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Abstract In this paper, we introduce new generalizations concepts of lower and upper approxima-

tions of Pawlak rough sets by using two topological structures (bitopologies). Also, we study the

concept of the generalized topological rough set and some of their basic properties. Applications

for data reduction are done on medical data.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Rough set theory, proposed by Pawlak in the early 1980s
(Pawlak, 1981), is an extension of set theory for the study of
intelligent systems characterized by inexact, uncertain or insuf-

ficient information. Moreover, the theory may serve as a new
mathematical tool to soft computing besides fuzzy set theory
(Pawlak and Peters, 2007; Pawlak and Skowron, 2007a,b,c;

Pawlak, 1981a, 1991, 2004; Peters et al., 2006a,b, 2007a,b; Pe-
ters and Henry, 2009; Peters and Ramanna, 2007, 2009; Peters,
2007a,b,c, 2008a,b, 2009), and has been successfully applied in
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machine learning, pattern recognition, expert systems, data

analysis, and so on. Recently, lots of researchers are interested
in the theory (Polkowski and Skowron, 1997; Polkowski, 2002;
Puzio and Walczak, 2008; Randen and Husoy, 1999; Slowinski
and Vanderpooten, 2000; Wasilewska, 1997; Yao, 1998a,b; Za-

deh, 1965; Zakowski, 1983).
In Pawlak’s original rough set theory, partition or equiva-

lence (indiscernibility) relation is an important and primitive

concept. But, partition or equivalence relation is still restrictive
for many applications. To address this issue, several interesting
and meaningful extensions to equivalence relation have been

proposed in the past, such as tolerance relations (Orowska,
1985, 1998), similarity relations (Orowska, 1998), and others
(Abd El-Monsef et al., 2007; Gupta and Patnaik, 2008; Hassa-
nien et al., 2009; Henry and Peters, 2008, 2009; Hurtut et al.,

2008; Meghdadi et al., 2009). Particularly, Peters has used cov-
erings of an universe for establishing the generalized rough set
(Peters and Ramanna, 2007). And an extensive body of re-

search works has been developed (Peters et al., 2007b, 2008;
Peters, 2007a,b; Salama and Abu-Donia, 2006; Salama,
2008a,b,c, 2010). In 1997, Wasilewska defined the topological

rough algebras. Furthermore, Pawlak (2004) in his long paper
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have characterized a measure of roughness making use of the
concept of rough fuzzy sets in 1995. He also suggested some
possible applications of the measure in pattern recognition

and image analysis problems. Some results about rough sets
and fuzzy sets are obtained by Pawlak and Skowron (2007b).

In this paper, we investigate some important and basic is-

sues of generalized rough sets induced by topological struc-
tures. The plan of this paper is as follows.

In Section 2, we recall the basic concepts and properties of

the Pawlak’s rough set theory. In Section 3, some new concepts
and main results are considered in generalized rough sets in-
duced by two topological structures. In Section 4, we define
a measure of roughness based on generalized rough sets with

the new approximations, and prove some properties of the
measure. Finally, we give an example in order to indicate the
use of the measure in Section 5.

2. Basic concepts and properties of the Pawlak’s rough set theory

This section presents a review of some fundamental notions of

rough sets. We refer to Hassanien et al. (2009), Orowska
(1998), Pawlak and Skowron (2007a,b,c), Pawlak (1981a,b,
1991, 2004) for details.

Motivation for rough set theory has come from the need to
represent subsets of an universe in terms of equivalence classes
of a partition of that universe. The partition characterizes a

topological space, called approximation space A= (U,R),
whereU is a set called the universe and R is an equivalence rela-
tion (Orowska, 1985; Pawlak and Skowron, 2007c). The equiv-
alence classes of R are also known as the granules, elementary

sets or blocks; we will use [x]R ˝ U to denote the equivalence
class containing x 2 U. In the approximation space, we con-
sider two operators RðXÞ ¼ fx 2 U : ½x�R \ X – /g and

R(X) = {x 2 U: [x]R ˝ X}, called the lower approximation
and upper approximation of X ˝ U, respectively. Also let
POSRðXÞ ¼ RðXÞ denote the positive region of X,

NEGRðXÞ ¼ U� RðXÞ denote the negative region of X and
BNRðXÞ ¼ RðXÞ � RðXÞ denote the borderline region of X.

