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This paper presents two approximate methods such as Quadratic and Cubic approximations for the
Riemann-Liouville fractional integral and Caputo fractional derivatives. The approximations error esti-
mates are also obtained. Numerical simulations for these approximation schemes are performed with
the test examples from literature and obtained numerical results are also compared. To establish the
application of the presented schemes, the problem of Abel’s inversion is considered. Numerical inversion
of Abel’s equation is obtained using Quadratic and Cubic approximations of the Caputo derivative. Test
examples from literature are considered to validate the effectiveness of the presented schemes. It is
observed that the Quadratic and Cubic approximations schemes produce the convergence of orders h?
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1. Introduction

Fractional derivatives have gained much attention in recent
years and this could be due to its non-local nature compare to
the traditional integer order derivatives. Fractional derivatives
have played a significant role in analysing the behaviour of the
physical phenomena through different domains of the science
and engineering. Some of the pioneer contributions in these areas
may be considered as biology (Robinson, 1981), viscoelasticity
(Bagley and Torvik, 1983a,b), bioengineering (Magin, 2004), and
many more can be found in Podlubny (1999) and Kilbas et al.
(2006). Some of recent applications of the fractional derivatives
in the emerging areas could be also noted as mathematical biology
(Tripathi, 2011a; Tripathi and Anwar Bég, 2015a; Tripathi et al.,
2015b; Bég et al.,, 2015) and heat and fluid flow (Arqub, 2017a).

Numerical integration is a basic tool for obtaining the
approximate value of the definite integrals where the analytical
integrations are difficult to evaluate. Numerical integrations for
the fractional integrals also become important in developing the
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algorithms for solving applied problems defined using fractional
derivatives. In recent years, numerical integrations of the fractional
integrals and the fractional derivatives have attracted many
researchers. The Adams-Bashforth-Moulton method for the frac-
tional differential equations is discussed in Diethelm et al. (2002,
2004). Kumar and Agrawal (2006) presented quadratic approxima-
tion scheme for fractional differential equations. In Odibat (2006),
Odibat presented a modified algorithm for approximation of frac-
tional integral and Caputo derivatives and also obtained its error
estimate. In Agrawal (2008) and Agrawal et al. (2012), Agrawal dis-
cussed the finite element approximation and fractional power ser-
ies solution for the fractional variational problems. Pandey and
Agrawal (2015) discussed a comparative study of different numer-
ical methods such as linear, quadratic and quadratic-linear
schemes for solving fractional variational problems defined in
terms of the generalized derivatives. Recently, in Kumar et al.
(2017), authors present three schemes for solving fractional
integro-differential equations. Reproducing kernel algorithm are
discussed for some time fractional partial differential equations
in Arqub (2017b) and Arqub et al. (2015). Some more approxima-
tion schemes for solving fractional PDEs are elaborated in detail in
Li and Zeng (2015).

In Odibat (2006), Odibat presented a scheme for approximating
the Riemann-Liouville fractional integral and then obtained
approximations for the Caputo derivatives. In this paper, we focus
on the higher order approximations such as quadratic and cubic
schemes to approximate the Riemann-Liouville fractional integral
and Caputo derivatives. The numerical approximations are based
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on the idea of dividing the whole interval into a set of small subin-
tervals and between these two successive subintervals the
unknown functions are approximated in terms of the quadratic
and cubic polynomials. Thus, the numerical scheme presented for
the approximation of the Riemann-Liouville fractional integral
and Caputo derivatives are named as quadratic and cubic schemes.
The error estimates for these approximations are also presented
where we observe that the quadratic and cubic approximations
achieve high convergence order. To validate these schemes, test
examples are considered from the literature (Odibat, 2006). We
also show that the obtained results using the proposed schemes
preserve the results obtained by Odibat (2006). Further, the pre-
sented schemes are applied to solve the Abel’s integral equations.
The numerical approach for solving Abel’s integral equations are
recently studied by Jahanshahi et al. (2015), using the approxima-
tion scheme presented in Odibat (2006). Avazzadeh et al. (2011)
used fractional calculus approach together with Chebyshev poly-
nomials to solve Abel’s integral equations. Saadatmandi and
Dehghan (2008) applied collocation method to solve Abel’s integral
equations of first and second kind using shifted Legendre’s polyno-
mials. Li and Zhao (2013) studied the Abel’s type integral equation
using the Mikusinski’s operator of fractional order. Badr (2012)
presented the solution of Abel’s integral using Jacobi polynomials.
Further, Saleh et al. (2014) studied solution of generalized Abel’s
integral equation using Chebyshev Polynomials. The numerical
results presented in Jahanshahi et al. (201), are considered here
to validate and compare the results obtained by the presented
schemes. Numerical simulations validate the presented schemes
and show the advantage over existing method (Jahanshahi et al.,
2015).

