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A total of 886 valves of the pearl oyster Pinctada were collected from 12 sites in Al-Uqair beach along the
Saudi Arabian Gulf coast in January 2021 in order to document their taphonomic signatures. Thirteen ich-
nospecies of 5 ichnogenera were identified and illustrated. These traces were produced by clionid
sponges (Entobia cretacea, E. ovula, E. geometrica, E. laquea, E. cateniformis, Entobia isp.), durophagous dril-
lers (Oichnus paraboloides, O. ovalis, O. simplex, and Oichnus isp.), traces of vermetid gastropods (Renichnus
isp.) polychaete annelids (Caulostrepsis isp.) and barnacle attachment scars (Anellusichnus circularis). The
Pinctada shells act as hard substrate for colonization by serpulid worm, Spirorbis sp., bryozoans, barnacles,
and other bivalves. Ichnogenus Oichnus was the most abundant (53.73%), followed by Entobia (44.58%),
Anellusichnus (0.51%), Caulostrepsis (0.34%), and Renichnus (0.84%). The thin-shelled and smooth skeletons
of Pinctada were preferable for the abundant durophagous drillers (Oichnus traces) and clionid sponges
(Entobia traces) during the lifetime of the pinctadas, in contrast to endolithic bivalves
(Gastrochaenolites borings) which need thicker seashells for the settlement. Occurrence of different
encrusters and bioeroders on the internal surfaces of many pinctadas confirmed the postmortem origin
of the signatures. Disarticulation, fragmentation, and abrasion among the collected pinctadas might be
attributed to their mode of life as epifaunal byssate, filter-feeder bivalves in the shallow littoral and sub-
littoral zones of the continental shelf under strong currents conditions.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The genus Pinctada is a bivalve that belongs to family Pteriidae,
it is the pearl oyster of the Arabian Gulf and represents an impor-
tant source of pearls before the advent of culture methods in Japan
(Cunha et al., 2011). It is distributed through the Indo-Pacific and
Caribbean regions and successfully spread throughout the
Mediterranean Sea and the Adriatic Sea (Lodeiros et al., 2002;
Aideed et al., 2014). Pinctada is represented in the Indo-Pacific
region by many species (e.g., P. margaritifera, P. radiate, P. nigra,
P. maxima, and P. fucata). Temperature, depth, salinity, substrate
type, silt and mud supply, currents, and pollution are the most
important environmental factors affecting the distribution of pearl
oysters (Gervis and Sims, 1992). Shells of Pinctada in the Indo-
Pacific region range from 50 to 95 mm in length, and are subequiv-
alve, subquadrate, subcircular to squarish in shape. These shells
have long, straight hinge and straight to concave posterior margin.
Muscle scars are more or less regular ellipse with a broad, poorly
demarcated, dorsal tail. Sculpture lamellose with radial rows of
broad, appressed scales, with radial rows of sharp appressed spines
(Crossland, 1957). Ecologically, Pinctada is an epifaunal suspended
feeder, and fouling bivalve. In the subtidal zone, it lives attached by
byssus either to rocks or to the root systems of marine seagrasses.
Pinctada radiata is also attached to the surface of other macroinver-
tebrate species and fixed to artificial substrata. In the Mediter-
ranean Sea, density of individuals varied between 0 and 62.67
individuals/m2. It prefers to be attached to vertical solid substrata
(natural or artificial) within marine habitats with relatively high
hydrodynamic conditions (Tlig-Zouari et al., 2009). P. margaritifera
usually lives under big rocks as well as inhibiting crevices and cor-
ners of the hard bottoms and among the coral habitats away from
aggregations of the sea urchins. It is commonly absent in coasts
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with sandy – muddy bottoms which are devoid of hard rocky for-
mulations (Aideed et al., 2014).