The degree of completeness can also be characterized by the

accuracy measure, in which ŒXŒ represents the cardinality of
set X as follows:

aRðXÞ ¼
jRðXÞj
jRðXÞj

; where X – /

Accuracy measures try to express the degree of completeness
of knowledge. aRðXÞ is able to capture how large the bound-

ary region of the data sets is; however, we cannot easily cap-
ture the structure of the knowledge. A fundamental
advantage of rough set theory is its ability to handle a cate-

gory that cannot be sharply defined given a knowledge base.
Characteristics of the potential data sets can be measured
through the rough sets framework. We can measure inexact-
ness and express topological characterization of imprecision

with:

(1) If R(X) „ / and RðX Þ– U , then X is roughly R-

definable.
(2) If R(X) = / and RðX Þ – U , then X is internally R-

undefinable.

(3) If R(X) „ / and RðX Þ ¼ U , then X is externally R-
undefinable.
(4) If R(X) = / and RðX Þ ¼ U , then X is totally R-

undefinable.

We denote the set of all roughly R-definable (resp. inter-

nally R-undefinable, externally R-undefinable and totally R-
undefinable) sets by RD(U) (resp. REUD(U), RUD(U) and
RTUD(U)).

With aRðXÞ and classifications above we can characterize

rough sets by the size of the boundary region and structure.
Rough sets are treated as a special case of relative sets and inte-
grated with the notion of Belnap’s logic (Orowska, 1998).

A topological space (Hurtut et al., 2008) is a pair (U,s) con-
sisting of a set U and family s of subset of U satisfying the fol-
lowing conditions:

(1) /, U 2 s.
(2) s is closed under arbitrary union.
(3) s is closed under finite intersection.

The pair (U,s) is called a topological space, the elements of
U are called points of the space, the subsets of U belonging to s
are called open sets in the space, and the complement of the
subsets of U belonging to s are called closed sets in the space;
the family s of open subsets of U is also called a topology for

U.
Xs ¼

T
fF#U : X#F;F 2 scg is called s-closure of a sub-

set X � U. Evidently, Xs is the smallest closed subset of U

which contains X. Note that X is closed iff X ¼ Xs.
Xs ¼

S
fG#U : G#X;G 2 sg is called the s-interior of a

subset X ˝ U. Evidently, Xs is the union of all open subsets of
U which containing in X. Note that X is open iff X= Xs. And

Xb ¼ Xs � Xs is called the s-boundary of a subset X ˝ U.
Let X be a subset of a topological spaces (U,s). Let Xs, Xs

and Xb be closure, interior, and boundary of X, respectively. X

is exact if Xb = /, otherwise X is rough. It is clear X is exact iff
Xs ¼ Xs. In Pawlak space a subset X ˝ U has two possibilities
rough or exact.

Definition 2.1. Let (U,s) be a topological space defined by a

general relation R, then R-lower (resp. R-upper) approxima-
tion of any non-empty subset X of U is defined as:

RsðXÞ ¼
[
fG 2 s : G#Xg and

RsðXÞ ¼
\
fF 2 sc : F � Xg:

Definition 2.2. A subset X of a topological space (U,s) is called
upper lower upper set (shortly ulu-set) if X ˝ cls (ints(cls(X))).
The complement of ulu-set is uluc-set. We denote the set of
all ulu-sets and uluc-sets by ulu(U) and uluC(U), respectively.
For any topological space (U,s). We have s ˝ ulu(U).
3. Generalized rough sets induced by two topological structures

In this section, we introduce and investigate the concept of
ulu12 (ulu21)-approximation space. Also, we introduce the con-

cepts of ulu12 (ulu21)-lower approximation and ulu12 (ulu21 and
12-21-ulu)-upper approximation and study their properties.