2. Definitions

The Riemann-Liouville fractional integral of order o > 0 is
defined as,

(F)(6) :ﬁ | e-o s (1)
0 =f(t) )

And the fractional derivative known as Riemann-Liouville frac-
tional derivative of order o > 0 is defined as,

00 = g ) [, €0 fodn n-1<a

<n, (3)

where n is an integer. Another definition of fractional derivative
introduced by Caputo, is defined as,

(D*f)(t) :ﬁ /0[ (t—17)"* ' f™(r)dr, for, m—1<o<m
(4)

where, m is an integer. For more details, we refer the readers to
Podlubny (1999) and Kilbas et al. (2006).

3. Numerical schemes

Here, two numerical schemes such as Quadratic and Cubic
schemes are discussed. First, we divide the domain into several
sub domains and then approximate the unknown function into
each sub domain. Further, the approximations are obtained using
Quadratic and Cubic polynomial approximations of the unknown
function into each sub domains.

Here, we follow the simpler notations to the fractional integral
and fractional derivatives and denote Riemann-Lowville fractional
integral (Eq. (1)) and Caputo fractional derivative (Eq. (4)) as I-
operator and D-operator respectively in the upcoming derivations
of the numerical schemes. From Eq. (1) and (4), the approximation
of the I-operator and D-operator can be expressed as,

rf)e) = ﬁ /0 (¢ =) 'f(r)dt ~ I(f, h, o), (5)
o 1 t m—o—1g(m)

(D*f)(t) = Tm—o) /0 (t—1) "% (t)dt ~ D(f,h, o) (6)

(*f)(€) = I(f, h, ) + Ei(f, h, 00), (7

(D’f)(t) = D(f  h, o) + Ep(f, h, o). 8)

where, I(f,h,a) and D(f,h,a) denote the approximation of the I-
operator and D-operator respectively, and E(f, h, &), Ep(f, h, o) rep-
resent the error terms of their approximations. Now we present
the Quadratic and Cubic approximation schemes of the I-operator
and D-operator respectively as follows:

3.1. Quadratic scheme (S1)

In this subsection, the domain interval [0, t] is distributed into
even number of subintervals, N = 2n for n > 1, equal parts with
uniform step size (or time interval) h, where h = - such that the
node points are t; =ih,i=0,1,2...2n.

t _ o—1
rfe - [ %ﬂr)dr ~ 1Q(f,h, ), 9)

Drf(t) ~ DQ(f, h, o), (10)

where, IQ(f, h, o), DQ(f, h, ) represent the quadratic approximation
of the I and D-operators respectively and Ey (f, h, &), Epq (f, h, o) rep-
resent the error terms of the quadratic approximation such that,

Ex(f,h, o) = f(£) — 1Q(f, h, ). (11)
Eno(f, h, o) = (D*f)(t) — DQ(f, h, ). (12)

The function f(t) is approximated over the interval
[t2i, tair2]using  the following formula (Pandey and Agrawal,
2015):

fo = —(t ;hfzm) {1 (z *ffzm)}fz"

T— 1t 2 T— 1ty T— 1t
17< h2+1> }fZMJr( 2hz+1){1+( hZH)]fz"*z'

(13)

+

In this case, results are presented as following lemmas.

Lemma 1. Suppose that f € C3[0, ], and the interval [0, ] is divided
into even number of sub intervals [ty;, tyi o] such that t; = ih with
h=2,i=0,12,...2n. Let f;, is the quadratic polynomial approxi-
mation for f to the subintervals [ty tyi2] then the quadratic
approximation IQ(f, h, &) of the I-operator is given by,

()

1
1Q(f, h,0) = Z(Amf(fzi) + Binf (tais1) + Cinf (tais2)), (14)

i=0

where
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S
A,—n:m{( —i- )™ (2 — o+ 4i - 4n)

+(n - i)“<2 + 02 + 4 +i(6 - 8n)

+30(1+1i—n)—6n+4n?)}, (15)
B.-n:%( —i—1)*V(e—2i+2n)

+—)* Q2 o+ 20— 2n)}, (16)
C,»,;-Lha{(n—z) @ 4 o+ 4i— 4n)

T(0+3)
+(n—i-1)“(a2+2i-3ai+4i2—2n+3an—8in+4n2)},
(17)

(ii) and the approximation error Eiq(f, h, o) has the form,

|Exg (f, h. o0)| < Caf 2 (tan)*H® (18)

where C, is a constant depending on o.

