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In this paper, double conformable Laplace’s transform (DCLT) and a few of its properties were studied,
and then combine it with a new method to solve a new type of fractional partial differential equations
called ‘‘Singular Fractional Pseudo-hyperbolic and Pseudo-parabolic Equations”. We observe that this
method is extremely efficient to these equations because we have created an exact solution by taking just
one step at the same time as the other methods need more steps to get the exact solution.
� 2021 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Subject area of (DCLTs) and its attributes are still fresh, some
properties and definitions of fractional calculus were also consid-
ered in Abdeljawad (2015), Alderremy et al. (2018), Atangana
et al. (2015), and Baleanu et al. (2019), Some fractional partial dif-
ferential equations were also solved (Gadain, 2017; Khalil et al.,
2014), many researchers have given their attention to examining
the solutions of fractional linear and nonlinear PDEs by different
methods (Mustafa Inc et al., 2018, 2019; Aliyu, et al., 2019). Along
with these attacks are the Elzaki transform (Elzaki, 2014; Elzaki
and Eman, 2012; Elzaki and Alderremy, 2018), Homotopy pertur-
bation method (Mohamed and Elzaki, 2020), Laplace transforms
(Korkmaz, 2018), and double Laplace transform (Elzaki 2012)
(Fig. 1).

In this theme, we will inaugurate a novel double conformable
Laplace’s transform and a few of its attributes and mix this trans-
form with the new method to figure out the singular fractional
Pseudo-hyperbolic and Pseudo-parabolic equations. The robust-
ness and the effectiveness of the proposed method lies in the fact
that it found the exact solution by taking only one approximation,
while the other methods take a several of approximations (Fig. 2).

We think that the double conformable Laplace’s transform tech-
nique is expanded in the near future to solve a real model problem
that related to Fractional Pseudo-hyperbolic or Pseudo-parabolic
equations in science and engineering such heat and mass transfer
problem (Emmanuel et al., 2018), fluid flow problem, quantum
mechanics, (Aliyu et al., 2019) etc.

Definition 1.1. If X : ½0;1Þ ! R is a function of w; then the
conformable fractional derivative (CFD) with respect to w; then, rth

order (CFD)is defined by:

wDrXðwÞ ¼ lim
s!0

Xðwþ sw1�rÞ �XðwÞ
s

; 8w P 0 ; r 2 ð0;1Þ;
ð1Þ

Definition 1.2. If wDr is the rth order (CFD) with respect to w; then,

ðiÞwDr e
wr
r

h i
¼ e

wr
r ; ðiiÞ wDr cos

wr

r

� �
¼ �sin

wr

r
;

ðiiiÞwDr sin
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Fig. 1. Exact and approximate solutions for Example1.

Fig. 2. Exact and approximate solutions for Example 2.
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Definition 1.3. If Xðu;wÞ; u;w 2 Rþ is a function of two variables
then:

(i) the conformable single Laplace transform (CSLT) with
respect to u; designated by the operator ‘hu Xðu;wÞ½ �, is
defined by:

‘hu Xðu;wÞ½ � ¼ Uðr;wÞ ¼
Z 1

0
e�ru

h
h Xðu;wÞdhu ; ð2Þ

(ii) the (CSLT) with respect to w; of Xðu;wÞ, is,

‘rw Xðu;wÞ½ � ¼ Uðu; vÞ ¼
Z 1

0
e�v

wr
r Xðu;wÞdrw ; ð3Þ

(iii) The conformable double Laplace’s transform (CDLT) of, is,

‘rw‘
h
u Xðu;wÞ½ � ¼ Uðr;vÞ ¼

Z 1

0

Z 1

0
e�ru

h
h �vwr

r Xðu;wÞdrwdhu ; ð4Þ

Note that: ‘rw‘
h
u Xðu;wÞ½ � ¼ ‘hu‘

r
w Xðu;wÞ½ � ¼ Uðr;vÞ
2

Definition 1.4. If Xðu;wÞ; u;w 2 Rþ, is a function of two variables,
then the (CDLT) of fractional partial derivatives are,
‘rw‘
h
u uDhXðu;wÞ½ � ¼ rUðr;vÞ �Uð0;vÞ ; ‘rw‘