Definition 3.1. Let R be any binary general relation defined on
the universe U. Then we can define two topologies, the subbase
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of the first topology s1 (right topology) is the right neighbor-

hood xR. Also, the subbase of the second topology s2 (left
topology) is the left neighborhood Rx, where xR= {y 2 U:
xRy} and Rx = {y 2 U: yRx}.

Definition 3.2. Let (U,s1,s2) be a generalized topological

approximation space. Then the subset X ˝ U is called: 12-
ulu-set (briefly ulu12-set) if X ˝ cls(ints(cls(X))) and it is called
21-ulu-set (briefly ulu21-set) if X# cls1 ðints2ðcls1ðXÞÞÞ. The

complement of ulu12(ulu21-set) is ulu
c
12ðulu

c
21-setÞ, respectively.

Remark 3.1. The family of all ulu12-sets (resp. ulu21, ulu
c
12 and

uluc21) sets in (U,s1,s2) is denoted by Fulu12(U) (resp. Fulu21(U),
Fuluc12ðUÞ and Fuluc21ðUÞ).

Definition 3.3. Let (U,s1,s2) be a generalized topological
approximation space generated by any binary relation R. Then
the ulu12 -lower and ulu12 -upper approximations of any subset

X ˝ U are defined as: Rulu12ðXÞ ¼ ulu12ðRsðXÞÞ and Rulu12ðXÞ ¼
ulu12ðRsðXÞÞ.

Definition 3.4. Let (U,s1,s2) be a generalized topological
approximation space generated by any binary relation R. Then

the 12-21-ulu -lower and 12-21-ulu-upper approximations of
any subset X ˝ U are defined as: R12-21-uluðXÞ ¼ Rulu12ðXÞ[
Rulu21ðXÞ; R12-21-uluðXÞ ¼ Rulu12ðXÞ \ Rulu21ðXÞ.

Definition 3.5. Let (U,s1,s2) be a generalized topological

approximation space generated by any binary relation R. Then
we can characterize the degree of completeness by a new tool
named 12-21-ulu-accuracy measure defined as follows:

a12-21-uluðXÞ ¼
jR12-21-uluðXÞj
jR12-21-uluðXÞj

; where X – /:

Example 3.1. Let U = {a,b,c,d} be an universe and the

relation R defined on U by R= {(a,a), (a,c), (a,d), (b,b),
(b,d), (c,a), (c,b), (c,d), (d,a)}. Table 1 shows the degree of
accuracy measure aRðXÞ; ulu-accuracy measure aulu12ðXÞ and

12-21-ulu-accuracy measure a12-21-uluðXÞ for some subsets
X ˝ U.

We see from Table 1 that the degree of exactness of these
subsets by using 12-21-ulu-accuracy measure is equal to
100% of the chosen subsets. Consequently 12-21-ulu-accuracy

measure is refinement of the last measures.
The universe U can be divided into 24 regions with respect

to any X ˝ U as follows:
Table 1 Comparison of the three accuracy measures.

X ˝ U aR(X) aulu12 ðXÞ a12-21-ulu(X)

{c} 0 0 1

{d} 1/3 1/2 1

{a,b} 1/3 1/2 1

{a,d} 1/2 1/2 1

{b,c} 0 0 1

{c,d} 1/3 2/3 1

{a,b,c} 1/3 2/3 1

{a,b,d} 3/4 3/4 1
(1) The internal edge of X, Edg(X) = X � R(X).

(2) The s-internal edge of X, EdgsðX Þ ¼ X � RsðX Þ.
(3) The 12-21-ulu-internal edge of X, Edg12-21-uluðX Þ ¼

X � R12-21-uluðX Þ.
(4) The external edge of X, EdgðX Þ ¼ RðX Þ � X .