Proof. From the definition of I-operator, we have,

Pf(ta) = ﬁ R (19)

We approximate f(t) over the interval [ty;, t5;,>] using the quad-
ratic polynomials (Pandey and Agrawal, 2015) as,

g g [ el o (S
L@ —2;12141) [1 (T _£2i+1)}fzi+2- (20)

Evaluating Eq. (19) using Eq. (20), the desired approximation of
1Q(f,h, o) as given in part (i) of the Lemma 1 is obtained.

For proof of the part (ii) of the Lemma 1, we use the following
well known result of the interpolation by polynomials. [

Theorem 1. Let g,(t) be the polynomial interpolating a function
geC"a,b] at the nodes to,ty,ts,t5... t, lying in the interval
[a,b). Then for, g € C*"'[a,b], there exists a & € (a,b) such that,
En(t) = () — g (1) =SS0 T o (t — ta).

From Eq. (19) and (20) we have,

|E1Q(fv h7 OC)‘ = |Ixf(t) - IQ(fv h7 O€)|7 = |Iaf(t2n)

e B (UL

roc‘/ (tn — 0 (D)t (21)
fZ / " (tan — O (0l

t21+2
/ (tan — 0" (1) — f (0)dt],
S]]
Using Theorem 1, and Eq. (21) we have,
i
” (t2n — — 65i)(T — £2i41) (T — t2iy2)dT],
toi

(22)

iz

(tan — )" dt| = Cuf 2 (t2n) "I,
gﬁ f\Z/% ) = Cf” (tan)

where C, is constant depending on o. The proof is completed.

Lemma 2. Suppose that f e C™3[0,5], and the interval [0,8] is
divided into even number of sub intervals [ty;, t2i.2] such that t; = ih
with h =21 =0,12,...2n. Let [ty;, t2i»] is the quadratic polynomial

approximation for f™ to the subintervals [ty;, t,.,] then the quadratic
approximation DQ (f, h, o) of the D-operator is given by,

(1)

n-1
DQ(f, o) = (Aif ™ (t2) + Binf ™ (t2i:1) + Cinf ™ (£212))

i=0

(23)
where,
2(m—ac)h(m—o¢) ) P )
Ain—m[(n*l*‘l) (27m+06+4174n)
+(n— i)™ { (2 +(m — a)® + 4% +i(6 — 8n)

+3(m—o)(1+i-n)—6n+4n?)}], (24)

2(m—u+2)h(m—o¢)

Bin :m[( —i—1)™ ) (m — o — 2i +2n)

+ =)™ Qe m— 4 20— 2n)] , (25)
and,

Cin = —%[(n—z)(m V(2 4 m— o+ 4i — 4n)
+(n—i- 1)<’"*“>{(m —o)? +2i - 3(m — )i + 4
—2n+3(m — o)n — 8in + 4n*}]. (26)

(ii) And the approximation error Epq(f, h, «) has the form,

[Ena(f.h, )] < CIIF™ |t 1’ (27)

where C,, is a constant depending only o.

Proof. The proof of the part (i) and part (ii) of the lemma can be
carried out following the similar steps and replacing o to m — o

and f(t) by f™ (1) as described in the proof of the Lemma 1. O
3.2. Cubic scheme (S2)

Lemma 3. Suppose that f € C*[0, 5, and the interval [0, 5] is divided
into sub intervals  [ts;, t3i3] such  that t;=ih  with
h=4L,i=0,12,...3n. Let f;3 is the cubic polynomial approximation
for f to the submtervals [t3i, t3i,3] then the cubic approximation
IC(f,h, o) of the I-operator is given by,

(1)

n—1
IC(f.h,00) => " (Dinf (t31) + Einf (t3i1) + Finf (t3i:2) + Ginf (£3113)).
i=0

(28)
where,
30£hOC . (14a) (2 .
Di 7m{2(n47 1™ (a2 + o(—4 — 9i + 9n)
+3(1 +3i - 3n)(2 + 3i — 3n))

