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Objective: Because of interference from dynamic objects, the traditional simultaneous localization and
mapping (SLAM) framework execute poorly while operational in a dynamic environment. The
Dynamic-SLAM model is introduced by considering the merits of deep learning in object discovery. At
the semantic level, the dynamic objects in the new detection are detected to construct the prior knowl-
edge with an SSD object detector. Among the radar and the LiDAR, the synchronization and conversion
calibration makes the multi-sensor fusion. Localizing using a camera in a dynamic environment is more
challenging because the localization process takes place in moving segments. This further results in
unstable pose estimation. A large amount of information of the visual point cloud and high precision
of the laser radar information enhances the accuracy of real-time positioning thereby attaining grid
map and 3-D point cloud map.
Methods: Here, we have proposed Generative Adversarial Network (GAN) with Aquila Optimizer for mov-
ing object detection. The LiDAR measurements check the Radar outcomes. The targeted moving objects
are determined via Doppler velocity from the radar and their exact location and mass can be estimated
with LiDAR and the proposed GAN-AO approach. Hence the GAN-based AO approach is used to segment
the objects inside the point clouds. The arrangements of point clouds are made in a particular range to
multiply the vertical points with the laser channel number. If the same objects are identified then the
angles are analyzed among the image vectors and then labeled identically for the same points of the
object. In addition to this, Velocity compensation is made to estimate the actual moving target from
the world frame. This is due to the fact that the estimated velocity of the mmW-radar is in the radial
direction with respect to the touching sensors.
Results: The investigation is conducted between different state-of-art methods like Deep Learning (DL),
Generative Adversarial Network (GAN), artificial neural network (ANN), Deep neural network (DNN)
and propose methods. From this analysis, the proposed method provided 93.8% detection accuracy than
other existing methods like DL, ANN, GAN and DNN respectively.
Conclusions: While comparing to the state-of-art techniques, the proposed method demonstrated supe-
rior performance results in terms of tracking, detection, root mean square error (RMSE) and accuracy.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Visual Synchronization Localization is a process in wireless sen-
sor networks to determine the location of sensor nodes. Under the
field of the sensor in which they deployed, the Localization algo-
rithm was designed (Ding et al., 2018; Zhang et al., 2019; Labbé
and Michaud, 2019; Fuentes-Pacheco et al., 2015; Tsintotas et al.,
2022). Some sensor nodes are static and some are dynamic, based
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on their nature localization algorithm was built. Localizing using a
camera (Zheng et al., 2022; Ruan et al., 2022; Chen et al., 2021;
Wang et al., 2021a; Wang et al., 2021b; Wang et al., 2021c; Feng,
2021; Lee et al., 2021; Zhao et al., 2022; Sodhi et al., 2022) in a
dynamic environment is more challenging because the localization
takes place in moving segments and leads to unstable pose estima-
tion. In this proposed work, we use GAN with an Aquila optimizer
for Visual Synchronization Localization and Mapping depending
upon the visual point cloud information and laser in a dynamic
environment (Shastri et al., 2022; Lindqvist et al., 2021; Venator
et al., 2021; Rajendran et al., 2021; Wang et al., 2021a; Wang
et al., 2021b; Wang et al., 2021c; Shin et al., 2019). The proposed
scheme uses laser and visual point cloud information (Zhao et al.,
2022; Ghaffari et al., 2019) to support Visual Synchronization
Localization to optimize pose. A large amount of information on
the visual point cloud and high precision of the laser radar infor-
mation enhances the accuracy of real-time positioning thereby
attaining grid map and 3-D point cloud map (Morales and
Kassas, 2017).

To improve the performance of the Visual Synchronization
Localization, we have to combine Radar and Lidar (Schultz and
Zarzycki, 2021) to effectively localize the dynamic objects. The sta-
tic objects are canceled via the measurements of Lidar and a visual
point clouds from Lidar are segmented. The input data for the Lidar
based Visual Synchronization Localization (Shao et al., 2015) was
the filtered visual point clouds. Our proposed method works
efficiently in real-time. The accuracy and robustness of Visual
Synchronization Localization were improved by Laser and visual
point cloud information on the other hand the dynamic
objects can be efficiently identified (Yu et al., 2020; Xiao et al.,
2019). The major contributions of this study are summarized as
follows:

� The dynamic objects in the new detection are detected to con-
struct the prior knowledge with an SSD object detector at the
semantic level.