h
u wDrXðu;wÞ½ �

¼ vUðr; vÞ �Uðr;0Þ
‘rw‘

h
u uD2

hXðu;wÞ
h i

¼ r2Uðr;vÞ � rUð0;vÞ � uDhUð0;vÞ

‘rw‘
h
u wD2

rXðu;wÞ
h i

¼ v2Uðr;vÞ � vUðr;0Þ � wDrUðr;0Þ
‘rw‘

h
u uDhwDrXðu;wÞ½ � ¼ rvUðr; vÞ � rUðr;0Þ � vUð0;vÞ þUð0;0Þ

ð5Þ
Also, we see the (CDLT) of the following functions,

‘rw‘
h
u e

wr
r þuh

h

h i
¼ 1

ðv � 1Þðr � 1Þ ; ‘rw‘
h
u cos

uh

h

� �

¼ r
vðr2 þ 1Þ ; ‘rw‘

h
u sin

uh

h

� �
¼ 1

vðr2 þ 1Þ
For proof and more details, see [3,13].
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2. Method of solution

To explicate the method of solution, we will think about the fol-
lowing fractional PDE,

wDg
rXðu;wÞ þ RXðu;wÞ þ NXðu;wÞ ¼ f ðu;wÞ0 < r 6 1; u;w > 0;

ð6Þ
With the initial conditions,

Xðu;0Þ ¼ f 1
uh

h

� �
; wDrXðu;0Þ ¼ f 2

uh

h

� �
ð7Þ

g ¼ 1; for a fractional Pseudo-parabolic equation, and g ¼ 2; for
a fractional Pseudo-hyperbolic equation, In this general study, we
put g ¼ 2;wDg

rXðu;wÞ; is the rth, order conformable fractional par-
tial derivative of Xðu;wÞ.R and, N are a linear operator and a non-
linear operator respectively.

To, obtain the result of the Eqs. (6), (7), we get hold of the
(CDLT) of Eq.(6), and (CSLT) of Eq. (7), to obtain,

v2Uðr;vÞ � vUðr;0Þ � wDrUðr; 0Þ
¼ ‘rw‘

h
u f ðu;wÞ � RXðu;wÞ � NXðu;wÞ½ � ð8Þ

And,

Xðr;0Þ ¼ F1ðrÞ ; wDrXðr;0Þ ¼ F2ðrÞ ð9Þ
Let:

Xðu;wÞ ¼
X1
n¼0

Xnðu;wÞ ; ð10Þ

is the a solution of Eq. (6).
After substituting Eq. (9), in Eq. (8), taking the conformable

inverse of (DLT) of Eq. (8), to obtain,

Xðu;wÞ ¼ F
uh

h
;
wr

r

� �

þ ‘rw
� ��1

‘hu
� ��1 1

v2 ‘
r
w‘

h
u f ðu;wÞ � RXðu;wÞ � NXðu;wÞ½ �

� 	

In lodge to obtain the exact solution by selecting only one mea-
sure, we must prefer the best initial iteration X0ðu;wÞ;

if we choose,X0ðu;wÞ ¼ F uh
h ;

wr

r


 �
then, the recursive relation is,

Xnþ1ðu;wÞ ¼ ‘rw
� ��1

‘hu
� ��1 1

v2 ‘
r
w‘

h
u f ðu;wÞ � RXnðu;wÞ � NXnðu;wÞ½ �� 


X0ðu;wÞ ¼ F uh
h ;

wr

r


 �
ð11Þ

And then we can find the solution by using Eqs. (10), (11).

3. Application

To demonstrate the productivity of this technique in solves the
singular fractional Pseudo-hyperbolic and singular fractional
Pseudo-parabolic equations, by accepting just one step, we estab-
lish the previous examples.

Example 1. Consider the singular fractional Pseudo-parabolic
equation,
wDrXðu;wÞ � 1
u
uDh u uDhXðu;wÞð Þð Þ

� 1
u
wuD2

rh u uDhXðu;wÞð Þð Þ

¼ uh

h
cos

wr

r
� 4sin

wr

r
� 4cos

wr

r
ð12Þ
3

with,

Xðu;0Þ ¼ 0 ; ð13Þ
where 0 < r 6 1; 0 < h 6 1; u;w > 0; wDr; uDh are the rth, hth

order conformable fractional partial derivatives respectively of
Xðu;wÞ.