+(n —i)* (202 + «*(12 + 11i — 11n)
+oc<22 +36(i —n)® +55(i — n))
+6(1 +3i —3n)(2 +3i - 3n)(1 +i—m))}, (29)
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<x+2h0< ) ]
Ein = mp(n — i) (02 + 501 +i—n)
+3(2+3i-3n)(1+i-n))
—(n—i-1)""(a? + (-3 - 8i + 8n)
+6(2+3i—3n)(i—n))}, (30)
*2h? NN .
Fm:m{Z(n—l—l)(‘ (o +50(n—1)
+3(143i=3m)@i-n))— (n—i)" (o? + (5 +8i— 8n)
+6(1+3i—3n)(1+i—n))}, (31)
3%h* » ,
Gn = 3o 4) {2(n — )™ (02 4 (5 + 9i — 9n)
+3(1 +3i— 3n)(2 + 3i — 3n))

—(n—i-1)%202+a*(1-11i+ 11n)
+0(3 +36(i —n)*> +17(i — n))
~6(1+3i—3n)(2+3i—3n)(i—n))}, (32)

(ii) and the approximation error Eic(f, h, o) has the form,

[Eic(f,h, )| < Daf . (t3n)"h* (33)

where D, is a constant depending on o.

Proof. From Eq. (1), we have,

n=1 - ety3
Pt =Y [ -0 S0 (34)
i=0 i

We approximate f(7) over the interval [t3;, t3;,3]using the cubic
polynomials as,

iz {_ (T—t5i)(1 ; I?fﬂ)(f - t3"*3)}f3,-
[t e ol
[t ety
. [( T ty)(T— ;;i;l)(r - t3i+2)} Fairs, (35)

Evaluating Eq. (34) using Eq. (35), the desired approximation of
IC(f,h, ) as given in part (i) of the Lemma 1 is obtained. Proof of
the second part of Lemma 3 is established here using Lemma 1.

From Eq. (34) and Eq. (35), we have,

Exc(f,h, )] = [ (6) — IC(f, h, ),
oL 1 [3" 7
I f@)—m/() (tn — 1) f(D)d,

1, [ = i3
T \/ (En—7)" 'f(D)dT - ZL (tsn—1)" ' fi3(T)dul,
1 ﬂ Ll VL
1wl / (0~ 7 (F(2) ~ fa())de],
(36)
Using Lemma 1 and Eq. (36), we have,
fates =
*241" Z/rg, (t3n —T)7 (T — t3i)(T — t3i01)(T
- f3i+2)(T — t31:2)d7],
t3i
<t f””z 7 o =D (37)

where D, is constant depending on oL
This completes the proof. O

Lemma 4. Suppose that f e C™*0,5], and the interval [0,8] is
divided into sub intervals |[ts;,tsi3] such that t;=ih with

h=32,i=0,12,...3n. Let f;5 is the cubic polynomial approximation

forf(’" (7) to the subintervals [t;, t3i,3] then the cubic approximation
DC(f,h,a) of the D-operator is given by,

(1)
n-1
DC(f, h,o0) = (Dinf(m)(t3i) +Enf ™ (t3101) + Finf ™ (t3112)
pary
+Ginf ™ (E3113) ) (38)
where,
3(m—1)h(m—o¢) .
Dm=m{2(” i—1)mey ((m*fl)2
(M — o)(—4 — 9+ 9n) + 3(1 + 3i — 3n)(2 + 3i — 3n))
+(n— i)™ (Z(m )+ (m—w)?(12+11i - 11n)

+(m — o) (22 +36(i —n)? +55(i — n))

+6(1+3i—3n)(2+3i—3n)(1+i-n))},
(39)
(m—a+2)h(m4 |
En= 23F(m “a 4)) {2 ((m -0

+5(m —a)(1+1i—n)+3(2+3i—3n)(1+i—n))
(n—i- 1)(m’““)<(m — o) + (m — o) (=3 — 8i + 8n)

+6(2 + 3i — 3n)(i—n))}, (40)
(m—o+2) p (M=o
Fin = —23F(m —Zc+ 4)) {Z(n —i—1)my ((m —a)?
+5(m —a)(n —i) 4+ 3(1 +3i — 3n)(i—n))
—(n— i)™V ((m - a)* + (m — o) (5 + 8i — 8n)
+6(1 +3i—3n)(1+i—n))}, (41)
(m—zx)h(m—o( _——
Gin ZM{Z(H_U( 1)((m_a)2

+(m —a)(5 + 9i — 9n) + 3(1 + 3i — 3n)(2 + 3i — 3n))

—n—i—1)"™"2m-a)’+m-a)?1-11i+11n)
+(m —a)(3 +36(i —n)* + 17(i — n))
—6(1+3i-3n)(2+3i-3n)(i-n))}, (42)
(ii) and the approximation error Epc(f, h, o) takes the form,
[Epc(f, h, )| < D, |[f ™ ]| e’ (43)

where D), is a constant depending only o.

