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Abstract Squeezing flow of an electrically conducting Casson fluid has been taken into account.

The laws of conservations under the similarity transformation suggested by Wang (1976) have been

used to extract a highly nonlinear ordinary differential equation governing the magneto hydrody-

namic (MHD) flow. Resulting equation has been solved analytically by using the variation of

parameters method (VPM). A RK-4 numerical solution has also been sought to examine the valid-

ity of analytical results. Both the solutions are found to be in an excellent agreement. Convergence

of the solution is also discussed. Flow behavior under the modifying involved physical parameters is

also discussed and explained in detail with the graphical aid. It is observed that magnetic field can

be used as a control phenomenon in many flows as it normalizes the flow behavior. Also, squeeze

number plays an important role in these types of problems and an increase in squeeze number

increases the velocity profile.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many mechanical equipment work under the principle of mov-

ing pistons where two plates exhibit the squeezing movement
normal to their own surfaces. Electric motors, engines and
hydraulic lifters also have this clutching flow in some of their
parts. Due to this practical significance squeezing flow between
parallel plates has become one of the most active research
fields in fluid mechanics. Its biological applications are also

of equal importance. Flow inside syringes and nasogastric
tubes is also a kind of squeezing flows.

Foundational work regarding squeezing flows can be

named to Stefan (1874) who presented basic formulation of
these types of flows under lubrication assumption. After him
numbers of scientist have shown their interests toward squeez-

ing flows and have carried out many scientific studies to under-
stand these flows. Some of selected contributions are
mentioned in forthcoming lines.

1986 Reynolds (1886) investigated the squeezing flow

between elliptic plates. Archibald (1956) considered the same
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Figure a Schematic diagram for the flow problem.
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problem for rectangular plates. After that several attempts
have been made by different researchers to understand squeez-
ing flows in a better way (Grimm, 1976; Wolfe, 1965; Kuzma,

1968; Tichy and Winer, 1970; Jackson, 1962).
Earlier studies on squeezing flows were based on Reynolds

equation whose insufficiency for some cases has been shown by

Jackson (1962) and Usha and Sridharan (1996). Due to efforts
of Birkhoff (1960), Yang (1958) and Wang and Watson (1979)
more flexible and useful similarity transforms are now avail-

able. These similarity transforms reduce the Navier–Stokes
equation into a fourth order nonlinear ordinary differential
equation and have further been used in some other investiga-
tions as well (Wang, 1976; Laun et al., 1999; Hamdan and

Baron, 1992; Nhan, 2000; Rashidi et al., 2008).
Flow of electrically conducting non-Newtonian fluid is a

very important phenomenon as in most of the practical situa-

tions we have to deal with the flow of conducting fluid which
exhibits different behaviors under the influence of magnetic
forces. In these cases magneto hydro dynamic (MHD) aspect

of the flow is also needed to be considered. Homotopy pertur-
bation solution for Two-dimensional MHD squeezing flow
between parallel plates has been determined by Siddiqui

et al. (2008). Domairry and Aziz (2009) investigated the same
problem for the flow between parallel disks. Recently, Mustafa
et al. (2012) examined heat and mass transfer for squeezing
flow between parallel plates using the homotopy analysis

method (HAM).
In most of realistic models the fluids involved are not sim-

ple Newtonian. Complex rheological properties of non-

Newtonian fluids cannot be captured by a single model.
Different mathematical models have been used to study differ-
ent types of non-Newtonian fluids. One of such models is

known as Casson fluid model. (Mrill et al., 1965; McDonald,
1974) showed that it is the most compatible formulation to
simulate blood type fluid flows. It is clear from the literature

survey that the squeezing flow of a Casson fluid between the
plates moving normal to their own surface is yet to be
inspected.

