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Abstract This paper studies optical quasi-solitons by the aid of Lie group analysis. Nine types of

nonlinearities are considered here. They are Kerr law, power law, parabolic law, dual-power law,

polynomial law, triple-power law, saturable law, exponential law and log law nonlinearity. A closed

form solution is obtained in each case.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The nonlinear Schrödinger’s equation (NLSE) plays a very

important role in the area of Nonlinear Optics (Biswas and
Konar, 2006; Biswas et al., 2008; Biswas and Milovic, 2010;
Khalique and Biswas, 2009, 2010; Kohl et al., 2008, 2009;

Kudryashov and Loguinova, 2009; Liu et al., 2010; Lü et al.,
2008). This equation is the total backbone of the study of sol-
itons that propagate through optical fibers for trans-oceanic

and trans-continental distances. There are various kinds of
nonlinearities that are studied in this context. In various kinds
of optical fibers, there are these various kinds of optical non-
linearities that appear. The details of these types of nonlinear-

ities are given in the book by Biswas and Konar that was
published in 2006 (Biswas and Konar, 2006). In this paper,
om (A. Biswas).

Saud University.

g by Elsevier

. Production and hosting by Elsev

.003
the focus will be on obtaining the solutions for nine types of
nonlinear media. The perturbed NLSE that will be studied in
this paper appears in the study of optical quasi-solitons.

There are various methods of studying the NLSE that has
been developed in the past couple of decades. Some of these
well known methods are Adomian decomposition method,

He’s variational iteration method, He’s semi-inverse varia-
tional principle, exponential function method and many more.
These methods have turned out to be a blessing in this area of
research. However, one needs to be careful in applying these

methods of integration as pointed out by Kudryashov in
2009 (Kudryashov and Loguinova, 2009). In this paper, the
method of Lie symmetry, also known as Lie group analysis will

be used to carry out the integration of the perturbed NLSE
that governs the study of optical quasi-solitons (Kohl et al.,
2008).
2. Mathematical analysis

The dimensionless form of the NLSE that is going to be stud-
ied in this paper is given by (Biswas andKonar, 2006; Kohl et
al., 2008)
ier B.V. All rights reserved.
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iqt þ aqxx þ bGðjqj2Þ q ¼ 0 ð1Þ

In (1), G is a real-valued algebraic function, where Gðjqj2Þq :
C#C. Considering the complex plane C as a two-dimensional
linear space R2, it can be said that the function Gðjqj2Þ q is k

times continuously differentiable so that one can write (Biswas
and Konar, 2006; Kohl et al., 2009; Kudryashov and Loguino-
va, 2009)

Gðjqj2Þ q 2
[1

m;n¼1
Ckðð�n; nÞ � ð�m;mÞ;R2Þ

In Eq. (1), q is the dependent variable while x and t are the

independent variables that represent space and time respec-
tively. The first term in (1) represents the time evolution term
while the second term is due to the group velocity dispersion
and the third term accounts for nonlinearity that is also known

as the non-Kerr law of nonlinearity. This is a nonlinear partial
differential equation that is not integrable, in general. The
non-integrability is not necessarily related to the nonlinear

term in (1). Higher order dispersion, for example, can also
make the system non-integrable while it still remains Hamilto-
nian. The solutions to (1) for particular forms of G are known

as solitons. These solitons are the outcome of a delicate balance
between dispersion and nonlinearity.

The solution of (1) is given in the form (Biswas and Konar,
2006)

qðx; tÞ ¼ Ag½Bðx� vtÞ�eið�jxþxtþhÞ; ð2Þ

where the function g represents the shape of the soliton that

depends on the type of nonlinearity G(s) in question. Here,
A and B respectively represent the amplitude and width of
the soliton while v is the soliton velocity, j is the soliton fre-

quency, x is the soliton wave number and h is the phase con-
stant for the soliton. Thus,

j ¼ �v ð3Þ

and

x ¼ i

2E

Z 1

�1
qq�t � q�qt
� �

dx; ð4Þ

where in (4) E is the energy of the soliton that is defined in (5)

in the following subsection and q* denotes the complex conju-
gate of q.

2.1. Integrals of motion

An important property of NLSE given by (1) is that it has con-
served quantities also known as Integrals of Motion. In fact, Eq.