Proof. The proof of the part (i) and part (ii) of above lemma can be
carried out using the similar steps and replacing o to m — o¢ and

f(t) by f™ (1) as described in the proof of the Lemma 3. O

4. Results and discussions

Here, we consider the test example as illustrated by Odibat
(2006), with f(t) = sin T in the I-operator for the comparison pur-
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Table 1
Numerical results obtained using scheme S1 for I-operator, If(t) (1) for f(t) = sint ando = 0.5.
n h 1Q(f,h,0.5) Eio(f,h,0.5) Er(f,h,0.5)
(Odibat, 2006)
10 0.05 0.6696838267942012 432783 x 1077 1.30405 x 1074
20 0.025 0.6696842212539105 3.83238 x 108 3.32769 x 103
40 0.0125 0.6696842561832945 3.39437 x 10-° 8.4373 x 10-°
80 0.00625 0.6696842592769013 3.00762 x 10-1° 21301 x 10-6
Table 2
Numerical results obtained using scheme S1 for I-operator, I*f(t) (1) for f(t) = sint and o = 1.
n h 1Q(f.h. 1) En(f,h.1) Ep(f,h,1)
(Odibat, 2006)
10 0.05 0.4596977100983376 1.59665 x 10~8 9.57743 x 10-5
20 0.025 0.4596976951295424 9.97682 x 107 1° 2.39428 x 107°
40 0.0125 0.4596976941942119 6.23516 x 10~ 1! 5.9856 x 10°°
80 0.00625 0.4596976941357571 3.89683 x 10712 1.4964 x 10~
Table 3
Numerical results obtained using scheme S1 for of the I-operator, I*f(t) (1) for f(t) = sint and & = 1.5 .
n h IQ(f,h,15) Eio(f,h,1.5) Ey(f,h,1.5)
(Odibat, 2006)
10 0.05 0.2823225014367666 1.21065 x 10~7 5.89010 x 10~°
20 0.025 0.2823223880461549 7.67480 x 107° 147111 x 1072
40 0.0125 0.2823223808560551 4.84695 x 10710 3.6767 x 107
80 0.00625 0.2823223804019575 3.05977 x 10~11 9191 x 107
Table 4 the I-operator is calculated for different values of the step size and

Convergence order using scheme S1 for I*f(t) (1) for f(t) = sint and & = 0.5.

h=g MAE (S1) Convergence order
10 4.89232 x 10°°
% 432783 x 1077 3.49733
2 3.83238 x 108 3.49733
% 3.39437 x 1079 3.49702
T80 3.00762 x 10~ 3.49645
Table 5

Convergence order using scheme S1 forl*f(t) (1

) for f(t) =sintand o =1.

h=g MAE (S1) Convergence order
10 2.55692 x 10”7
% 1.59665 x 1078 400129
41—0 9.97682 x 1010 400032
% 6.23516 x 101! 4.00008
T80 3.89683 x 10~ 12 4.00005
Table 6

Convergence order using scheme S1 for I*f(t)

(1) for f(t) =sintand x =1.5.

h=4 MAE (S1) Convergence order
10 1.90186 x 10°°

% 1.21065 x 107 3.97356

B 7.67480 x 10°° 3.97951

% 4.84695 x 1010 3.98498

0 3.05977 x 101! 3.98558

o
=

pose. Lemmas 1 and 2 and Lemma 3 and 4 are applied for the
approximation of the I and D-operators for different values of the
fractional order o, and numerical results are obtained. The numeri-
cal results using Quadratic and Cubic approximation schemes for

fractional order o, and are placed in the Tables 1-3. For the compar-
ison purpose, the similar values of the parameters such as fractional
order o and step size are chosen as presented in Odibat (2006). It is
clear from the Tables 1-3, that the scheme S1 works well and
achieves the better accuracy compare to the linear scheme pre-
sented in Odibat (2006). From, Tables 1-3, it can be seen that the
errors are getting reduced as we increase the number of subinter-
vals. The convergence order of the scheme S1 for the results dis-
cussed in Tables 1-3 are presented in Tables 4-6 respectively.
From Tables 4-6, it can be seen that the scheme S1 achieves the con-
vergence order more than 3. Further, we observe that the scheme S2
works well and achieves the better accuracy compared to the
scheme (Odibat, 2006), and the scheme S1. The results of scheme
S2 are presented in Tables 7-9. Table 10 represents the convergence
order of the scheme S2 for a particular case considered in Table 8.