Practicing the same steps mentioned as before to obtain,

v2Uðr;vÞ � vUðr;0Þ ¼ ‘rw‘
h
u
uh

h
cos

wr

r

� �

þ ‘rw‘
h
u
1
u
uDh u uDhXðu;wÞð Þð Þ þ 1

u
wuD2

rh u uDhXðu;wÞð Þð Þ � 4sin
wr

r
� 4cos

wr

r

� �

ð14Þ
By definition 1.4 and the initial condition (13), Eq. (14)

becomes,

Uðr;vÞ ¼ 2
r3 v2 þ 1ð Þ

þ 1
v ‘rw‘

h
u

1
u uDh u uDhXðu;wÞð Þð Þ þ 1

uwuD2
rh u uDhXðu;wÞð Þð Þ

�4sin wr

r � 4cos wr

r

" #

ð15Þ
Getting hold of the conformable inverse of (DLT) of Eq. (15), to

obtain,Xðu;wÞ ¼ xh
h


 �2
sin tr

r þ ‘rw
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�
1
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x wuD2
rh u uDhXðu;wÞð Þð Þ

�4sin wr
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Then the recursive relation is,
Xnþ1ðu;wÞ ¼ ‘rw
� ��1

‘hu
� ��1

1
v ‘

r
w‘

h
u

1
u uDh u uDhXnðu;wÞð Þð Þ þ 1

x wuD2
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" #( )

X0ðu;wÞ ¼ uh
h


 �2
sin wr

r

ð16Þ
The first few components are given by,

X0ðu;wÞ ¼ uh

h

� �2

sin
wr

r
;

X1ðu;wÞ ¼ ‘rw
� ��1

‘hu
� ��1 1

v ‘rw‘
h
u 0½ �

� 	
¼ 0 ; :::

If we use Eq. (10), then the solution of the Eq. (12) is,

Xðu;wÞ ¼ uh

h

� �2

sin
wr

r
;

We can see if h ¼ r ¼ 1; then the exact solution is,
Xðu;wÞ ¼ u2sinw, is bounded.

Example 2. Consider the singular Pseudo-hyperbolic equation,
wD2
rXðu;wÞ � 1

u
uDh u uDhXðu;wÞð Þð Þ � 1

u
wuD2

rh u uDhXðu;wÞð Þð Þ

� 1
2

uh

h

� �
Xðu;wÞ uDhXðu;wÞð Þ þX2ðu;wÞ ¼ uh

h

� �2

e�
wr
r

ð17Þ
With,

Xðu;0Þ ¼ uh

h

� �2

; wDrXðu;0Þ ¼ � uh

h

� �2

; ð18Þ

Using the same steps which we used in example 1, to prevail;
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Uðr;vÞ ¼ 1
v2

2
r3 v2 þ 1ð Þ þ

2v
r3

� 2
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r
w‘

h
u

1
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2
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h


 �
Xðu;wÞ uDhXðu;wÞð Þ �X2ðu;wÞ

2
4

3
5

Getting hold of the conformable inverse of (DLT) of the last
equation to make,

Xðu;wÞ ¼ uh

h
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8<
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Thus, we be able to write down the recursive relations as,

Xnþ1ðu;wÞ ¼ ‘rw
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‘hu
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h
u

1
u uDh u uDhXnðu;wÞð Þð Þ �X2

nðu;wÞ
þ 1

uwuD2
rh u uDhXnðu;wÞð Þð Þ þ 1
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X0ðu;wÞ ¼ uh
h


 �2
e�
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r

And so the first few components are,

X0ðu;wÞ ¼ uh

h

� �2

e�
wr
r ; X1ðu;wÞ ¼ ‘rw

� ��1
‘hu
� ��1 1

v2 ‘
r
w‘

h
u 0½ �

� 	
; :::

Then, the solution of Eq. (17) is,

Xðu;wÞ ¼ uh

h

� �2

e�
wr
r ;

If h ¼ r ¼ 1; then, the exact solution is, Xðu;wÞ ¼ u2e�w: is
bounded.

4. Conclusion

The (CDLT) and a few of its properties were studied, also we
study the (CDLT) of fractional derivatives and few functions, and
then we combine (CDLT) with a new method to solve a new type
of fractional partial differential equations called ‘‘Singular Frac-
tional Pseudo-hyperbolic and Pseudo-parabolic Equations”. This
method is extremely easy and useful to solve these fractional dif-
ferential equations which are related with the engineering and
physical sciences because we get the exact solution by taking just
one step compared with other methods that require several steps
to get the exact solution.

We will look at possibility of tackle fractional Pseudo- elliptic
Equations using this method in the future study.
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