Due to the inherent nonlinearity of the equations governing

the fluid flow exact solutions are very rare. Even where they are
available immense simplification assumptions have been
imposed. Those overly imposed suppositions may not be used

for more realistic flows. However to deal with this hurdle many
analytical approximation techniques have been developed
which are commonly used nowadays (Abbasbandy, 2007a;

Abbasbandy, 2007b; Abdou and Soliman, 2005; Noor and
Mohyud-Din, 2007; Asadullah et al., 2013; Khan et al.,
2012; Ahmed et al., 2014). Variation of parameters method
(VPM) is one of these recently developed analytical techniques

that have been used to solve different problems (Khan et al.,
2014; Noor et al., 2008; Mohyud-Din et al., 2009; Khan
et al., 2014a; Khan et al., 2014b; Khan et al., 2014c; Zaidi

et al., 2013).
A literature survey reveals that no attempt has ever been

made to study the MHD squeezing flow of a Casson fluid.

So, in this paper we have presented a comprehensive study
for this problem. VPM has been applied to study the nonlinear
ordinary differential equation. A numerical solution to the

problem has also been sought by using the Runge Kutta order
4 method. Comparison between both the solutions shows that
the results obtained by VPM are in excellent agreement with
the numerical results.
2. Governing equations

We consider an incompressible flow of a Casson fluid between

two parallel plates separated by a distance

z ¼ �lð1� atÞ1=2 ¼ �hðtÞ, where l is the initial gap between
the plates (at a time t ¼ 0). Additionally a > 0 corresponds

to a squeezing motion of both the plates until they touch each
other at t ¼ 1=a, for a < 0 the plates bear a receding motion
and dilate as described in Fig. a. Rheological equation for
Casson fluid is defined as under (Nadeem et al., 2012;

Nadeem et al., 2013; Nadeem et al., 2014a; Nadeem et al.,
2014b; Nadeem et al., 2014c; Ahmed et al., 2013; Casson,
1959; Akber and Khan, 2015; Akbar et al., 2014; Nakamura

and Sawada, 1987; Nakamura and Sawada, 1988)

sij ¼
2 lB þ

py
2p

� �� �
eij; p > pc

2 lB þ
py
2pc

� �h i
eij; pc > p

8<
:

9=
; ð1Þ

where p ¼ eijeij; and eij is the (i, j)th component of the deforma-

tion rate, i.e. p is the product of the component of deformation
rate with itself, pc is the critical value of the said product, lB is

plastic dynamic viscosity of the non-Newtonian fluid and py is

yield stress of slurry fluid.
A constant magnetic field of strength M0 is imposed per-

pendicular and relatively fixed to the walls. We are also apply-
ing the following assumptions on the flow model:

(a) The effects of induced magnetic and electric fields pro-

duced due to the flow of electrically conducting fluid
are negligible.

(b) No external electric field is present.

Under aforementioned constraints the conservation equa-
tions for the flow are:
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where u and v are the velocity components in x and y-
directions respectively, p is the pressure, t ¼ l

q is the dynamic

viscosity of the fluid (ratio of kinematic viscosity and density),
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c ¼ lB

ffiffiffiffiffiffiffi
2pc

p
=py is the Casson fluid parameter and b is the mag-

nitude of imposed magnetic field.
Supporting conditions for the problem are as follows

u ¼ 0; v ¼ vw ¼ dh
dt

at y ¼ hðtÞ;
@u
@y
¼ 0; v ¼ 0 at y ¼ 0:

ð4Þ

We can simplify the above system of equations by eliminat-

ing the pressure terms from Eqs. (2) and (3) and using Eq. (1).
After cross differentiation and introducing vorticity x
we get
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where,

x ¼ @v

@x
� @u
@y

	 

: ð6Þ

Transform introduced by Wang (1976) for a two-
dimensional flow is sated as

u ¼ ax
½2ð1� atÞ�F

0ðgÞ; ð7Þ
Figure 1 Effects of positive values of S on FðgÞ.
v ¼ �al

½2ð1� atÞ1=2�
FðgÞ; ð8Þ

where,

g ¼ y

½lð1� atÞ1=2�
: ð9Þ

Substituting Eqs. (7)–(9) in Eq. (5) using (6), we obtain a
nonlinear ordinary differential equation describing the
Casson fluid flow as