(1) has three integrals of motion. They are the energy (E), linear
momentum (M) and Hamiltonian (H) which are respectively gi-
ven by (Biswas and Konar, 2006; Kohl et al., 2008)

E ¼
Z 1

�1
jqj2 dx; ð5Þ

M ¼ i

Z 1

�1
ðq�qx � qq�xÞdx ð6Þ

and

H ¼
Z 1

�1
ajqxj

2 � fðIÞ
h i

dx; ð7Þ
where

fðIÞ ¼
Z I

0

FðnÞdn ð8Þ

with the intensity I ¼ jqj2. The first conserved quantity is also
known as the wave power while mathematically, it is known as
the L2 norm. The Hamiltonian is one of the most fundamental

notions in mechanics and more generally in the theory of con-
servative dynamical systems with finite or even infinite degrees
of freedom. The most useful approach in the soliton theory of

conservative non-integrable Hamiltonian system is a represen-
tation on the plane of conserved quantities namely the Hamil-
tonian-versus-energy diagrams.

3. Perturbation terms

The perturbed NLSE that is going to be studied in this paper is
given by

iqt þ aqxx þ bGðjqj2Þq ¼ kq2xq
�; ð9Þ

where k is the perturbation parameter. This Eq. (9) appears in

the study of optical quasi-solitons (Kohl et al., 2008). In this
paper, a different form of solution structure will be obtained.
This solution form is given by (Khalique and Biswas, 2009,

2010)

qðx; tÞ ¼ /ðxÞeikt ð10Þ

On substituting the form (10), Eq. (9) reduces to the ordinary

differential equation

k/þ a/00 þ bGð/2Þ/ ¼ kð/0Þ2/: ð11Þ

Eq. (11) has a single Lie point symmetry, namely X= o/ox
(Khalique and Biswas, 2009, 2010). This symmetry will be used
to integrate equation (11) once. It can be easily seen that the

two invariants are

u ¼ / ð12Þ

and

v ¼ /0 ð13Þ

Treating u as the independent variable and v as the dependent
variable, (11) can be rewritten as

dv

du
¼ ku

a

� �
v� kuþ bGðu2Þu

a

� �
1

v
: ð14Þ

Integrating (14) yields

v2 ¼ d/
dx

� �2

¼ k
k
� 2b

a
e
k/2

a

Z /

sGðs2Þe�ks2

a dsþ c1 e
k/2

a ; ð15Þ

where c1 is an arbitrary constant of integration. Now, (15) can
be integrated once more to yield

xþ c2 ¼
Z

d/

k
k
� 2b

a
e
k/2

a

R /
sGðs2Þe�ks2

a dsþ c1 e
k/2

a

h i1
2

; ð16Þ

where c2 is the second constant of integration. This equation
will be further analyzed depending on the type of nonlinearity

in the following subsections.
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3.1. Kerr law nonlinearity

The Kerr law of nonlinearity originates from the fact that a
light wave in an optical fiber faces nonlinear responses. Even

though the nonlinear responses are extremely weak, their ef-
fects appear in various ways over long distance of propagation
that is measured in terms of light wavelength. The origin of

nonlinear response is related to the non-harmonic motion of
bound electrons under the influence of an applied field. As a
result the Fourier amplitude of the induced polarization from
the electric dipoles is not linear in the electric field, but involves

higher terms in electric field amplitude (Biswas and Konar,
2006; Kohl et al., 2008, 2009).

For Kerr law,

GðsÞ ¼ s ð17Þ

so that the perturbed NLSE modifies to

iqt þ aqxx þ bjqj2q ¼ kq2xq
� ð18Þ

In this case Eq. (11) modifies to

k/þ a/00 þ b/3 ¼ kð/0Þ2/ ð19Þ

so that Eq. (16) simplifies to

xþ c2 ¼
Z

d/

k
k
þ b

k2
ðk/2 þ aÞ þ c1 e

k/2

a

h i1
2

: ð20Þ

If c1 = 0, (20) integrates to

xþ c2 ¼
ffiffiffi
k

b

r
ln bk/þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bkðbk/2 þ abþ kkÞ

q	 

: ð21Þ
3.2. Power law nonlinearity

The power law nonlinearity arises in various materials, includ-

ing semiconductors. Moreover, this law of nonlinearity arises
in nonlinear plasmas that solves the problem of small K-con-
densation in weak turbulence theory (Biswas and Konar,
2006; Kohl et al., 2008, 2009). In this case,

