 + 𝛼)

− (𝑗 − 𝑛)𝛼 (𝑗 − 𝑛 + 2 + 2𝛼))

−
ℎ𝛼𝛺3(𝑡𝑛−1, 𝑌𝑛−1)

𝛤 (𝛼 + 2)
(

(𝑗 + 1 − 𝑛)𝛼+1 − (𝑗 − 𝑛)𝛼 (𝑗 − 𝑛 + 1 + 𝛼)
)

]

. (70)

e conduct mathematical simulations across various fractional values
f the parameter 𝛼 illustrating the dynamic spread of the heroin model
ithin the human population over time. Our observations reveal a

eamless match between the results from our suggested method and
he inherent dynamics of the heroin model, confirming the reliability
f the approach. Additionally, we explore the impact of the infection
robability rate and the chance of non-drug addicts transitioning to
rug addiction among humans. Finally, we present an analysis of the
eproduction number’s sensitivity to the involved factors.

.1. Sensitivity analysis

Making decisions about effectively managing a disease necessitates
areful consideration of the sensitivity analysis concept. The sensitivity
nalysis enables us to examine how variables fluctuate when the pa-
ameters in 0 are altered. It highlights the model’s most sensitive and
mpactful parameters and their effects on 0 (Butt et al., 2023a,b).

efinition 3. (Butt et al., 2023b) The normalized forward sensitivity
ndex (𝛶𝜍) of the basic reproduction number 0 that depends on a
arameter 𝜍 is provided below as:

𝜍 =
𝜍
0

𝜕0
𝜕𝜍

. (71)

To examine the sensitivity of 0, we compute its derivatives as
follows:
𝜕0
𝜕𝛿1

= −
𝜎1𝜂(𝜌 + 2𝛿1)
[𝛿1(𝜌 + 𝛿1)]2

,

𝜕0
𝜕𝜂

=
𝜎1

𝛿1(𝜌 + 𝛿1)
,

𝜕0
𝜕𝜌

= −
𝜎1𝜂

𝛿1(𝜌 + 𝛿1)2
,

𝜕0
𝜕𝜎1

=
𝜂

𝛿1(𝜌 + 𝛿1)
.

he normalized sensitivity indices of the involved parameters are ob-
ained as:

𝛿1 =
𝛿1
0

𝜕0
𝜕𝛿1

= −
2𝛿1

𝜌 + 𝛿1
, 𝛶𝜂 =

𝜂
0

𝜕0
𝜂

= 1,

𝛶𝜌 =
𝜌
0

𝜕0
𝜌

= −
𝜌

𝜌 + 𝛿1
, 𝛶𝜎1 =

𝜎1
0

𝜕0
𝜕𝜎1

= 1.

Table 2 and Fig. 3 depict the favorable influence of 𝜂 and 𝜎1
on the threshold parameter 0. This indicates that higher values of
these parameters result in an increase in 0. The sensitivity indices
obtained clearly show 10% rise in the new drug users, and infection rate
occurs to raise the value of 0 by 10%, 10%, correspondingly, and can
ultimately leading to a disease outbreak. Across the other perspective,
0 is negatively impacted by 𝛿1 and 𝜌 as shown by Fig. 4 (see Table 3).

5.2. Numerical results and discussion

This subsection examines the effect of the fractional parameter 𝛼 on

the heroin epidemic disease in the model. A graphical outcome of the
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Fig. 2. Dynamics of the populations of heroin model at heroin persistence state at different values of 𝛼.
Fig. 3. PRCC statistics regarding the significance of factors associated with 0.
Table 2
Sensitivity indices of 0 against the parame-
ters.

Sensitivity index Value

𝛶𝛿1 −1.3333
𝛶𝜂 +1.0000
𝛶𝜌 −0.3333
𝛶𝜎1 +1.0000

Table 3
Initial conditions and parameter values of the heroin model.