ð1þ 1

c
ÞFivðgÞ � SðgFðgÞ þ 3F 00ðgÞ þ F 0ðgÞF 00ðgÞ

� FðgÞF 000ðgÞÞ �M2F 00ðgÞ ¼ 0; ð10Þ

where S= al2/2m denotes the non-dimensional Squeeze num-
ber. Using Eqs. (7)–(9) boundary conditions for the problem

reduce to

Fð0Þ ¼ 0; F 00ð0Þ ¼ 0;Fð1Þ ¼ 1; F 00ð1Þ ¼ 0: ð11Þ

Here, squeeze number S describes the movement of the
plates (S> 0 corresponds to the plates moving apart, while

S< 0 corresponds to collapsing movement of the plates). It
is pertinent to mention here that for M = 0 and c fi1, our
study reduces to the one obtained by Wang (1976).

Skin friction coefficient is defined as

Cf ¼ m 1þ 1

c

	 
 @u
@y

� �
y¼hðtÞ

v2w
:

In terms of Eqs. (7)–(9), we have

l2=x2ð1� atÞRexCf ¼ 1þ 1

c

	 

F 0ð1Þ: ð12Þ

Here Rex ¼ 2lv2w
mxð1�atÞ1=2
3. Solution procedure

Using the standard procedure for VPM (Noor et al., 2008;
Mohyud-Din et al., 2009; Khan et al., 2014a; Khan et al.,

2014b; Khan et al., 2014c; Zaidi et al., 2013), we can write
Eq. (10) as

Fnþ1ðgÞ ¼A1þA2gþA3

g2

2
þA4

g3

6
�
Z g

0

g3

3!
� g2s

2!
þ gs2

2!
þ s3

3!

	 


� � c
1þ c

	 
 ðSÞ
sFðsÞþ 3F 00ðsÞþF 0ðsÞF 00ðsÞ
�FðsÞF 000ðsÞ

	 

�M2F 00ðsÞ

0
B@

1
CA

0
B@

1
CAds;

ð13Þ

Here, A1;A2;A3 and A4 are the constants obtained by tak-
ing the highest order linear term of the Eq. (10) and integrating
it 4 times to get the final form of the scheme. Using the bound-

ary conditions given in Eq. (11), the above equation can be
written as
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with n ¼ 0; 1; 2; . . ., where A2 and A4 are the constants which
can be computed by using the boundary conditions F(1) = 1

and F 0ð1Þ ¼ 0, respectively.

First few terms of the solution are given as
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Similarly, the other iterations for the solution can also be

computed.



Figure 4 Effects of c on F0ðgÞ.

Figure 5 Effects of Mon FðgÞ.

Figure 6 Effects of Mon F0ðgÞ.
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4. Results and discussions

In this section the influences of squeeze number S, Casson fluid
parameter c and the magnetic number M on the axial

(F(g))and radial (F
0
|(g)) velocities are characterized. Figs. 1–

16 are displayed for the said purpose. First eight figures are
for the case when the plates are moving apart (S> 0). Fig. 1

depicts the effects of increasing values of squeeze number
Son the axial velocity F(g). It is clear, increasing S results in
a decreased axial velocity. Effects of rising S on radial velocity
are shown in Fig. 2. For increasing S, a decrease in F

0
(g) is

observed when g 6 0:5. However, there is an increase in F
0
(g)

for 0:5 < g 6 1. Fig. 3 illustrates the behavior of Casson fluid
parameter c on F(g). Increase in c decelerates the axial flow.

Effects of growing c on radial velocity are shown in Fig. 4.
Increasing c decreases F

0
(g) for g 6 0:5 and a rise in F

0
(g) is

observed for 0:5 < g 6 1.