(5) The s-external edge of X, EdgsðX Þ ¼ RsðX Þ � X .

(6) The 12-21-ulu-external edge of X, Edg12-21-uluðX Þ ¼
R12-21-uluðX Þ � X .

(7) The boundary of X, bðX Þ ¼ RðX Þ � RðX Þ.
(8) The s-boundary of X, X b ¼ RsðX Þ � RsðX Þ.
(9) The 12-21-ulu-boundary of X, X 12-21-ulu ¼ R12-21-uluðX Þ�

R12-21-uluðX Þ.
(10) The exterior of X, X ex ¼ X � RðX Þ.
(11) The s-exterior of X, X ex

s ¼ X � RsðX Þ.
(12) The 12-21-ulu-exterior of X, X ex

12-21-ulu ¼ X � R12-21-uluðX Þ.
(13) RðX Þ � RsðX Þ.
(14) RðX Þ � R12-21-uluðX Þ.
(15) RsðX Þ � RðX Þ.
(16) RsðX Þ � R12-21-uluðX Þ.
(17) R12-21-uluðX Þ � RðX Þ.
(18) R12-21-uluðX Þ � RsðX Þ.
(19) R12-21-uluðX Þ � RsðX Þ.
(20) R12-21-uluðX Þ � RðX Þ.
(21) RsðX Þ � RðX Þ.
(22) RðX Þ � RsðX Þ.
(23) RðX Þ � R12-21-uluðX Þ.
(24) RsðX Þ � R12-21-uluðX Þ.

4. Properties of 12-21-ulu-approximations

In this section, we introduce a generalization for some of the
concepts of rough set theory by using the 12-21-ulu-lower
and the 12-21-ulu-upper approximations.

Definition 4.1. Let (U,s1,s2) be a generalized topological

approximation space generated by any binary relation R, for
any subset X ˝ U. Then we define two membership relations
212-21-ulu and �212�21�ulu, say, 12-21-ulu-strong and 12-21-ulu-

weak memberships, respectively, and defined by:

x 212-21-ulu X iff x 2 R
12-21-ulu

ðXÞ and

x 212-21-ulu X iff x 2 R12-21-ulu ðXÞ:

Remark 4.1. According to Definition 4.1, 12-21-ulu-lower and
12-21-ulu-upper approximations of a set X ˝ U can be rewrit-

ten as: R12-21-uluðAÞ ¼ fx 2 X : x 212-21-ulu Xg, R12-21-uluðXÞ ¼
fx 2 X : x 212-21-ulu Xg.

Remark 4.2. Let (U,s1,s2) be a generalized topological
approximation space generated by any binary relation R, for

any subset X ˝ U. Then x 2 X ^ x 2s X) x 212-21-ulu X and
x 2 X _ x 2s X) x 212-21-ulu X.

The converse of Remark 4.2 may not be true in general as
seen in the following examples.

Example 4.1. In Example 3.1, if X= {a,b,c}, then RðXÞ ¼
fag; RsðXÞ ¼ fa; cg and R12-21-uluðXÞ ¼ fa; b; cg, hence
b 212-21-ulu X, b Rs X and b R X. Also c 2s X, but c 2 X.
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Example 4.2. In Example 3.1, if X= {d}, then RðXÞ ¼
fb; c; dg;RsðXÞ ¼ fb; dg and R12-21-uluðXÞ ¼ fdg. So b 2 X,
b 2s X, but b 212-21-ulu X and c 2 X, but c 2s X.

We investigate 12-21-ulu-rough equality and 12-21-ulu-
rough inclusion based on rough equality and inclusion.

Definition 4.2. Let (U,s1,s2) be a generalized topological
approximation space generated by any binary relation R,

and let X,Y ˝ U be two subsets of U. Then we say that X and Y
are:

(i) 12-21-ulu-roughly bottom equal ðX �12-21-ulu Y Þ if
R12-21-uluðX Þ ¼ R12-21-uluðY Þ.