The Arabian Gulf coastline has been subjected to intensive envi-
ronmental studies (e.g. El-Sorogy and Youssef, 2015; Alharbi et al.,
2017a, b, 2019; El-Sorogy et al., 2016, 2018, 2019; Al-Kahtany
et al., 2015, 2018; Al-Hashim et al., 2021, 2022). These studies
evaluated the sources of heavy metals in coastal sediments, seawa-
ters, and marine skeletons. However, published articles concerned
with taphonomic signatures in the Arabian Gulf are very scarce (El-
Gendy et al., 2015; El-Sorogy et al., 2018, 2020). These articles
dealt primarily with bioerosion and encrustation processes on
skeletons of several taxonomical groups, such as bivalves, gas-
tropods, and corals. The objectives of the present work are to: a)
identify the bioeroders taxonomy which affected Pinctada shells
collected from the Al-Uqair beach, Eastern Saudi Arabia, b) docu-
ment the encrusters using Pinctada shells as hard substrate, and
c) interpret the environmental parameters and the ecological sig-
nificance of the identified ichnoassemblages.
2. Material and methods

Al-Uqair beach is located between longitudes 50�000–50�200 E
and latitudes 25�370 25�580–N (Fig. 1). Al-Uqair beach shores con-
sist of three sediment types, namely, sandy, muddy or gravel-filled,
and skeleton-dominated. Sandy shores have fine to very coarse
sand grains. The sandy beach consists of clastic sediments with
varying proportions of skeletal fragments Gravel-filled or muddy
shores consist of silt- and clay-sized materials and are rich in
Fig. 1. Location map of the study area and sample s
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pebble-sized gravels. Skeleton-dominated shores consist of large
and small seashells of gastropods, bivalves, and foraminifers. The
skeletal-dominated beach consists of piles of bivalve and gastropod
shells Moreover, these shells were transported by tidal currents,
Lastly, seagrass is frequently present on all of the shores, especially
in the sandy and skeleton-dominated shores. In this study, a total
of 886 Pinctada valves were collected from 12 sites along Al-
Uqair beach in January 2021 (Fig. 1). Field samples have been doc-
umented and photographed using digital camera. Pinctada samples
were collected in plastic boxes in order to protect them from
crushing. The large distance between sites 3 and 4 represents a
protected area, which explains the paucity of sampling in this area.
The bioeroded and encrusted specimens were washed, examined
and identified using a binocular microscope and differential distri-
butions on the skeletal surfaces were evaluated.

3. Systematic ichnology

Thirteen ichnospecies belonging to 5 ichnogenera have been
identified and illustrated from 371 pinctada specimens (Fig. 2).
These traces were produced by clionid sponges, durophagous dril-
lers, polychaete annelids, endolithic bivalves, vermetid gastropods
and barnacle attachment scars. Table 1 presents the abundance of
the recorded ichnospecies and encrusters in the studied sites.

Ichnofamily Oichnidae Wisshak, Knaust, and Bertling, 2019.
Ichnogenus Oichnus Bromley, 1981.
Oichnus paraboloides Bromley, 1981.
Fig. 3A-E, I, 4C
tations (modified after Al-Hashim et al., 2021).



Fig. 2. Abundance of pinctadas in the study area. A. low abundance, site 1; B. high
abundance, site 3.
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Material and occurrence: 160 traces (91 on left valves and 69
on right valves): 35 traces (site 1), 29 (site 2), 33 (site 3), 3 (site 4),
3 (site 6), 26 (site 7), 4 (site 8), 5 (site 9), 14 (site 10), and 8 (site
12).

Description: Parabolic drill holes, perpendicular to the pinc-
tadas surfaces, 1.4–2.8 mm in diameter with outer diameters
exceeding the inner ones. Some shells showed incomplete drills.
The parabolic drill holes account for 50.47% of the Oichnus traces
and 27.12% of the total traces.