In Figs. 5–8, the consequences of varying magnetic number
M on F(g) and F

0
(g) are portrayed. It can be observed from

Fig. 5 that for increasing M, there is a decrease in F(g) for

slightly lower values of squeeze number S; while for F 0ðgÞ,
the increase in M provides a velocity profile similar to the case
of increasing S. That is, increasing the magnitude of magnetic
field fallouts in a uniform decrease in the velocity. Figs. 7 and 8
are drawn to analyze the effects of magnetic field for slightly

higher values of squeeze number S. The behavior of axial
and radial velocities remains almost similar to lower S.

Figs. 9–16 are presented to study the effects of physical

parameters for dilating plates (S< 0). In Fig. 9, considerable
axial acceleration is observed for falling S. Fig. 10 demon-
strates the effects of decreasing squeeze number on radial

velocity. It is clear that F
0
(g) increases with squeeze rate for

g 6 0:4. A sudden change in F
0
(g) is observed when

0:4 < g 6 1, i.e. for decreasing values of squeeze number there
is a rapid decrease in radial velocity of the fluid. Figs. 11 and

12 show the effects of Casson fluid parameter on axial and
Figure 2 Effects of positive values of S on F0ðgÞ.

Figure 3 Effects of c on FðgÞ .

Figure 7 Effects of Mon FðgÞ.

Figure 8 Effects of Mon F0ðgÞ.



Figure 9 Effects of negative values of S on FðgÞ.

Figure 10 Effects of negative values of S on F0ðgÞ.

Figure 11 Effects of c on FðgÞ.

Figure 12 Effects of c on F 0ðgÞ.

Figure 13 Effects of M on FðgÞ.

Figure 14 Effects of M on F0ðgÞ.

Figure 15 Effects of M on FðgÞ.

Figure 16 Effects of M on F 0ðgÞ.

Table 1 Convergence of VPM solution for c = 0.4 and

M = 1.

Order of

Approximations

S = 5 S = �5

A2 ¼ f 0 A4 ¼ f 000 A2 ¼ f 0 A4 ¼ f 000

1 1.378126 �1.526101 1.797777 �6.800000
2 1.351366 �1.331071 1.730490 �6.059060
3 1.347469 �1.308010 1.733885 �6.092031
4 1.347157 �1.306332 1.733850 �6.091734
5 1.347136 �1.306259 1.733850 �6.091732
6 1.347136 �1.306257 1.733850 �6.091732
8 1.347136 �1.306257 1.733850 �6.091732
10 1.347136 �1.306257 1.733850 �6.091732
Numerical (RK-4) 1.347136 �1.306257 1.733850 �6.091732
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radial velocities respectively. Almost an identical behavior is

observed for Casson fluid parameter cand the squeeze number
S when plates are coming together.

Figs. 13–16 present behavior of the flow when plates are

coming together (S< 0) and the magnetic number is varying.
In Fig. 13, the effects of increasing magnetic number on F(g)
are displayed and a decrease in F(g) is observed for slightly



Table 2 Comparison between the numerical and VPM solutions for c = 0.4 and M = 1.

g S= 5 S= �5
F(g) F 0(g) F(g) F 0(g)
VPM Numerical VPM Numerical VPM Numerical VPM Numerical