Schemes S1 and S2 are also applied to approximate the Caputo
derivative (D-operator). We consider the test function f(t) = sint,
the fractional order o« = 0.5 and vary the step size to generate the
numerical results. Numerical results using schemes S1 and S2 for
approximations of D-operators are showed in Tables 11and 12
respectively. In the tables, MAE denotes the maximum absolute
error and the convergence order is calculated as: Convergence
order = Ig[MAE(h)/MAE(h/2)]/1g(2).

Itis noticed that exact value of the fractional integral I” sin t is cal-
culated using the formula stated in Odibat (2006), as,

Psint = "y ¢ H;S t >0, and value at t = 1, is used to compute

the error.

5. Application: Solving Abel’s integral equation

To establish the application of the Quadratic and Cubic schemes
for the D-operator as discussed in Section 4, we go through Abel
integral equation of the first kind,
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Table 7
The approximation results of the I-operator, I*f(t) (1) for f(t) = sint and o = 0.5.
n h IC(f,h,0.5) Eic(f,h,0.5) Ei(f,h,0.5)
(Odibat, 2006)
10 1/30 0.6696842705520611 1.09744 x 1078 1.30405 x 104
20 1/60 0.6696842602530784 6.75415 x 1010 3.32769 x 10~
40 1/120 0.6696842596262024 4.85388 x 1011 84373 x 10°°
80 1/240 0.6696842596896193 111956 x 10~ 10 21301 x 106
Table 8
The approximation results of the I-operator, I*f(t) (1) for f(t) = sint and o = 1.
n h IC(f,h,1) Eic(f,h,1) Ep(f,h,1)
(Odibat, 2006)
10 1/30 0.4596977012278377 7.09598 x 10~° 957743 x 107>
20 1/60 0.4596976945752709 4.43411 x 10710 239428 x 10~
40 1/120 0.4596976941318603 6.23516 x 10~11 5.9856 x 10°°
80 1/240 0.4 3.89683 x 10712 1.4964 x 107°
Table 9
The approximation results of the I-operator, I’f(t) (1) for f(t) = sint and o = 1.5.
n h IC(f,h,1.5) Eic(f,h,1.5) En(f,h,1.5)
(0dibat, 2006)
10 1/30 0.2823223847105428 433918 x 10°° 5.89010 x 10°°
20 1/60 0.2823223806431222 271762 x 10710 147111 x 1073
40 1/120 0.282322380395719 243592 x 101! 3.6767 x 10°©
80 1/240 0.2823223804266486 552888 x 101! 9.191 x 1077
40 .
fy= | —=—=4dr, 0<a<1, 0<t<y, (44)
Table 10 o (t—1)

Convergence order using scheme S2 for If(t) (1) for f(t) = sint and o = 1.

where, f € C'[a, b] is given function satisfying f(0) = 0 and g(7) is

h=4 MAE (52) Convergence order the unknown function. The solution to Eq. (44) can be obtained as,
i 1.13626 x 1077 ; t /
15 sin(at) (7
i 7.09598 x 10°° 400115 8(t) =— T (45)
& 443411 x 10710 4.00029 o (t-1)
™o 277117 x 107" 4.00008 The solution given by Eq. (45) can also be presented in terms of
1 -12 . L.
20 1.73189 x 10 4.00008 the I and D-operators, using definition (Eq. (1)) as follows,
f6) =T -l "g(t) (46)
Table 11
Numerical results obtained using scheme S1 for the D-operator, D*f(t) (1) for f(t) = sint and o = 0.5.
k h DQ(f,h,0.5) Epq(f,h,0.5) Epi(f,h,0.5)
(Odibat, 2006)
10 0.05 0.846057377964953 591241 x 10~/ 1.706097 x 10~%
20 0.025 0.84605684138235 546582 x 108 430544 x 1075
40 0.0125 0.846056791702752 4.9786 x 10~° 1.08365 x 107>
80 0.00625 0.846056787174921 4.50768 x 10~ 1° 27222 x 10°°
Table 12
the approximation results of the D-operator, D*f(t) (1) for f(t) = sint and o = 0.5.
k h DC(f,h,0.5) Epc(f, h,0.5) Ep.(f,h,0.5)
(Odibat, 2006)
10 1/30 0.846056800339386 1.36152 x 108 1.706097 x 10~%
20 1/60 0.846056787554831 8.30678 x 1010 430544 x 1073
40 1/120 0.846056786769922 457691 x 10~ 1.08365 x 10~°
80 1/240 0.846056786169989 5.54164 x 10~ 1° 27222 x 10°¢
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Using the property D-operator is left inverse of I-operator and
simplifying Eq. (46), it follows that,

g(t) = ﬁD”ﬂr). (47)

Now, we apply Lemma 2 and Lemma 4 to Eq. (47) to get the
approximate solution of the Abel’s integral equation given by Eq.
(44).