Remarks: O. paraboloides is previously recorded on the Pale-
ocene ostracods from Argentina (Villegas-Martin et al., 2019), the
modern and fossil Turritella from northern Gulf of California region
(Walker, 1998), the Middle Eocene to Middle Miocene White Lime-
stone Group, Jamaica (Blissett and Pickerill, 2004), the bivalve Mya
arenaria from New Haven Harbor, USA. (Dietl and Kelley, 2006),
Pleistocene – Holocene, Uruguay (Lorenzo and Verde, 2004.),
Recent bivalves of the northern Red Sea Coast, Egypt (El-Sorogy,
2015), and the Quaternary bivalves and gastropods of the Arabian
Gulf and Red Sea coasts, Saudi Arabia (El-Sorogy et al., 2018, 2020,
2021; Demircan et al., 2021).

Oichnus simplex Bromley, 1981.
Fig. 3G-H, J

Material and occurrence: 42 traces (22 on left valves and 20 on
right valves): 18 traces (site 1), 8 (site 2), 6 (site 3), 1 (site 4), 7 (site
6), and 2 (site 7).

Description: Circular to subcircular drill holes, 1.5–2.3 mm in
diameter, more or less perpendicular to the shell surfaces. Some
drills end as a shallow depression. The circular to subcircular drill
holes account for 13.25% of Oichnus traces and 7.12% of the total
traces.
3

Remarks: O. simplex is recorded from the Paleocene ostracods
from Argentina (Villegas-Martin et al., 2019), the Cenomanian oys-
ters in France (Breton et al., 2017), the modern and fossil Turritella
from the northern Gulf of California region (Walker, 1998), the
Pliocene Roussillon Basin, France (Gibert et al., 2007), the Middle
Eocene to Middle Miocene White Limestone Group, Jamaica
(Blissett and Pickerill, 2004), Recent bivalves of the northern Red
Sea Coast, Egypt (El-Sorogy, 2015), and the Quaternary bivalves
and gastropods of the Arabia Gulf and Red Sea coasts, Saudi Arabia
(El-Sorogy et al., 2018, 2020, 2021; Demircan et al., 2021).

Oichnus ovalis Bromley, 1993.

Fig. 3F, I, K, L, 4A-B, L

Material and occurrence: 31 traces (19 on left valves and 12 on
right valves): 8 traces (site 1), 6 (site 3), 9 (site 6), 6 (site 7), 1 (site
8), and 1 (site 9).

Description: Ovoid drill holes. The holes pass right through the
substrate as a penetration, tapering from a relatively large external
aperture to a minute inner one. The ovoid drill holes make up to
9.78% of Oichnus traces and 5.25% of the total traces.

Remarks: O. ovalis is previously recorded from the Middle
Eocene to Middle Miocene of Jamaica, the Eocene to Recent from
the Mediterranean region and Paratethys, the Quaternary of Ice-
land, and the Quaternary of Saudi Arabia (Blissett and Pickerill,
2004; Ruggiero and Bitner, 2008; Pokorny and Stofik, 2017, El-
Sorogy et al., 2021).

Oichnus isp.

Fig. 4G, 5I

Material and occurrence: 84 traces (48 on left valves and 36 on
right valves): 10 traces (site 1), 13 (site 2), 12 (site 3), 3 (site 4), 12
(site 6), 11 (site 7), 3 (site 8), 4 (site 9), 4 (site 10), and 9 (site 12).

Description: Circular to slightly ovoid drill holes, perpendicular
to the shell surfaces, 1.5–2.2 mm in width. Making up to 26.50% of
Oichnus traces and 14.24% of the total traces.

Ichnofamily Entobiaidae Wisshak, Knaust and Bertling, 2019.

Ichnogenus Entobia Bronn, 1837

Entobia geometrica Bromley and D’Alessandro, 1984.

Fig. 3A, 4C-F, H, J, 5A

Material and occurrence: 54 traces (29 on right valves and 25
on left valve): 1 trace (site 1), 2 traces (site 2), 2 traces (site 3), 8
traces (site 4), 8 traces (site 6), 32 traces (site 7), and one trace (site
11).

