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KEYWORDS Abstract This short article exhibits that there exists critical point of the power for the generalized

function ¢ for a > 0. The present results show that it is long-range dependent if 0 < ¢ < 1 and
short-range dependent when a > 1. My motivation of studying that dependence issue comes from
the power-law type functions in fractal time series. The present results may yet be useful to inves-
tigate fractal behavior of fractal time series from a new point of view.
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1. Introduction

Dependence analysis of functions is an interesting topic. That
is particularly true in time series with long-range dependence
(LRD), (see e.g., Arzano and Calcagni, 2013; Asgari et al.,
2011; Cattani, 2010a,b; Cattani et al., 2012; Lévy Véhel,
2013; Mandelbrot, 2001; Stanley et al., 1993; Yang and
Baleanu, 2013; Yang et al., 2013; Zhao and Ye, 2013), simply
mentioning a few. The particularity in time series with LRD or
in fractal time series in general is power-laws in probability
density function (PDF), power spectrum density (PSD), and
autocorrelation function (ACF) (Li, 2010; Stanley, 1995). By
power-laws, we mean that things one concern about are
described by power functions, for instance, f(f) = At* (1 > 0)
where A4 is a constant and 1 € R (the set of real numbers).
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Functions in the class of #* play a role in the domain of gen-
eralized functions (Rennie, 1982; Kanwal, 2004). Its Fourier
transform has been well studied (Gelfand and Vilenkin,
1964; Lighthill, 1958). However, its correlation dependence
from a view of statistical analysis is rarely seen. This article
aims at providing my analysis of its correlation dependence.
For facilitating the consistence with those in fractal time series,
we are also interested in ¢ for @ > 0, which are decayed
power functions. This article will show that there exists a
critical point for ~“. When a > 1, t* is of short-range depen-
dence (SRD). If 0 < a < 1, t“is of LRD.

2. Analysis and results for r“H(t)

Denote by y(¢) a time series. Its ACF is denoted by r,(7) =
E[y(/)y(t + ©)]. By LRD (Mandelbrot, 2001), one implies

/00C ryy (1) dr = oo. (1)

A typical case of ry(t), which satisfies the above, is a
decayed power function expressed by

r(t) ~et™? (0<b< 1), (2)
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where c¢ is a constant. If

/000 Fyyp (1) drt < 00, 3)

y(t) is of SRD. Note that exponentially decayed ACFs are
trivial in the field of fractal time series for the meaning of SRD.
Denote by S,,(w) the PSD of y(¢). Then,

Su(®) = Flry(2)] = /

—00

o0

ryy(t)e ™ dr. (4)

The case of LRD expressed by (1) implies S,,(0) = oo,
meaning 1/f noise. On the other hand, the SRD case expressed
by (3) means that S),(w) is convergent at w = 0. Both reflect
the statistical dependence of LRD and SRD in the frequency
domain.

Let f{z) =t “H(t), where a > 0 and H(¢) is the Heaviside
unit step function. To discuss its correlation dependence, the
following lemma is needed.

Lemma 1. The Fourier transform of t*H(t) is given by

y 1 inA w R )
F[r'H(1)] = "o €XP {— 3 sgn<ﬂ)]/d\w|

« Hon =]
n(32) |t 5
referring to (Lighthill, 1958) for the proof, also see (Li, 2013).

From Lemma 1, we have the following corollary.

Corollary 1. The Fourier transform of f(t) is given by

a 1 ina ) a
Ft“H(t)] = 7o €XP [ngn (Z)} Ao
. ina 10} a1
= _ == N (=a)
iexp { 5 sgn(zn)}( a)llo|
_ in(1—a)
= exp {*T

Lemma 2. Denote the ACF of f(t) by r(t). Representing ry(t)
by using the convolution (Papoulis, 1977) produces

ry(t) = fr) * f—1), (7)

* . .
where = stands for the convolution operation.

sgn (%)} (—a)l|o] . (6)

Corollary 2. The Fourier transform of f(—t) is given by
FI-0) =exp | Dagn(2) [ Can-n ol @)
L R U ‘ '

Proof. Denote by F(w) the Fourier transform of f{¢). Then, the
Fourier transform of f{(—t) is F(—w). Replacing w in (6) by —®
produces (8). Hence, Corollary 2 holds.

Let Sy(w) be the PSD of f{t). Then, we present the follow-
ing theorem.

Theorem 1. The PSD of f(t) is expressed by

Sy(©) = (1) [(=a) Pl ", 9)

Proof. According to the convolution theorem, one has
Siy(w) = F[f(1)] F[f(—1)]. Therefore, with Corollaries 1 and 2,
we have

FIOTF=0)] = exp | =D sen(2) | (-t

(1 —
X exp {Msgn(%)} (=a)!(=1)" e[
= (=1 [(=a)) Pl
Thus, Theorem 1 holds.
Theorem 2. f(t) is SRD if a > 1 and LRD if 0 < a < 1.
Proof. From (9) in Theorem 1, we see that Sy(w) is convergent
at w = 0 for a > 1, meaning f{¢) is SRD. On the other side, it

is divergent w = 0 if 0 < a < 1, implying f{(¢) is LRD. This
completes the proof.