Initial condition Value Source

𝑆(0) 0.50 Raza et al. (2022a)
𝑋(0) 0.30 Raza et al. (2022a)
𝑌 (0) 0.20 Raza et al. (2022a)

Parameter Value Source

𝜂 0.04 Raza et al. (2022a)
𝜎1 0.02 for 𝐻0 (0.20 for 𝐻1) Raza et al. (2022a)
𝜎2 0.03 Raza et al. (2022a)
𝛿1 0.04 Raza et al. (2022a)
𝜌 0.02 Raza et al. (2022a)

model application (8) that depicts the impacts of fractional order on the
population in every section. We have illustrated the heroin dynamics
8 
of a model for 𝛼 = 0.80, 0.84, 0.88, 0.92, 0.96 and 1, respectively. For
the heroin-free equilibrium, an elevation in the value of 𝛼 from 0.80
corresponds to boost in the count of susceptible cases. However, the
populations of drug users and non-drug users decline undeviatingly by
increasing the value of 𝛼 from 0.8. In contrast, the susceptible decreases
with the rise of fractional parameters in heroin persistence point and
the behavior of drug users and non-drug users is observed oppositely,
as illustrated by Fig. 2. At the end, when contemplating the case where
𝛼 = 1, we arrived at the results of Raza et al. (2022a), where a
different numerical approach was used. The behavior of the individuals
is illustrated in Fig. 5 at different values of 𝜎1 by fixing the value of the
fractional parameter. These results show a distinct trend, the proportion
of susceptible people declines as the infection probability rate rises. The
reason for this is that a greater number of people who were previously
susceptible to infection are now either recovering or current drug users
due to the increased likelihood of infection. On the other hand, as the
probability of infection increases, so does the population of drug users.
As there is a direct association between the probability of infection and
the number of new drug users, this increase happens because a greater
infection rate makes more susceptible people more likely to start using
drugs. On the other side, the findings indicate a rise in non-drug users,
which may be people who have abstained from drug use in the past but
have recovered or those who have rejected using drugs despite the risk
of infection. The fact that this group is expanding suggests that, despite
greater dangers, some members of the population at risk can recover or
avoid infection.
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Fig. 4. The behaviors of 0 under different biological parameters.
:

The behavior of the individuals is illustrated in Fig. 6 at different
values of 𝜎2 by fixing the value of the fractional parameter. According
to the analysis, fewer people are susceptible to heroin use when the
chance rate, that is, the rate at which people are exposed to or attracted
by the drug—increases. This occurs because there is a greater probabil-
ity that those at risk will become drug users when the chance rate is
higher. With a rise in the chance rate, there is a consistent rise in the
population of drug users. This pattern shows that increasing exposure
or temptation rates leads to more people shifting from being vulnerable
to actually using heroin. As the chance rate rises, the proportion of non-
drug users falls. This group comprises people who have either never
used heroin or who have overcome their addiction. This group may
decline as a result of a higher chance rate, making it more difficult for
people to prevent or rehabilitate from habit.

After examining, it can be stated that the mechanisms of heroin ad-
diction are shaped by both the infection probability rate and the chance
rate. A multimodal strategy that incorporates lowering risk factors,
improving recovery guides, and putting in place powerful educational
activities is necessary for successful management and safeguarding
against heroin addiction. Public health measures can more successfully
stop the rapid growth of heroin addiction and assist those who are
impacted in a successful recovery by considering these factors.

6. Conclusion

In this manuscript, we have developed a novel fractional epidemic
model of heroin population consequences by applying the Atangana–
Baleanu fractional derivative. The fundamental reproduction number
has been determined to investigate the dynamical behavior of the
fractional model. The effects of heroin can be controlled by using
a reproduction number. The primary properties such as positiveness,
boundedness, existence, and uniqueness of the solution have been
9 
validated. It has been concluded that the equilibrium states are locally
and globally asymptotically stable. In the end, we have applied a
computational approach that assesses the dynamics of the proposed sys-
tem. The results of the numerical technique show that the susceptible
people increase with the increase in fractional order, and the other two
subpopulations show opposite behavior.
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