Lemma 5. Let 0 <t < and suppose that the interval [0,0] is
subdivided into n sub intervals [ty;, ty;,02], i=1,2,3...n—1 of length
h = £ by using the nodes t; = ih,i = 0,1...2n. Then the approximate
solution g(t) to the solution g(t) of the Abel integral equation given by
Eq. (47) can be expressed using scheme S1 as,

n-1
-Anf t21 +Bmf (t21+1) +Cmf (t2i+2))7 (48)
i=0
where,
A’”_—F(a+3) TA— ){(n i-1) (2 —o+4i—4n)
+ (-2 +o? + 4i +i(6 —8n)+30(1 +i—n)
—6n+4n%)}, (49)
(1+2)h(x (a+1) .
Binim{( l—l) (OC—Zl-‘rzn)
+ =)V Q2+ o +2i-2n)}, (50)
zaha (o+1)
Cin:—m{(n—l) (2+O€+4l 4n)
+(n—1i—1)"(c® + 2i — 30 + 4i> — 2n + 3an — 8in + 4n?)}.
(51)
Moreover, if f € C*[0t], then g(t) = &(t) — w7 E(t) with
[E(6)] < Suf ot (52)

where S, is the constant depending only on o and

o

foo = MaXeepulf (%)

Proof. The solution of the Abel’s integral equation (Eq. (44)) repre-
sented by Eq. (47) in the form of D-operator can be expressed as,

sin(am)(o) 1
g(t) = MO i (53)

The results can be obtained using Lemma 2 to Eq. (53) with
some simple calculation. To validate the proposed approximation,
an illustrative example from Jahanshahi et al. (2015), is considered

and the approximate solution is obtained. O

Lemma 6. Let 0 < t < § and suppose that the interval [0, ] is subdi-
vided into n sub intervals [ts;, tsi13], i=0,1,2,3...3n -1 of length
h =2 by using the nodes t; = ih,i =0,...2n. Then the approximate
solutlon g(t) to the solution g(t) of the Abel integral equation given
by Eq. (47) can be expressed using scheme S2 as,

n-1

(Dinf' (t31) + Einf" (t3121) + Finf (t3132) + Ginf (t3143)),  (54)

1:0

where,

3*h*
2I'(1 —o)I'(or + 4) {2
+9n) +3(143i-3n)(2 +3i—3n)) + (n—i)* (23
22(12 + 11 — 11n) + (22 + 36(i — n)> + 55(i — )
+6(1+3i-3n)2+3i-3n)(1+i-n))}, (55)

Dy = n—i— 1" (02 + a(—4 — 9i

31+2h(x
A0(1 - (o1 4)
+32+3i-3n)(1+i-n)—(n—i-1)""(?
o(—3 — 8i+8n) + 6(2 + 3i — 3n)(i — n))}, (56)

Ein= 2 = )" (62 4+ 50(1 +i—n)

3x+2ho¢
2T (1 — o) (o + 4) {2(n
+3(1+3i-3n)(i—n) — (n—i)"" (o + a5 + 8i
—8n)+6(1+3i—3n)(1+i-n))}, (57)

Fin = —i— 1) + 50(n — i)

oy
ST - a4 2
+3(1+43i-3n)2+3i—3n) — (n—i—1)*Q2
o?(1 = 11i+ 11n) + (3 + 36(i — n)* + 17(i — n))
—6(1+3i-3n)(2+3i-3n)(i—n)} (58)

Gin ) (o + (5 + 9i — 9n)

Moreover, if f € C°[0t], then g(t) = &(t) — E(t) with

1
T(1-a)
E(t)] < S.fOt*h?, (59)
where T, is the constant

fo = maxxe[Ot]lf /(X)\-

depending only on « and

Proof. The proof can be acquired using some simple calculations
to Eq. (47) together with the scheme S2 as discussed in Lemma
4, The results can be obtained using Lemma 4 to Eq. (53) with some
simple calculation. To validate the proposed approximation, an
illustrative example from Jahanshahi et al. (2015), is considered
and numerical results are presented. O

Example 5.1. Consider the Abel’s integral equation (Jahanshahi
et al,, 2015),e' -1 = fo , >dt. The exact solution for this prob-

lem is given by, (t) = \j—;_rerf(\/_), where erf(x) is error function, that

is, erf(t) = % [e "dt.