The ACF of f{¢), rj(t), gives the quantitative description of
how f{#) at time ¢ correlates to the one at ¢+ + t. Thus, suppose
f(t) is a PDF or ACF or PSD of a specific time series.
Theorem 2 may provide a tool to deeply investigate or describe
dynamics of a fractal random function from another point of
view. I shall work at this issue in future.

3. Analysis and results for 7|
Lemma 3. The Fourier transform of |t|* is given by
i : AT —i-1
F(m ) = —2sin (57 ol 7, (10)

where A # —1,-3,... (Lighthill, 1958; Li, 2013).

Corollary 3. The Fourier transform of |t|™* is given by
—a : an a—1
= ) (=)
F(l™) 2sm<2>( allo*". (11)
Proof. Replacing 2 in (10) by —a yields this corollary.
Theorem 3. Let Sgo(w) be the PSD of g(t) = |t| “. Then,
—a . o [am o
See(@) = [F (1] ) = 4sin’ () (=) oo . (12)
Proof. According to the convolution theorem, we have
See(@) = Fg(1)] Flg(=1)] = {Flg()]}". Using (11), we have
{Flg(n]} :4sinz(%)[(fa)!]z\wf(“’]). Therefore, Theorem 3
holds.
Theorem 4. g(t) is LRD if 0 < a < I and it is SRD if a > 1.

Proof. Omitted as it is similar to that in Theorem 2.

4. Concluding remarks

I have explained that there exists a critical point of power for
the class of generalized power functions |7|™ and |7|"“H(z) to
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classify its dependence (LRD or SRD). For 0 < a < 1, they
are of LRD and SRD if ¢ > 1. The potential utility of the pre-
sent results may be in the aspect of deeply investigating the
fractal dynamics of a fractal time series from the point of view
of the dependence behavior of its stochastic models in power
laws, such as PSD, PDF or ACF. Indeed, in addition to fractal
time series, the generalized functions discussed in this research
are also essential in other mathematics branches, such as frac-
tional calculus, where the Mittag—Leffler function, denoted by
E,(—1), plays a role (Jumarie, 2009; Klafter et al., 2012).
E(-i) =3 (1 (13)
! g L(1 +7k)’

see (Gorenflo et al., 2014; Turner, 2013); and references therein
for the Mittag—Leffler function. That is essential in fractional
calculus (Kiryakova, 2010). More about it is given in the
Addendum.
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Appendix A.

In addition to (13) mentioned previously, I would like to show
more cases about the functions of 17 type from the point of
view of fractional calculus.

A.1. Function t“ in Riemann—Liouville integral

Denote by (D," the Riemann-Liouville integral operator of
order v (Miller and Ross, 1993, p. 45). When v > 0 and f{¢)
is a piecewise continuous on (0, c0) and integrable on any finite
subinterval of [0,00), one has the differential of order v of £{(¢),
for ¢t > 0, in the form

D0 =5 [ (6= ) (), (A1)

where I" is the Gamma function.
Taking into account the definition of the convolution stated
by Mikusinski, 1959, one has
tv—l
D Vf(t) = ——* f(t A2
The above gives a case of 1~ “ type functions to the Riemann—
Liouville integral.

A.2. Application of t* to fractional Brownian motion of the
Riemann—Liouville integral type

Denote by B(?), t € (0,00), the standard Brownian motion, see
e.g., Hida, 1980. Then, replacing v with H + 0.5 in (A1) for
0 < H < 1, where H is the Hurst parameter, the fractional
Brownian motion (fBm) of the Riemann—Liouville type, By(?),
is given by

Bat) = oD, " B0) = s [ (- as)

(A3)

The above may be written by

_ dB(1)
T dr ‘TH+1/2)

[H-1/2

BH(Z) (A4)
implying a case of application of 1~ type functions to the fBm
of the Riemann—Liouville type.

A.3. Application of t* to fractional vibrations

An oscillator system with the damping zero may be expressed
by

p
(—2 + wg)x(t) = e¢(1), (AS)
dt

where x(f) is the system response, e(f) is the excitation, and
o > 0 the angular natural frequency. Generalizing (A5) using
the fractional calculus to the form given by

dZ B
(; + wé) x(1) = e(1), (A6)
where # > 0 is a fractional index. When x(0) = x’(0) = 0, e(?)
= 0(#) (Diract-6 function), following Li et al., 2011, we have
the impulse response, denoted by /(?), in the form

h(t) = Lﬁ

T(B)(2w0)"
where Jg_i5(wot) is the Bessel function of the first kind of
order 1/2. As can be seen from (A7), the factor ##~!/2 exhibits
a case of application of ~“ type functions to a class of fractal
vibration phenomena described in Li et al., 2011. One may find
such an application to other fractional vibration phenomenon,
e.g., that explained by Achar et al. (2002, 2004).

The above describes the relationship between the type of
functions of r~“ and fractional calculus from three points. To
be precise, the definition of fractional integral, fBm, and frac-
tional oscillating.

lﬁil/z.]/;,]/z(wot), ﬁ > 07 t = 0, (A7)
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