GðsÞ ¼ sn ð22Þ

and thus the NLSE is

iqt þ aqxx þ bjqj2nq ¼ kq2xq
�: ð23Þ

In (23), it is necessary to have 0 < n < 2 to prevent wave col-

lapse (Biswas and Konar, 2006; Kohl et al., 2009) and, in par-
ticular, n „ 2 to avoid self-focusing singularity (Biswas and
Konar, 2006). In this case Eq. (11) modifies to

k/þ a/00 þ b/2nþ1 ¼ kð/0Þ2/ ð24Þ

so that Eq. (16) simplifies to

xþ c2 ¼
Z

d/

k
k
þ e

k/2

a
b
a
/2nþ2E�n

k/2

a

� �
þ c1

n oh i1
2

; ð25Þ

which cannot be integrated any further. In (25), the En(x) is the
exponential integral that is defined as

EnðxÞ ¼
Z 1

1

e�xt

tn
dt: ð26Þ
3.3. Parabolic law nonlinearity

For the parabolic law,

GðsÞ ¼ sþ k1s
2; ð27Þ

where k1 is a constant. This law is for constant k1 is also known

as the cubic-quintic nonlinearity. The term with k1 is large for
the case of p-toluene sulfonate crystals. It arises in the nonlinear
interaction between Langmuir waves and electrons and de-

scribes the nonlinear interaction between the high frequency
Langmuir waves and the ion-acoustic waves by pondermotive
forces (Biswas and Konar, 2006; Kohl et al., 2008, 2009).

There was little attention paid to the propagation of optical
beams in the fifth order nonlinear media, since no analytic
solutions were known and it seemed that chances of finding
any material with significant fifth order term was slim. How-

ever, recent developments have rekindled interest in this area.
The optical susceptibility of CdSxSe1�x-doped glasses was
experimentally shown to have a considerable v(5), the fifth or-

der susceptibility. It was also demonstrated that there exists a
significant v(5) nonlinearity effect in a transparent glass in in-
tense femtosecond pulses at 620 nm (Biswas and Konar,

2006; Kohl et al., 2008, 2009).
It is necessary to consider nonlinearities higher than the

third order to obtain some knowledge of the diameter of the

self-trapping beam. It was recognized in 1960 s and 1970 s that
saturation of the nonlinear refractive index plays a fundamen-
tal role in the self-trapping phenomenon. Higher order nonlin-
earities arise by retaining the higher order terms in the

nonlinear polarization tensor (Biswas and Konar, 2006; Kohl
et al., 2008, 2009).

The form of the perturbed NLSE here is

iqt þ aqxx þ bðjqj2 þ k1jqj4Þq ¼ kq2xq
�: ð28Þ

In this case Eq. (11) modifies to

k/þ a/00 þ bð/3 þ k1/
5Þ ¼ kð/0Þ2/ ð29Þ

so that Eq. (16) simplifies to

xþc2¼
Z

d/

k
k
þ b

k2
fk/2þagþ bk1

k3
fk2/4þ2ak/2þ2a2gþc1e

k/2

a

h i1
2

:

ð30Þ

For c1 = 0, Eq. (32) reduces to

xþ c2 ¼ �
ig1g2FðRjpÞ

h1h2
ð31Þ

where

R ¼ isinh�1 /
2bkk1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b bk2 � 4a2bk21 � 4kk2k1

� �q
þ 2abk1 þ bk

8><
>:

9>=
>;

1
2

2
664

3
775;

ð32Þ

p ¼
bkþ 2abk1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b bk2 � 4a2bk21 � 4kk2k1
� �q

bkþ 2abk1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b bk2 � 4a2bk21 � 4kk2k1
� �q ; ð33Þ

g1 ¼ 1� 2bkk1/
2

bkþ 2abk1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b bk2 � 4a2bk21 � 4kk2k1
� �q

2
64

3
75

1
2

; ð34Þ
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g2 ¼ 1þ 2bkk1/
2

bkþ 2abk1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b bk2 � 4a2bk21 � 4kk2k1
� �q

2
64

3
75

1
2

; ð35Þ

h1 ¼
ffiffiffi
2
p

k
ffiffiffi
k
p ½bk1ð2a2 þ 2ak/2 þ k2/4Þ þ kfabþ kðb/2 þ kÞg�

1
2;

ð36Þ

h2 ¼
bkk1

bkþ 2abk1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b bk2 � 4a2bk21 � 4kk2k1
� �q

2
64

3
75

1
2

ð37Þ

and F(wŒk) is Jacobi’s elliptic function that is defined as

u ¼ FðwjkÞ ¼
Z w

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 t

p

¼
Z x

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� t2Þð1� k2t2Þ

q ; ð38Þ

where k is the elliptic modulus with 0 < k < 1, w is the ampli-

tude and x = sinw.