(ii) 12-21-ulu-roughly top equal (X .12-21-ulu Y) if

R12-21-uluðX Þ ¼ R12-21-uluðY Þ.
(iii) 12-21-ulu-roughly equal (X �12-21-ulu Y) if ðX �12-21-ulu Y Þ

and (X .12-21-ulu Y).
Example 4.3. In Example 3.1, we have the sets {b}, / are 12-
21-ulu-roughly bottom equal and {a,c,d}, U are 12-21-ulu-

roughly top equal.

Definition 4.3. Let (U,s1,s2) be a generalized topological
approximation space generated by any binary relation R,
and let X,Y ˝ U be two subsets of U. Then we say that:

(i) X is 12-21-ulu-roughly bottom included in Y
(X ��12-21-ulu Y) if R12-21-uluðX Þ# R12-21-uluðY Þ.

(ii) X is 12-21-ulu-roughly top included in Y ðX e�12-21-ulu Y Þ
if R12-21-uluðX Þ# R12-21-uluðY Þ.

(iii) X is 12-21-ulu-roughly included in Y ðX e�12-21-ulu Y Þ if

(X ��12-21-ulu Y) and ðX e�12-21-ulu Y Þ.
Example 4.4. In Example 3.1, we have X1 = {b}, X2 = {c},

Y1 = {a,b,d} and Y2 = {a,c,d}, then X1 is 12-21-ulu-roughly
bottom included in X2 and Y1 is 12-21-ulu-roughly top
included in Y2.

Definition 4.4. Let (U,s1,s2) be a generalized topological

approximation space generated by any binary relation R,
and let X ˝ U Then X is called:

(i) 12-21-ulu-definable (12-21-ulu-exact), if R12-21-uluðX Þ ¼
R12-21-uluðX Þ.

(ii) 12-21-ulu-rough, if R12-21-uluðX Þ – R12-21-uluðX Þ.
(iii) Roughly 12-21-ulu-definable, if R12-21-uluðX Þ – / and

R12-21-uluðX Þ – U .
(iv) Internally 12-21-ulu-undefinable, if R12-21-uluðX Þ ¼ / and

R12-21-uluðX Þ – U .

(v) Externally 12-21-ulu-undefinable, if R12-21-uluðX Þ – / and
R12-21-uluðX Þ ¼ U .

(vi) Totally 12-21-ulu-undefinable, if R12-21-uluðX Þ ¼ / and

R12-21-uluðX Þ ¼ U .
Proposition 4.1. Let (U,s1,s2) be a generalized topological

approximation space generated by any binary relation R, then:

(i) Every exact set in U is 12-21-ulu-exact.

(ii) Every s-exact set in U is 12-ulu-exact.
(iii) Every 12-21-ulu-rough set in U is rough.
(iv) Every 12-21-ulu -rough set in U is s-rough.
Proof. Obvious. h

The converse of all parts of Proposition4.1, may not be true

in general as seen in the following example.

Example 4.5. In Example 3.1, the sets {c}, {d}, {a,b}, {a,d},
{b,c}, {c,d}, {a,b,c} and {a,b,d} are 12-21-ulu-exact but
neither s-exact nor exact.

Remark 4.3. Let (U,s1,s2) be a generalized topological
approximation space generated by any binary relation R, then:

(i) The intersection of two 12-21-ulu-exact sets need not be
12-21-ulu-exact set.

(ii) The union of two 12-21-ulu-exact sets need not be 12-21-
ulu-exact set.

A.S. Salama
The following example shows the above remark.