Description: Networks of chambers with circular apertures,
interconnected by irregularly distributed cylindrical galleries.
Chambers with 2.3–3 mm in diameter for larger apertures, and
1–2 mm in diameter for the smaller ones. Making up to 20.53%
of the recorded Entobia traces (n = 263) and 9.15% of the total
traces (n = 590).

Remarks: E. geometrica is previously recorded from the late
Eocene from Egypt, the Miocene in southern Spain, the late Mio-
cene from Balearic Islands, the late Miocene of Turkey, the Miocene
of NW Algeria, and the Quaternary of the Arabia Gulf and Red Sea
coasts, Saudi Arabia. (Rashwan et al., 2019; Santos et al., 2011;
Johnson et al., 2010; Demircan, 2012; Naimi et al., 2021; El-
Sorogy et al., 2020, 2021; Demircan et al., 2021).

Entobia ovula Bromley and D’Alessandro, 1984.

Fig. 3A, 4H-J, 5A, 6B

Material and occurrence: 27 traces (15 on right valves and 12
on left valve): 3 traces (site 1), 2 traces (site 2), 4 traces (site 4), 10
traces (site 6), 4 traces (site 7), one trace (site 10), 2 traces (site 11),
and one trace (site 12).



Fig. 3. (A) Oichnus paraboloides (a), E. ovula (b), E. geometrica (c), Entobia isp.(d), and E. cretacea (e) on a right valve of Pinctada margaritifera, site 1; (B) O. paraboloides (black
arrows) on a right valve of P. margaritifera, site 1; (C) O. paraboloides (a), Entobia isp.(b), with serpulid worm tubes (Se) on a right valve of P. margaritifera, site 6; (D,E) O.
paraboloides on right valves of P. margaritifera, sites 1 and 3 respectively; (F) O.ovalis (a,b) with serpulid worm tubes (Se) on a right valve of P. margaritifera, site 6; (G) O.
simplex on the adductor muscle scar of a right valve of P. radiata, site 6; (H) O. simplex on a left valve of P. margaritifera, site 1; (I) O. ovalis (a), O. paraboloides (b) on a right valve
of P. margaritifera, site 6; (J) O. simplex with Spirorbis sp.(Sr) on an internal surface of a left valve of P. margaritifera, site 1; (K) O. ovalis (black arrow) on right valves of P.
margaritifera, sites 6; (L) O. ovalis (a) and Entobia isp. (b) with Spirorbis sp.(Sr) on right valves of P. radiata, sites 6 and 1, respectively.
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Description: Borings on the external surface of pinctadas pre-
sent in four stages. Stage A of narrow and branched tunnels, about
1 mm in diameter. Stage B curved rows with elongate chambers,
1.8–3 mm in diameter. Stage C oval, closely spaced chambers,
2.8–3.3 mm in diameter. Stage D small spherical to ovoid cham-
bers, with an average diameter of about 3.2 mm. Making 10.27%
of the Entobia traces and 4.58% of all the studied traces.

Remarks: E. ovula is previously recorded from Upper Creta-
ceous of Egypt, the Middle Eocene to Middle Miocene of Jamaica,
the Early Eocene from India, the Middle Miocene of Egypt, the Mio-
cene of Spain, and the Quaternary of the Arabia Gulf and Red Sea
coasts, Saudi Arabia (El-Hedeny, 2007; Blissett and Pickerill,
4

2004; Gurav and Kulkarni, 2018; El-Hedeny and El-Sabbagh,
2018, Santos et al., 2011; El-Sorogy et al., 2018, 2021; Demircan
et al., 2021).

Entobia laquea Bromley and D’Alessandro, 1984.
Fig. 4G, J, K

Material and occurrence: 15 traces (9 on right valves and 6 on
left valve): One trace (site 3), 3 traces (site 4), 7 traces (site 6), and
4 traces (site 7).