� For moving object detection, we used Generative Adversarial
Network (GAN) with Aquila Optimizer.

� Doppler velocity from the radar detects the targeted moving
objects and their exact location and mass can be estimated with
LiDAR and the proposed GAN-AO approach.

The remaining sections of this article are summarized as: Sec-
tion 2 illustrated the literature survey. Section 3 explains the sys-
tem model and the GAN with AO is formulated in section 4.
Section 5 delineates the proposed methodology and the experi-
mental results are discussed in section 6. At last, section 7 termi-
nates the article.
Fig. 1. System model.
2. Related works

By fusing mmW-radar and LiDAR, Dang et al. (2020) suggested
an effective method for the reduction of the power of dynamic
environment on SLAM. The mapping and localization accuracy
was enhanced. Due to doppler effect, the moving objects are elim-
inated via localization and segmentation with efficient moving
object detection. Different real world scenarios were used to vali-
date the performance of moving object elimination. The quick
dynamic object detections were provided via calibration and syn-
chronization. Fed the resulting point clouds to SLAM and thereafter
removed moving objects.

The mapping system and robust visual-Lidar simultaneous
localization were suggested by Qian et al. (2021) for unmanned
aerial vehicles. From point clouds via clustering, extract the
plane features and more stable line. The least-squares iterative
2

closest point algorithm calculates the relation pose among both
consecutive frames. At a lower frequency, construct the texture
information with 3-D map thereby referring to the elimination
of pose. For unmanned aerial vehicles (UAV), the higher precise
and robust mapping and localization with higher cost were
achieved.

A robust framework was suggested by Wang et al. (2021a),
Wang et al. (2021b), Wang et al. (2021c) for simultaneous map-
ping and localization by multiple non-repetitive scanning Lidars.
The map alignment configures the transformation between two
lidars depending upon the rigidity assumption of geometric struc-
ture. Time synchronizes the original information from various
lidars. While estimating lidar odometry, send all the feature can-
didates. For enhanced loop detection, integrate the novel place
descriptor and remove the dynamic objects. An experimental
result verifies large motion and feature-less scenario
performances.

Xiao et al. (2019) suggested deep learning (DL) based seman-
tic monocular visual mapping and localization in a dynamic
environment. In the following thread, the selective tracking algo-
rithm via feature points of dynamic objects was processed
thereby constructing a feature-oriented visual SLAM organiza-
tion. Compared to the original SSD network, the recall rate of
the system is raised from 82.3 % to 99.8 % respectively. In a
real-world dynamic environment, an accurate environmental
map was localized. But, the environment was more complex
and more time-consuming.
3. System model

The system model of the suggested method is depicted in Fig. 1.
The multi-sensor fusion can be made with the time synchroniza-
tion and conversion calibration among the radar and the LiDAR.
From the LiDAR dense and precise clouds are produced (Nguyen
and Le, 2013). Then the segmentation using the GAN-AO approach
is conducted to detect the objects from the surroundings. However,
the targeted objects are analyzed and detected by using this
approach and then the outcomes are collected on Radar. Mean-
while, the outcomes of Radar are checked with the help of LiDAR
measurements and thus filtered the ghost targets effectively
(Dubayah and Drake, 2000). The targeted moving objects can be
detected by Doppler velocity from the radar and their exact loca-
tion and mass can be estimated with LiDAR and the proposed
GAN-AO segmentation approach.
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4. Formulation of Generative Adversarial Network and Aquila
Optimizer

This section describes the background of the adopted GAN and
AO approaches for segmentation.

4.1. Generative Adversarial network (GAN)

The discriminator D and generator G are the two sub-networks
of the GAN network. For training, provides the ground truth data
representation is generated via generator attempts. The generator
data produces the true ground truth information from data, which
are differentiated from the discriminator attempts. According to
the distribution P, the binary segmentation map Yis produced via
the map F : X ! Y . From the generator sub-network, the ground
truth mask s represented as Y. The discriminators are indicated
via segmenting map into 0 to 1 values and input data comprises
the pair of discriminator maps X; Yf g.