0 0 0 1.359393 1.359393 0 0 1.677216 1.677216

0.1 0.139081 0.139081 1.348452 1.348452 0.166839 0.166839 1.650804 1.650804

0.2 0.276358 0.276358 1.357517 1.357517 0.328444 0.328444 1.572994 1.572994

0.3 0.409918 0.409918 1.310148 1.310148 0.479861 0.479861 1.447971 1.447971

0.4 0.537628 0.537628 1.239953 1.239953 0.616685 0.616685 1.282424 1.282424

0.5 0.657014 0.657014 1.142869 1.142869 0.735286 0.735286 1.085120 1.085120

0.6 0.765125 0.765125 1.013414 1.013414 0.832992 0.832992 0.866366 0.866366

0.7 0.858383 0.858383 0.844480 0.844480 0.908218 0.908218 0.637365 0.637365

0.8 0.932408 0.932408 0.627096 0.627096 0.960506 0.960506 0.409532 0.409532

0.9 0.981819 0.981819 0.350136 0.350136 0.990529 0.990529 0.193804 0.193804

1.0 1 0 0 0 1 1 0 0

Table 3 Comparison of VPM and numerical solutions with

existing results for M= 0 and c fi1.

Sfl Present results

(HPM)

Present results

(RK-4)

Wang (1976)

�0.9780 �2.1915 �2.1915 �2.235
�0.4977 �2.6193 �2.6193 �2.6272
�0.09998 �2.9277 �2.9277 �2.9279
0 �3.000 �3.000 �3.000
0.09403 �3.0663 �3.0663 �3.0665
0.4341 �3.2943 �3.2943 �3.2969
1.1224 �3.708 �3.708 �3.714

Table 4 Numerical values for skin friction coefficient.

S c M 1þ 1
c

� �
F 00ð1Þ

�5.0 0.4 1.0 �6.298708
�3.0 �8.320727
�1.0 �9.970376
1.0 �11.376240
3.0 �12.610669
5.0 �13.718095
�3.0 0.1 �30.991005

0.3 �10.873387
0.5 �6.771549

3.0 0.1 �35.260196
0.3 �15.149577
0.5 �11.078736

�3.0 0.4 2 �13.101572
4 �14.908219
6 �17.501183

3.0 0.4 2 �9.038196
4 �11.531983
6 �14.819321
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higher values of S. Fig. 14 gives us a graphical demonstration

of F
0
(g) for growing magnetic number. It shows F

0
(g) decreases

for g 6 0:4 however for 0:4 < g 6 1 it behaves otherwise, i.e.
for increasing values of magnetic number, there is a rapid

increase in radial velocity of the fluid. A similar type of behav-
ior is observed for increasing magnetic number when S = -10
with more prominent effects. Similarly, in Fig. 16, a quite rapid
change can be observed for increasing values of magnetic
number. Also, with a decrease in squeeze number the backflow
may emerge and a strong magnetic field is required to enhance
the flow as shown in Fig. 16.

It is important to check the convergence of the series solu-
tion obtained in Eq. (15). For this purpose, the numerical val-
ues of unknown constants A2 and A4 are computed in Tables 1.

It is pertinent to mention that VPM converges only after6
approximations. Obtained analytical results are also compared
with the ones acquired by using the RK-4 method and an

excellent agreement is found.
A comparison between the analytical and numerical solu-

tions is shown in Table 2 for the axial and radial velocities.
It can clearly be seen that the solutions agree very well.

Table 3 compares the present results with some already exist-
ing solutions in the literature and again an excellent agreement
is observed.

Table 4 presents the numerical values of skin friction coef-
ficient. It can be seen that for all increasing parameters an
increase in the magnitude of skin friction coefficient is

obtained.

5. Conclusions

MHD squeezing flow of a non-Newtonian namely Casson
fluid is presented between parallel plates. Governing equations
are reduced to a single ordinary differential equation using a

similarity transform. Two cases are considered, i.e. one when
plates are moving apart and other when plates are coming clo-
ser. VPM is used to solve the equations governing the flow.
Effects of emerging parameters on flow are demonstrated

graphically and a comprehensive discussion is provided. A
numerical solution is also obtained using RK-4 method to
compare the results obtained by VPM and an excellent agree-

ment is found among the solutions. It can be concluded from
the graphs that a strong magnetic field can be used to enhance
the flow when plates are coming together and squeeze number

increases the velocity profile for both the cases, i.e., when
plates are coming closer and when plates are going apart.
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