Description: Traces of oval, elongate to subangular chambers
are 1.5–2.5 mm in diameter, making up to 5.70% of the Entobia
traces and 2.54% of the total traces.
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Remarks: E. laquea is previously recorded from the Middle Mio-
cene of Egypt, and the Quaternary of the Red Sea coast, Saudi Ara-
bia (El-Hedeny and El-Sabbagh, 2018; El-Sorogy et al., 2021).

Entobia cretacea Portlock, 1843
Fig. 3A, 5A-C

Material and occurrence: 18 traces (10 on left valves and 8 on
right valve): 8 traces (site 1), one trace (site 2), 3 traces (site 4), 4
traces (site 6), one trace (site 7), and one trace (site 11).

Description: Most commonly in the form of networks of uni-
form multiple oval chambers, accounting for 6.86% of the Entobia
traces and 3.05% of the total traces.

Remarks: E. cretacea is previously recorded from the Late Creta-
ceous (chalk) of England (Donovan and Fearnhead, 2015), the Late
Cretaceous oysters of Egypt (El-Hedeny and El-Sabbagh, 2007), the
Cenomanian oysters from France (Breton et al., 2017), and the Qua-
ternary bivalves and gastropods of the Red Sea coasts, Saudi Arabia
(El-Sorogy et al., 2021; Demircan et al., 2021).

Entobia cateniformis (Bromley and D’Alessandro, 1984)
Fig. 5H, I

Material and occurrence: 5 traces (3 on left valves and 2 on
right valves from site 6).

Description: Chambers in long cylinders with T or L shaped at
intersections. Apertures small, with well-developed apertural
canals (Gurav and Kulkarni, 2018). Making 1.90% of the Entobia
traces and 0.85% of the total ones.

Remarks: E. cateniformis is recorded from the Middle Eocene to
Middle Miocene White Limestone Group, Jamaica (Blissett and
Pickerill, 2004) and the Early Eocene Kachchh Basin, India (Gurav
and Kulkarni, 2018).

Entobia isp.
Fig. 3A, C, L, 4C, D, G, I, K, L, 5A-C, E, K, L, 6F, J

Material and occurrence: 144 traces (76 on left valves and 68
on right valve): 16 traces (site 1), 5 traces (site 2), 5 traces (site 3),
31 traces (site 4), 2 traces (site 5), 59 traces (site 6), 19 traces (site
7), one trace (site 8), 3 traces (site 9), and 3 traces (site 11).

Description: Traces represented by networks of linear cham-
bers, with circular apertures, 0.3–1.4 mm in diameter, make up
to 54.75% of the recorded Entobia traces and 24.41% of the total
traces.

Ichnofamily Osteichnidae Hopner and Bertling, 2017.
Ichnogenus Caulostrepsis Clarke, 1908.
Caulostrepsis isp.
Fig. 6F, G

Material and occurrence: 2 traces on right valves (sites 6 and
11).

Description: It is a pouch-shaped boring, and long galleries
with a figure-of eight-shaped across-section. Making 0.34% of the
total traces.

Remarks: Caulostrepsis is very common polychaete boring in
Messinian Rhodolith beds in Algeria (Naimi et al., 2021).
Caulostrepsis is produced by polychaetes at a water depth between
7 and 15 m (Wisshak et al., 2005).

Ichnofamily Renichnidae Knaust, 2012
Ichnogenus Renichnus Mayoral, 1987.
Renichnus isp
Fig. 5D

Material: 5 traces on a left valve of P. margaritifera, site 6.
Description: It is observed a half-moon or kidney-shaped

depression. There is a maximum of 2 depressions per specimen.