Equation (1) expresses the GAN for segmentation and the fol-
lowing equation expresses the objective function.

GANL F;Dð Þ ¼ FX;Y�Pdata X;Yð Þ logD X;Yð Þ½ �
þ EX�Pdata Yð Þ log 1� D X; F Yð Þð Þð Þ½ � ð1Þ

To make the right decision, the discriminator (D) subnetwork is
trained via minimization of DðX; DðXÞÞ and the maximization of
DðX; YÞ. While making the right decision, the outputs are gener-
ated via the generator sub-network (F). The secondary loss func-
tions of binary cross-entropy (AL Fð Þ) are delineated in addition to
the GAN objective function (Abdollahi et al., 2021).

AL Fð Þ ¼ FX;Y�Pdata X; Yð Þ �Y � log FðXÞ þ ð1� YÞ � log 1� FðYÞð Þ½ � ð2Þ

The GAN objective functions with the optimal results are delin-
eated as.

F� ¼ arg min
D

max
D

GANL F; Dð Þ
� �

þ cALðFÞ ð3Þ

The weighting parameters arec. The map generates the spatial
resolution are increases via a generator. At last, the practical prob-
ability outputs are achieved based on both backward and forward
passes. However to enhance the segmentation capabilities we have
adopted Aquilla optimization. This will help to tune up the
parameters.

4.2. Aquila optimization

The parameters of GAN are tuned using the Aquilla Optimiza-
tion (AO) (AlRassas et al., 2021) which is a swarm-based approach.
The estimation of the best solution can be acquired by,

H ¼

h1;1 ::: h1;j h1;Dim�1 h1;Dim

h2;1 ::: h2;j ::: h2;Dim

::: � � � hi;j � � � � � �
..
. ..

. ..
. ..

. ..
.

hN�1;1 � � � hN�1;j � � � hN�1;Dim

hN;1 � � � hN;j hN;Dim�1 hN;Dim

2
6666666664

3
7777777775

ð4Þ

The dimensionality of the segmentation problem in the
dynamic object detection is given as Dim. N is the entire amount
of solutions to the problem. The best solution can be determined
as H. Here, the attained value while performing the ith solution is
represented as Hi.

Hij ¼ rand� Uj � Lj
� �þ Lj; i ¼ 1;2; ::::;N; j ¼ 1;2; ::::;Dim ð5Þ
3

The randomly generated number can be given as rand and falls
under the range of 0 to 1, Lj is the jth lower boundary and jth upper
boundary is indicated asUCj.

(i) Numerical Expression of AO

The hunting behavior of the AO can be classified as (i) Expanded
exploration (ii) Encircling (iii) Expanded exploitation and (iv) Nar-
rowed exploitation.

(ii) Expanded Exploration (H1)

The targeted ghosts are chosen with the characteristics of
Aquila selecting the hunting area for the hunting.

H1 t þ 1ð Þ ¼ HbestðtÞ � 1� t
T

� �
þ HMðtÞ � HbestðtÞ � randð Þ ð6Þ

The solution obtained after the first search application is
denoted as H1 t þ 1ð Þ. However, the best previous solution can be
given as HbestðtÞ. That can be used to analyze the exact object.
The exploration can be managed by observing the term 1� t

T

� �
for each iteration and HMðtÞ is used to find the position average
value of the ongoing solutions and can be evaluated as,

HMðtÞ ¼ 1
N

XN
i¼1

HiðtÞ; 8j ¼ 1;2; ::::;Dim ð7Þ

The maximum number of iterations is represented as T.
4.3. Encircling (H2)

According to the behavior of Aquilla encircling and attacking
the prey, the targeted ghosts are encircled and analyzed for detec-
tion. This is termed as Aquila contour flight which involves a short
glide attack and can be given as,

H2 t þ 1ð Þ ¼ HbestðtÞ � LevyðDÞ þ HRðtÞ þ ðy� xÞ � rand ð8Þ
The solution produced by the encircling process can be given as