3.4. Dual-power law nonlinearity

This model is used to describe the saturation of the nonlinear
refractive index. Also, this serves as a basic model to describe

the solitons in photovoltaic-photorefractive materials such as
LiNbO3. In this case,

GðsÞ ¼ sn þ k2s
2n ð39Þ

so that the NLSE with dual-power law of nonlinearity is given
by (Biswas and Konar, 2006; Kohl et al., 2008, 2009)

iqt þ aqxx þ bðjqj2n þ k2jqj4nÞq ¼ kq2xq
� ð40Þ

so that Eq. (11) in this case reduces to

k/þ a/00 þ bð/2nþ1 þ k2/
4nþ1Þ ¼ kð/0Þ2/: ð41Þ

Therefore Eq. (16) simplifies to

xþ c2 ¼
Z

d/

k
k
þ e

k/2

a
b
a
/2nþ2E�n

k/2

a

� �
þ bk2

a
/4nþ2E�2n

k/2

a

� �
þ c1

n oh i1
2

;

ð42Þ

which once again involves En(x), the exponential integral that
is defined in (26). Eq. (42) cannot be integrated any further.

3.5. Higher order polynomial law nonlinearity

In this section, the type of nonlinearity that is going to be stud-
ied is higher order polynomial law and is given by (Biswas and
Konar, 2006)

GðsÞ ¼ sþ k1s
2 þ k2s

3 ð43Þ

so that the NLSE that is being studied in this section takes the
form

iqt þ aqxx þ ðjqj
2 þ k1jqj4 þ k2jqj6Þq ¼ kq2xq

�: ð44Þ

In this case Eq. (11) reduces to

k/þ a/00 þ bð/3 þ k1/5 þ k2/
7Þ ¼ kð/0Þ2/ ð45Þ
so that Eq. (16) simplifies to

xþ c2 ¼
Z

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1ð/; a; b; k; k1; k2; kÞ

p ; ð46Þ

where

G1ð/; a; b; k; k1; k2; kÞ ¼
k
k
þ b

k2
fk/2 þ ag

	

þ bk1

k3
fk2/4 þ 2ak/2 þ 2a2g þ bk2

k4
fk3/6 þ 3ak2/4

þ6a2k/2 þ 6a3g þ c1 e
k/2

a

i1
2

: ð47Þ

Eq. (46) cannot be integrated further in a closed form.

3.6. Triple power law nonlinearity

In this section, the type of nonlinearity that is going to be stud-
ied is the triple-power law nonlinearity that is given by Biswas

and Konar (2006)

GðsÞ ¼ sn þ k1s
2n þ k2s

3n ð48Þ

so that the NLSE takes the form

iqt þ aqxx þ bðjqj2n þ k1jqj4n þ k2jqj6nÞq ¼ kq2xq
�: ð49Þ

Eq. (11) in this case reduces to

k/þ a/00 þ bð/2nþ1 þ k1/4nþ1 þ k2/
6nþ1Þ ¼ kð/0Þ2/ ð50Þ

so that Eq. (16) simplifies to

xþ c2 ¼
Z

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ð/; a; b; k; k1; k2; kÞ

p ; ð51Þ

where

G2ð/;a;b;k;k1;k2;kÞ ¼
k
k
þ e

k/2

a
b

a
/2nþ2E�n

k/2

a

� ��	

þbk1
a

/4nþ2E�2n
k/2

a

� �
þ bk2

a
/6nþ2E�3n

k/2

a

� �
þ c1

�
1
2

ð52Þ
3.7. Saturable law nonlinearity

In the case of short pulses and high input peak power, the field
induced change of the refractive index cannot be described by
a Kerr type nonlinearity, since it is influenced by higher order
nonlinearities. As a consequence, the optically induced refrac-