Fig. 4. (A, B) Oichnus ovalis on left valves of P. radiata, sites 9 and 2, respectively; (C) O. paraboloides (a), Entobia geometrica (b), Entobia isp. (c) and Balanus (Ba) on a left valve
of P. margaritifera, site 1; (D) Entobia isp.(a) and E. geometrica (b) on a left valve of P. margaritifera, site 7; (E, F) E. geometrica on internal and external surfaces of right valves of
P. margaritifera, site 7; (G) Oichnus isp. (white arrow), E. laquea (black arrow), Entobia isp., with serpulid worm tubes on a right valve of P. margaritifera, site 6; (H) E. ovula (a)
and E. geometrica (b) on a right valve of P. margaritifera, site 7; (I) E. ovula (a), Entobia isp.(b), and encrusted internal surface of a right valve by in part living balanids, site 6; (J)
E. laquea (a), E. geometrica (b) and E. ovula (c) on a left valve of P. margaritifera, site 6; (K) E. laqueawith Entobia isp. on a left valve, site 6; (L) Entobia isp., and O. ovalis on a right
valve of P. radiata, site 6.
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Depressions are separated by walls that are perpendicular to
slightly oblique to the surface. Making 0.84% the total traces.

Remarks: Renichnus is the result of etching trace of vermetid
gastropods (Mayoral, 1987; Uchman et al., 2017).

Ichnofamily Centrichnidae Wisshak, Knaust, and Bertling, 2019.
Ichnogenus Anellusichnus Santos, Mayoral and Muñiz, 2005.
Anellusichnus circularis
Fig. 5F, G, 6D
6

Material: 3 traces (two on left and one on right valves (sites 2
and 6).

Description: Anellusichnus circularis is surface traces of circular
or subcircular to oval. It is revealed by a color difference in the sub-
strate or, by the presence of a very shallow ring-shaped furrow
pathway. Its outer furrow has very faint circular, oval or subpolyg-
onal concentric striations (Santos et al., 2005). Making 0.51% of the
total traces.



Fig. 5. (A) E. ovula (a), Entobia cretacea (b), E. geometrica (c), and Entobia isp. (d) on a right valve of P. margaritifera, site 2; (B) Entobia isp. (a), Entobia cretacea (b) serpulid worm
tubes, on a right valve of P. margaritifera, site 6; (C) Entobia cretacea (a), Entobia isp. (b) with serpulid worm tubes on a right valve of P. margaritifera, site 6; (D) Renichnus isp.
(black arrow) on a left valve of P. margaritifera, site 6; (E) Entobia isp. (a), Balanus (Ba) with Spirorbis sp. (Sr) on a right valve of P. margaritifera, site 1; (F) Anellusichnus circularis,
site 2; (G) Anellusichnus circularis with serpulid worm tubes and fixed Chama on the external surface of a right valve of P. margaritifera, site 6; (H) E. cateniformis on a right
valve of P. margaritifera, site 7; (I) E. cateniformis (a) and Oichnus isp.(b) on a left valve of P. margaritifera, site 7; (J) Oichnus ovalis (a) and Entobia isp. (b) on an internal surface
of right valve of P. radiata, site 7; (K) Entobia isp. on an internal surface of right valve of P. margaritifera, site 6; (L) Entobia isp. on an internal surface of right valve of P. radiata,
site 6.
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Remarks: It was identified by Lister (1687) for the first time as
attachment scars from Balanus. It is observed from late Miocene to
Holocene (Santos et al., 2005).
4. Discussion

The main physical factor for fragmentation of Pinctada shells in
the study area is the active currents and tides. Fragmentation
occurs as the presence of shell fragments. Approximately 22.45%
7

of the collected specimens were still bivalved or articulated shells.
Shell movement on coastal sediment and over each other by wave
actions is often blamed for shell abrasion, mainly in the form of
loose the outer, thin, horny coat of the periostracum and lack of
luster on the inner nacre conchiolin and aragonitic layer (Nielsen,
2004). Skeletons of Pinctada act as lithified substrate for bioeroders
of clionid sponge (Entobia traces), rare polychaete annelids
(Caulostrepsis isp.), and carnivorous gastropods (Oichnus traces),
which produce traces of dwelling and predation based on the fun-
damental behavioral patterns (Seilacher, 1964). Concerning the