H2 t þ 1ð Þ. LevyðDÞ has been indicated as levy flight distribution
function and the space dimensionality is given as D. however,
the randomly acquired solution ranges between 1 and N is given
as HRðtÞ. Then the levy flight distribution function can be estimated
as,

LevyðDÞ ¼ r� u� b

vj j1d
ð9Þ

here, r is a constant value. The randomly selected numbers that lie
between 0 and 1 is given as, u, and v. Then the b value is calculated
as,

b ¼ C 1þ dð Þ � sin Pd
2

� �
C 1þd

2

� �� d� 2
d�1
2ð Þ

0
@

1
A ð10Þ

here, d ¼ 1:6 and the constant values x and y are evaluated as,

y ¼ a� cosðhÞx ¼ a� sinðhÞ ð11Þ

where a ¼ a1 þ U � D1 and h ¼ �x� D1 þ h1h1 ¼ 3�P
2 ; and r1 falls

between the values 1 and 20, and U is a constant value is equal to
0.00564. D1 is the integer value of Dim. The constant x is given as
0.006.
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4.4. Expanded exploitation (H3)

This follows the segmentation of objects based on the identified
exact location and is performed slowly and carefully. It can be
determined as,

H3ðt þ 1Þ ¼ HbestðtÞ � HM tð Þð Þ � a� rand

þ U � Lð Þ � randþ Lð Þ � t ð12Þ
The solutions obtained using the third stage are given

asH3ðt þ 1Þ. The parameters used to change the exploitation stage
can be denoted as a and t and determined as 0.1. The lower and
upper boundaries of the problem can be denoted as L and U.
4.5. Narrowed exploitation (H4)

In this stage, object segmentation can be made with the help of
a walk and grab prey approach. It can be evaluated as,

H4ðt þ 1Þ ¼ F � HbestðtÞ � G1 � H tð Þ � randð Þ � G2 � LevyðDÞ
þ rand� G1 ð13Þ

The quality function is indicated as F and the obtained solution
in this stage is given asH4ðt þ 1Þ. G1 is the motion tracker and G2 is
the flight slope between the first and last location.

To enhance the segmentation accuracy of GAN we have merged
it with the AO approach and Fig. 2 demonstrates the proposed seg-
mentation methods with their working mechanism.
5. Proposed GAN-AO for the elimination of moving objects

This section expresses the process of Generative Adversarial
Network and Aquila Optimizer for the elimination of moving
objects.
Fig. 2. Proposed GAN-AO se

4

5.1. Point cloud segmentation

During the segmentation process, the earth plane from the
point clouds is removed. While performing this estimation is
inaccurate and does not match with the SLAM (Bailey and
Durrant-Whyte, 2006). Hence the GAN-based AO approach is
used to segment the objects inside the point clouds. The arrange-
ments of point clouds are made in a particular range to multiply
the vertical points with the laser channel number. If the same
objects are identified then the angles are analyzed among the
image vectors and then labeled identically for the same points
of the object.

5.2. Filtering outcomes from the radar

The object detected using the radar includes noises because of
propagation features and multi-path effect of EM waves. Hence
to analyze a negative impacts of the inclusion of false alarms a ver-
ification strategy is stated along with LiDAR measurements to
detect the targeted ghost. The targeted points are converted into
a coordinate frame of LiDAR-based on the calibration (Dawkins
et al., 2001) outcomes.

5.3. Association of data

Velocity compensation is made to estimate the actual mov-
ing target from the world frame. This is due to the fact that
the estimated velocity of the mmW-radar is in the radial
direction with respect to the touching sensors. The Doppler
velocity (Berger, 1957) Vsensor

t is acquired from the radar for

each target. Then the absolute velocity VA
t of the target as of

the current static frame is determined by the integration of

sensor velocity Vworld
sensor along with the outcomes of SLAM and

can be given as,
gmentation approach.
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VA
t ¼ PSensor

world V
world
sensor þ Vsensor

t ð14Þ

here, the inverse of current arrangements of the sensor in world
fame can be indicated asPSensor

world . Then the status of the moving object
can be evaluated.
Fig. 4. Performance analysis based on tracking and detection results.