Example 5.1 is solved using the Lemma 5 and Lemma 6 and the
obtained approximate results are presented in Tables 13-14
respectively. For solving this problem, the number of subintervals
is considered as 10 and 100 and in each case the errors are
obtained. From the Tables 13-14, it is clear that the error obtained
by the proposed scheme is comparatively better even with the less
number of subintervals than the method presented in Jahanshahi
et al. (2015).

Example 5.2. Consider the following Abel integral equation
(Jahanshahi et al., 2015), such that, t = [ (fgl/s dt, having exact

solution, g(t) = 5 228 ¢4/5,

Lemma 5 and Lemma 6 are applied to solve the considered
integral equation and the obtained numerical results are presented
in Tables 15-16 respectively. The numerical results are obtained
using the values of n=5,10 and the results are presented.
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Table 13

Comparison of the exact solution, approximate solution using Lemma 5 and the respective errors for n = 10, 100.

t; Exact solution Approx. sol. n =10 Errorn =10 Error n = 100 Error (Jahanshahi et al., 2015) for
n =100
0.1 0.2152905021493694 0.2152905022928531 1.434 x 1071 1.72 x 10710 3.75 x10°8
0.2 0.3258840763232928 0.3258840781067156 1.783 x 107° 1.99 x 10712 261 x10°8
0.3 0.427565657562311 0.4275656656608028 8.098 x 107? 518 x 10713 2.14 x1077
Table 14

Comparison of the exact solution, approximate solution using Lemma 6 and respective errors for n = 10, 100.

ti Exact solution Approx. sol. n =10 Error n =10 Error n = 100 Error (Jahanshahi et al., 2015) for
n =100
0.1 0.2152905021493694 0.2152905021496013 231787 x 10713 434356 x 10 1° 3.75 x10°8
0.2 0.3258840763232928 0.325884076331575 8.28221 x 1012 6.19821 x 107 1° 261 x10°8
0.3 0.427565657562311 0.4275656576182749 5.5964 x 10! 7.65846 x 1010 214 x10°7
Table 15

Comparison of the exact solution, approximate solution using Lemma 5 and respective errors for n = 5, 10.

t; Exact solution Approx. sol. n =5 Errorn=>5 Error n =10 Error (Jahanshahi et al., 2015) for
n=10
04 0.112363903648632 0.1123639036486326 2.77556 x 10~ 16 258127 x 10 1° 1x10°10
0.5 0.1343243751756705 0.1343243751756709 3.60822 x 1016 3.13638 x 10~ 1° 1x10°10
0.6 0.1554174667790617 0.155417466779062 3.33067 x 1016 3.60822 x 10~ 1® <10
Table 16

Comparison of the exact solution, approximate solution using Lemma 6 and respective errors for n = 5,10.

t Exact solution Approx. sol. n =5 Errorn =5 Error n =10 Error (Jahanshahi et al., 2015) for
n=10

0.4 0.1123639036486324 0.1123639036486273 5.06539 x 10~ 15 2.35562 x 1013 1x10°10

0.5 0.1343243751756705 0.1343243751756645 59952 x 10 1° 2.03615 x 1013 1x10°10

0.6 0.1554174667790617 0.1554174667790548 6.93889 x 10 1° 1.7035 x 1013 <10

Absolute errors for each values of the subinterval n are also
presented. Numerical results show that the presented schemes
works well and produce the approximate solution to high accuracy.

6. Conclusions

We studied two approximation schemes namely Quadratic and
Cubic schemes for Riemann-Liouville and Caputo derivatives. The
error convergences for the presented schemes are obtained. The
presented schemes are successfully validated on test cases. It is
clear that the presented schemes show the advantages over the
scheme discussed in Odibat (2006). Further, the presented schemes
are applied to solve Abel’s integral equation. The numerical results
obtained by the presented schemes are appreciable as compare to
the schemes presented in Jahanshahi et al. (2015). The schemes
presented in the paper could be considered as the higher order
approximation methods for the approximations of the fractional
integrals and fractional derivatives.
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