Fig. 6. (A) Sponge spicules, Balanid (Ba) with serpulid worm tubes (Se) on a right valve of P. margaritifera, site 6; (B) E. ovula (a) on a right valve of P. radiata, site 2; (C) Balanus
(Ba) with Spirorbis sp.(Sr) on an internal surface of a left valve of P. margaritifera, site 1; (D) Anellusichnus circularis (black arrow) on a left valve of P. margaritifera, site 6. (E)
Worm tubes with balanids (Ba) internal surface of a right valve of P. margaritifera, site 12; (F) Caulostrepsis isp. (a) and Entobia isp. (b), site11; (G) Caulostrepsis isp. (black
arrows) with serpulid worm tubes (Se), site 6; (H) Internal surface of a left valve encrusted by balanids (Ba), site 12; (I) Spirorbis sp.(Sr), serpulid worm tubes (Se) with Balanus
(Ba) on an internal surface of a left valve, site 12; (J) Entobia isp. (black arrow), Spirorbis sp. (Sr), with serpulid worm tubes on an internal surface of a left valve, site 7; (K)
Bryozoa (Br) and Spirorbis sp. (Sr) on internal surface of a fragmented left valve of P. margaritifera, site 10; (L) Bryozoa and Spirorbis sp. (Sr) on internal surfaces of left valves of
P. margaritifera, sites 11, respectively.
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abundance of the identified ichnotaxa, it is noticed that 53.73% of
the studied pinctadas were bioeroded by carnivorous gastropods,
44.58% by clionid sponge, and 1.69% by endolithic bivalves, poly-
chaete annelids and barnacles.

Structurally, the pearl oyster shell consists of three parallel lay-
ers (Poirot, 1980). The outer, thin, horny coat of the periostracum,
the middle prismatic layer of polygonal prisms of calcite, which lie
perpendicular to the surface, while the inner nacre consists of lay-
ers of conchiolin, interspersed with thin sheets of aragonite. The
nacre has high tensile strength and plasticity compared with other
mollusc shells, making it highly resistant to crushing forces and
8

therefore providing good defense against a number of predators
(Currey, 1977). Traces of predatory gastropods on the Pinctada sur-
faces indicate production during the lifetime of these Pinctadas
and likely have caused their death (Bromley, 1981). Moreover,
presence of more than one Oichnus drill holes on some shells
(Fig. 3B, C, F, I), is presumably the result of further attempts by
the predatory gastropod to kill its prey (see Kowalewski et al.,
2000; Hauser et al., 2008). The ended drills of Oichnus within the
pinctadas substrate as a shallow to deep depression or short, sub-
cylindrical pit may be attributed to the strength of the inner nacre
making it highly resistant to drill by the naticid and muricid gas-
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tropods (Currey, 1977; Klompmaker et al., 2015). The thin-shelled
and smooth skeletons of Pinctada were easier to drill by the abun-
dant durophagous drillers (Oichnus traces) and clionid sponges
(Entobia traces) during their lifetime. The traces of Entobia range
from few scattered borings to entirely bioeroded surfaces
(Fig. 4D, G, H, L). The external surfaces were intensively bioeroded
than the internal ones, indicating bioerosion during their lifetime.

Temperature, depth, salinity, substrate type, mud and silt load,
currents, and pollution are the environmental factors affecting dis-
tribution and abundance of pinctadas (Gervis and Sims, 1992). The
temperature determines the rate of deposition of nacre on shells.
Pinctadas prefer shallow water and, therefore, their growth rate
is decreased in deeper water, probably due to lower temperatures
and reduction of phytoplankton. Similar to other organisms inhab-
iting the intertidal zone, pinctadas prefer seawaters of normal
salinity, but most can tolerate a wide range of salinities. Moreover,
strong currents are required to bring in food and oxygen, to remove
wastes and to distribute the planulae. In general, all the above
mentioned environmental factors are appropriated at the study
area but the difference in abundance of bioeroders among the
studied sites (e.g. low in sites 4, 5, 8–10, 12, and high in sites 1–
3, 6, 7) may be attributed to the abundance of pinctadas shells in
each site, which is dependents consequently on the topography
of the coast and the wind direction.