Example 4.6. In Example 3.1, let X1 = {a}, X2 = {c,d}, Y1 =
{b,c} and Y2 = {b,d}, are 12-21-ulu-exact. Then Y1 \ Y2 and

X1 [ X2 are not 12-21-ulu-exact.
5. Medical applications

In this section, we briefly describe the rheumatic fever data sets
used in this study as a topological application of data reduc-

tion (Abd El-Monsef et al., 2007; Salama and Abu-Donia,
2006, 2008; Salama, 2008a,b,c, 2010). No doubt that rheumatic
fever is a very common disease and it has many symptoms that

differ from one patient to another though the diagnosis is the
same. So, we obtained the following example on four rheu-
matic fever patients. All patients were between 9 and 12 years

old with a history of Arthurian which began from age 3 to 5
years. This disease has many symptoms and it usually starts
at young age and persists with the patient all through his life.

Table 3 contains information on seven patients character-

ized by eight symptoms (attributes) which were used to decide
the diagnosis for each patient (decision attribute), where the
attributes are shown in Table 2.

Here we will give the main conventions that we will apply in
this section. These conventions will be indicated by examples.

The structure GMIS ¼ ðU;At; fVa : a 2 Atg; fa; fgB :
B#AtgÞ is called generalized multi-valued information sys-
tem, where U is a non-empty finite set of objects (persons,
planets, cars, digits, etc.) called the universe. Any set X ˝ U
is called a category in U. Va is a collection of value sets corre-

sponding to the attribute a 2 At. fa: U fi Va is a total informa-
tion function such that fa(x) 2 Va. gB is a binary relation
defined on U, which is not necessary to be an equivalence rela-

tion. Here, we consider ga as an example of non-equivalence
relation on U which is defined by: for B 2 At; gB ¼
fðx; yÞ : ½faðxÞ�c # faðyÞg8a 2 B; B#At. Clearly, gB is not

reflexive, not transitive, but it is symmetric. For a 2 At, the
class Aga , is defined by: Aga ¼ fgax : x 2 Ug, where gax ¼
fy : xgayg.

If D is the decision attribute, then the generalized multi-val-
ued information system will take the form GMIS ¼ ðU;
At [D; fVa : a 2 Atg; fa; fgB : B#AtgÞ. In this case, we sug-
gest the following non-equivalence relation for the decision

attribute:



Table 4 Coding medical data.

Attribute

symbol

Refers

to ?

Attribute

values

Refers to ?

a {S,K} a1 S takes s1
a2 K takes k1
a3 Each of {S,K} takes {s2,k2}

b {F,A,E} b1 F takes f1
b2 A takes a1
b3 A takes a2
b4 E takes e1
b5 Each of {F,A,E} takes {f2,a0,e2}

d {R,P,H} d1 R takes r1
d2 P takes p1
d3 H takes h1
d4 Each of {R,P, H} takes {r2,p2,h2}

D Diagnosis d1 Rheumatic arthritis

d2 Rheumatic carditis

d3 Rheumatic arthritis and carditis

Table 2 Single-valued medical information system.

Attribute

symbol

Refers

to ?

Attribute

values

Refers

to ?

S Sex s1 Male

s2 Female

F Pharyngitis f1 Yes

f2 No

A Arthritis a0 No arthritis

a1 Began in the knee

a2 Began in the ankle

R Carditis r1 Affected

r2 Not affected

K Chorea k1 Yes

k2 No

E ESR e1 Normal

e2 High

P Abdominal Pain p1 Absent

p2 Present

H Headache h1 Yes

h2 No

D Diagnosis d1 Rheumatic arthritis

d2 Rheumatic carditis

d3 Rheumatic arthritis

and carditis
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gD ¼ fðx; yÞ : fDðxÞ# fDðyÞg:

The concept of this relation is defined as gDx = {y: xgDy}.
The set of all concepts is defined by Aga ¼ fgax : x 2 Ug. Also,
if D is the decision attribute and for a 2 At, we have
POSaðDÞ ¼ [Y 2 AgD

a� R12-21-uluðYÞ, where
a� R12-21-uluðYÞ ¼ a� Rulu12ðYÞ [ a� Rulu21ðYÞ

where a� Rulu12ðYÞ and a� Rulu21ðYÞ are the lower approxima-
tions defined in Definition 3.3, by using the attribute a 2 At.