Fig. 5. Performance analysis in terms of RMSE.

Table 1
Three examination times for operation performance evaluation.

Time (s) ORB-SLAM2 Dynamic SLAM Improvements

Median 0.50 0.044 12 %
Mean 0.50 0.045 10 %
Total 42.90 38.40 10.49 %
6. Experimental results

This section validates the performance of GAN-based Aquila
Optimizer for dynamic object detection. The mmWradar (Delphi
ESR) with the LiDAR (VLP-16) equips the wheeled robot based on
the TUM RGB-D benchmark dataset (Sturm et al., 2012). There is
30��360� of FOV (field of view) with 100 m for LiDAR detection
range. At mid-range, a wide of 90� FOV is combined by radar and
the scenarios are recorded through a camera. The baseline as
open-source code LOAM conducts a series of experiments and
real-time implementations are performed using Robot Operating
System (ROS). Fig. 3 explains the sample dataset images.

The performance analysis based on tracking and detection
results with respect to various experimentations is plotted in
Fig. 4. There are eight experimentation conditions with the track-
ing and detection performance is evaluated in this graph. Next to
the enhancement measures, the transplant results are evaluated
based on the RGB-D benchmark dataset. From this investigation,
the experimentation conditions are increased with decreasing
detection d tracking results are obtained.

The root means square error (RMSE) performance analysis is
delineated in Fig. 5. The experimentation conditions are varied
from 1 to 8 with respect to varying error values. The RMSE values
are varied in each experiment condition. From this, we have
obtained 0.23, 0.018, 0.20, 0.22, 0.21, 0.21, 0.25 and 0.15 RMSE out-
put values are obtained based on the experimentation conditions
from 1 to 8.

Table 1 delineates the operation performance evaluation based
on three examination time results of ORB-SLAM2, Dynamic SLAM
and Improvements. When compared to ORB-SLAM2, the dynamic
SLAM accuracy is 7.84 % by taking the RMSE as the standard.

Fig. 6 expresses the performance analysis based on the number
of frames with varying numbers. In this experiment, we have taken
three conditions such as static, and dynamic with both static and
dynamic conditions. In this experiment, the average number of fea-
ture points in every keyframe becomes 3090 in order to highlight
the dynamic feature point’s proportions. There are 47.96 % of static
feature points with 74.11 % dynamic feature points proportions
obtained.

The comparative analysis of accuracy results are plotted in
Table 2. This investigation is conducted between different state-
of-art methods like Deep Learning (DL) (Xiao et al., 2019), Genera-
tive Adversarial Network (GAN), Artificial neural network (ANN),
Deep neural network (DNN) and proposed methods (Bojaj et al.,
2021; anghera et al., 2021). From this analysis, the proposed
Fig. 3. Sample dataset images based on dynamic moving objection detection.
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Fig. 6. Performance analysis based on number of frames with varying numbers.

Table 2
Comparative analysis of accuracy.

Methods Accuracy

DL 86 %
GAN 90 %
DNN 90.4 %
ANN 89.45 %
Proposed 93.8 %

B. Sun, S. Gao, H. Zi et al. Journal of King Saud University – Science 34 (2022) 102298
method provided 93.8 % detection accuracy than other existing
methods like DL, ANN, GAN and DNN respectively.

7. Conclusion

In this paper, the Visual Synchronization Localization and map-
ping of the dynamic object are detected using laser and visual
cloud point information. Localizing using a camera in a dynamic
environment is more challenging because the localization takes
place in moving segments and leads to unstable pose estimation.
To overcome this problem, the proposed work uses GAN with an
Aquila optimizer in a dynamic environment. In this experiment,
we have taken three conditions such as static, dynamic with both
static and dynamic conditions. The average number of feature
points in every keyframe becomes 3090 to highlight the dynamic
feature point’s proportions. There are 47.96 % of static feature
points with 74.11 % dynamic feature points proportions are
obtained. The proposed technique offers 93.8 % detection accuracy
than other existing methods like DL, ANN, GAN and DNN. In the
future research, various other parameters namely the execution
time as well as computational cost will be discussed and taken into
consideration.
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