The skeletons of Pinctada act as hard substrates for colonization
by encrusting invertebrates, including serpulid worms, Spirorbis
sp., bryozoans, and barnacles. The serpulid worm tubes are the
most common encrusters on Pinctada specimens (167 encrusters,
91 on left valves and 76 on right ones from all studied sites). Ser-
pulids are represented by their tubes, circular to sub-circular in
cross-section. They mostly grew as solitary individuals or dense
coverings on the internal and external surfaces of Pinctada
(Fig. 6A, E, G, I, J). Acorn barnacles were the second abundant (60
encrusters, 36 on left valves and 24 on right ones, from all sites
except 4, 7, 8, and 11). Barnacles occur as solitary or as aggregates
encrusting the external surface of Pinctada and some living ones
encrust the internal surfaces (Fig. 4C, 6A, E, H). Spirorbis sp. is a
small white sinistral coiled polychaete that lives attached to pinc-
tadas (23 encrusters on 13 left and 10 right valves). The tubes have
peripheral flanges for attachment to the substrate (Fig. 3J, 6C, I, K).
The bryozoans are the least abundant, with 7 encrusters of Hollo-
porella, Membranipora, Hippopodina, Celleporaria, and Watersipora
spp. They encrusted the internal smooth surface and the external
surface of left and right valves of Pinctada (Fig. 6K, L). Bryozoan
colonies are sheet-like, a few millimeters to centimeters in size,
on encrusted surfaces. The presence of different encrusters on
the internal surfaces of many pinctadas has been confirmed a post-
mortem colonization, while those on the external surfaces indi-
cated a colonization process mostly took place during the
lifetime of the pinctadas.

5. Conclusions

1. Thirteen ichnospecies have been identified and illustrated on
the pearl oyster Pinctada from the Al-Uqair coastline, eastern
Saudi Arabia. These ichnospecies were produced by clionid
sponges, polychaete annelids, durophagous, acrothoracican bar-
nacle, and barnacle attachment scars. Moreover, the Pinctada
shells acted as hard substrate for colonization by serpulid
worm, Spirorbis sp., bryozoans, barnacles, and other bivalves.

2. The identified ichnospecies belong to 6 ichnogenera. Ichno-
genus Oichnus was most abundant (53.73%, 4 ichnospecies), fol-
lowed by Entobia (44.58%, 6 ichnospecies), Anellusichnus (0.51%,
one ichnospecies), Caulostrepsis (0.34%, one ichnospecies), and
Renichnus (0.84%, one ichnospecies). The thin-shelled and
9

smooth skeletons of Pinctada were easier to drill by the abun-
dant durophagous drillers and clionid sponges during their life-
time, in contrast to endolithic bivalves which need thicker
seashells for the settlement.

3. Drill holes of Oichnus on the Pinctada surfaces indicated produc-
tion during the lifetime of the pearl oyster. The shallow depres-
sions or pits of Oichnus within the pinctadas substrate may be
attributed to the high tensile strength and plasticity of the inner
nacre. Traces of Entobia ranged from few scattered borings to
entirely bioeroded surfaces. The external surfaces were inten-
sively bioeroded than the internal ones, indicating bioerosion
during their lifetime.

4. Disarticulation, fragmentation, and abrasion in the investigated
pinctadas might be due to their mode of life as epifaunal
byssate, in shallow strong currents. Moreover, the difference
in abundance of bioeroders among the studied sites may be
attributed to the abundance of pinctadas shells along the coast-
line, which depends on the topography of the coast and the
wind direction.
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