Let us take fAga : a 2 Atg as a subbase of a topological
space sa (the set of all finite intersections and arbitrary unions

of members of Aga Þ and fAgB : B#Atg as a subbase of a topo-
logical space sB. The decision makes the topology sD which has
fAgDg as a subbase. Hence, we can say that the set of attributes

B ˝ At is a reduct if sB < sD and B is a minimal, where
sB < sD iff 8G 2 sB; 9G0 2 sD s.t. G ˝ G0, G, G0 „ U.

A set of attribute B depends totally on a set of attributes A

denoted by A) B, if all values sets of attributes from B are
uniquely determined by values sets of attributes from A. Let
Table 3 Rheumatic fever data.

Patients History

S F A R

p1 s2 f1 a1 r1
p2 s1 f1 a1 r1
p3 s2 f1 a2 r1
p4 s1 f1 a1 r2
p5 s1 f2 a0 r1
p6 s1 f1 a1 r1
p7 s1 f1 a2 r1
A and B be subsets of At, we say that B depends on A
in a degree K (0 6 K 6 1), denoted by: A ) KB if K ¼
cðA;BÞ ¼ POSAðBÞj j

Uj j .

If K= 1, B depends totally on A. If K< 1, B depends par-
tially (in a degree K) on A.

If we take A = At and B = D in the above two issues,
where At is the set of condition attributes and D is the decision
attribute, then we say that, D depends totally on At, denoted

by At) D, if all values of attributes from D are uniquely
determined by values sets of attributes from At. Otherwise,
we say that D depends on At in a degree K, denoted by
At)KD.

Table 4 shows the coding of the data, which is described as
follows: Sex (S) = {M,F} = {0,1}, Pharyngitis (F) = {yes,
no} = {1,0}, Arthritis A= {a0,a1,a2} = {0,1,2}, Carditis

R= {affected,not affected} = {1,0}, Chorea K = {yes,no} =
{1,0}, ESR E = normal,high= {0,1}, Abdominal Pain P =
{absent,present} = {0,1} and Headache H= {yes,no} =

{1,0}. The decision attribute is Diagnosis D = {rheumatic
arthritis, rheumatic carditis, rheumatic arthritis and carditis} =
{d1,d2,d3}.

Then we constrain the MIS as shown in Table 5.

From the relation Ra = {(x,y): fa(x) ˝ fa(y)}, where a is an
element of the power set of the set of condition attributes
{a,b,d}. The two subbases of two topologies for each element

of the power set of {a,b,d} are defined as: na
1 ¼ fxRa :
K E P H D

k1 e1 p1 h2 d3
k1 e2 p1 h1 d3
k2 e1 p1 h2 d3
k2 e1 p1 h2 d1
k2 e1 p2 h2 d2
k2 e2 p1 h2 d3
k2 e1 p1 h1 d3



Table 5 Multi-valued information system.

a b d D

p1 {a2} {b1,b2,b4} {d1} {d3}

p2 {a1,a2} {b1,b2} {d1,d3} {d3}

p3 {a3} {b1,b3} {d1} {d3}

p4 {a1} {b1,b2,b4} {d4} {d1}

p5 {a1} {b5} {d1,d2} {d2}

p6 {a1} {b1,b2} {d1} {d3}

p7 {a1} {b1,b3,b4} {d1,d3} {d3}
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x 2 Ug, where xRa = {y: xRay} and na
2 ¼ fRax : x 2 Ug,

where Rax = {y: yRax}. Then according to Table 5 we have

the following couples of topologies:

sa
1 ¼ fU;/;fp2g;fp3g;fp2;p3g;fp1;p2g;fp1;p2;p3g;
fp2;p3;p4;p5;p6;p7g;fp1;p2;p4;p5;p6;p7g;fp2;p4;p5;p6;p7gg;