tive index change becomes saturated at higher field strength.
This is specially more important in materials with higher non-
linear coefficients, for example, semiconductor doped glasses

and organic polymers in which the saturation of nonlinear
refractive index changes come to play at moderately high
intensities and should be taken into account. Thus, the satura-

ble law of nonlinearity is an important one.
In the case of saturable law nonlinearity, the function F(s) is

given by

GðsÞ ¼ s

1þ ps
; ð53Þ

where p is a non-zero constant. If p = 0, saturable law col-
lapses to Kerr law nonlinearity. In this case, the NLSE is given

by
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iqt þ aqxx þ
bjqj2q

1þ pjqj2
¼ kq2xq

�: ð54Þ

Thus, in this case (11) reduces to

k/þ a/00 þ b/2

1þ p/2
¼ kð/0Þ2/ ð55Þ

so that Eq. (16) simplifies to

xþ c2 ¼
Z

d/

k
k
þ b

pk
þ b

ap2
e

k/2

a þ k
ap

� �
Ei � pk/2þk

ap

� �
þ c1 e

k/2

a

	 
1
2

; ð56Þ

which cannot be integrated in a closed form any further. Here,
in (56), the exponential integral Ei(x) is defined as the exponen-

tial integral for n = 1 or in other words

EiðxÞ ¼ E1ðxÞ ¼
Z 1

1

e�xt

t
dt: ð57Þ
3.8. Exponential law nonlinearity

This case of exponential nonlinearity serves as useful model in

homogenous unmagnetized plasmas and laser produced plas-
mas. When the phase velocity of the slow plasma oscillation
is much smaller than the ion thermal velocity, one can obtain

the adiabatic or quasistatic electron density under the quasi-
neutral approximation. Now, combining the coupling equa-
tion that exhibits the slowly varying complex amplitude
interacting with the low frequency plasma motion one obtains

saturable law of nonlinearity. This saturable law nonlinearity
sometimes serves as an alternate model for the saturable law
nonlinearity since this law also saturates after a finite time

although at a slower rate than the previous model (Biswas
and Konar, 2006). In this case

GðsÞ ¼ 1

r
ð1� e�rsÞ; ð58Þ

where r is a positive constant. The NLSE is given by

iqt þ aqxx þ
bq

r
ð1� e�rjqj

2 Þ ¼ kq2xq
�: ð59Þ

Therefore, Eq. (11) in this case reduces to

k/þ a/00 þ b/
r
ð1� e�r/

2Þ ¼ kð/0Þ2/ ð60Þ

and therefore Eq. (16) simplifies to

xþ c2 ¼
Z

d/

k
k
þ b

rk
� b e�r/2

rðarþkÞ þ c1 e
k/2

a

h i1
2

ð61Þ

and this cannot be simplified further in terms of any elemen-
tary functions.

3.9. Log law nonlinearity

This law arises in various fields of contemporary physics. It al-
lows closed form exact expressions for stationary Gaussian

beams (Gaussons) as well as for periodic and quasiperiodic re-
gimes of the beam evolution. The advantage of this model is
that the radiation from the periodic soliton is absent as the lin-

earized problem has a discrete spectrum only (Biswas and
Konar, 2006; Biswas and Milovic, 2010). In this case,
GðsÞ ¼ log s ð62Þ

so that the NLSE with log law nonlinearity is given by Biswas
and Milovic (2010)

iqt þ aqxx þ bq log jqj2 ¼ kq2xq
� ð63Þ

and therefore (11) reduces to

k/þ a/00 þ 2b ln/ ¼ kð/0Þ2/ ð64Þ

so that (16) reduces to

xþ c2 ¼
Z

d/

k
k
þ 2b

k
ln/� b

k
e
k/2

a Ei � k/2

a

� �
þ c1 e

k/2

a

h i1
2

; ð65Þ

where once again Ei(x) denotes the exponential integral and
(65) cannot be integrated any further.

4. Conclusions

In this paper the stationary solution for optical quasi-solitons
is obtained for nine laws of nonlinearity. The resulting solu-

tions are in quadratures. It is observed that out of these nine
forms of the laws of nonlinearity, only two of the laws yield
closed form solutions although in the implicit form. In future,

the stochastic perturbation terms will be incorportaed and
those results will be published elsewhere.
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