sa
2 ¼ fU;/;fp1g;fp3g;fp1;p3g;fp4;p5;p6;p7g;fp3;p4;p5;p6;p7g;
fp1;p4;p5;p6;p7g;fp1;p2;p4;p5;p6;p7g;fp2;p3;p4;p5;p6;p7gg;

sb
1 ¼ fU;/;fp5g;fp7g;fp3;p7g;fp1;p4g;fp5;p7g;fp3;p5;p7g;
fp1;p4;p5g;fp1;p4;p5;p7g;fp1;p2;p4;p6gg;

sb
2 ¼ fU;/;fp3;p5;p7g;fp2;p3;p6g;fp2;p3;p6;p7g;fp1;p2;p4;p6g;
fp1;p2;p3;p4;p6g;fp2;p3;p5;p6;p7g;fp1;p2;p4;p5;p6g;
fp1;p2;p3;p4;p5;p6g;fp1;p2;p3;p4;p6;p7gg;

sd
1 ¼ fU;/;fp4g;fp5g;fp2;p7g;fp4;p5g;fp2;p4;p7g;fp2;p5;p7g;
fp2;p4;p5;p7g;fp1;p2;p3;p5;p6;p7gg;

sd
2 ¼ fU;/;fp4g;fp1;p3;p6g;fp1;p3;p4;p6g;fp1;p3;p5;p6g;
fp1;p2;p3;p6;p7g;fp1;p2;p3;p5;p6;p7g;fp1;p3;p4;p5;p6g;
fp1;p2;p3;p4;p6;p7gg

sab
1 ¼ sa

1 \ sb
1 ¼ fU;/g;

sab
2 ¼ sa

2 \ sb
2 ¼ fU;/g;

sad
1 ¼ sa

1 \ sd
1 ¼ fU;/g;

sad
2 ¼ sa

2 \ sd
2 ¼ fU;/g;

sbd
1 ¼ sb

1 \ sd
1 ¼ fU;/;fp5gg;

sbd
2 ¼ sb

2 \ sd
2 ¼ fU;/;fp1;p2;p3;p4;p6;p7gg;

sabd
1 ¼ sa

1 \ sb
1 \ sd

1 ¼ fU;/g;
sabd
2 ¼ sa

2 \ sb
2 \ sd

2 ¼ fU;/g:

Now we will deal with the decision attribute D applying the
relation: gD = {(x,y): D(x) ˝ D(y)}, then the subbase of the

decision topology is nD
1 ¼ fxRD : x 2 Ug ¼ ffp1; p2; p3; p6;

p7g; fp4g; fp5gg. Then the decision topology is given by:
sD = {U,/, {p1,p2,p3,p6,p7}, {p4}, {p5}, {p4,p5}, {p1,p2,p3,p4,p6,
p7}, {p1,p2,p3,p5,p6,p7}}, the complement decision topology is

scD ¼ fU;/; fp4; p5g; fp1; p2; p3; p5; p6; p7g; fp1; p2; p3; p4; p6; p7g;
fp1; p2; p3; p6; p7g; fp5g; fp4gg:

We can observe that sbd
1 6 sD and sbd

2 6 scD, which lead to
{b,d} = {F,A,E,R,P,H} which is the reduct and the core of
our system. This means that we can remove the attributes

{S,K} without losing any information.

6. Conclusion

It is well known that rough set theory has been regarded as a
generalization of classical set theory in one way. Furthermore,
this is an important mathematical tool to deal with uncer-
tainty. As a natural need, it is a fruitful way to extend classical
rough sets to generalized rough sets induced by topological

spaces. In this paper, new lower and upper approximations
are proposed in generalized rough set induced by a topological
structure, and some important properties are obtained. Also,

we define the concept of a rough membership function in gen-
eralized topological approximation spaces. It is a generaliza-
tion of classical rough membership function of Pawlak rough

sets. The rough membership function can be used to analyze
which decision should be made according to a conditional
attribute in decision table.
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