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In this work,we construct the travelling wave solutions involving parameters of the
(2 + 1)-dimensional dispersive long wave equation, by using a new approach, namely, the (G'/G)-
expansion method, where G = G(¢) satisfies a second order linear ordinary differential equation.
When the parameters are taken special values, the solitary waves are derived from the travelling waves.
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1. Introduction

Searching for explicit solutions of nonlinear evolution equa-
tions by using various methods has become the main goal
for many authors, and many powerful methods to construct
exact solutions of nonlinear evolution equations have been
established and developed such as the tanh-function expansion
and its various extension, the Jacobi elliptic function expan-
sion (Inc and Evans, 2004; Liu et al., 2001; Yan, 2003; Yan
and Zhang, 1999; Zayed et al., 2005, 2007; Abdou, 2007;
Fan, 2000; Bekir, 2008; Chow, 1995; Zhang et al., 2008a,b),
very recently, Wang et al. introduced a new method called
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the %—expansion method (Wang et al., 2008) to look for
travelling wave solutions of nonlinear evolution equations.
The %—expansion method is based on the assumptions that
the travelling wave solutions can be expressed by a polynomial
in %, and that G = G(¢) satisfies a second order linear ordinary
differential equation (ODE). The objective of this paper is to
use a new method which is called the (G'/G)-expansion meth-
od. The paper is arranged as follows. In Section 2, we describe
briefly the %—expansion method. In Sections 3, we apply the
method to the (2 + 1)-dimensional dispersive long wave equa-
tion. In Section 4 some conclusions are given.

2. Description of the &-expansion method

Suppose that a nonlinear equation, say in two independent
variables x, y and ¢, is given by

)=0, ()

where u = u(x, y, t) is an unknown function, P is a polynomial
in u = u(x,y,t) and its various partial derivatives, in which the
highest order derivatives and nonlinear terms are involved. In
the following we give the main steps of the %—expansion
method.
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step 1: Combining the independent variables x and ¢ into
one variable £ = x + y + wt, we suppose that

u(x,y,0) =u(f), E=x+y+wt (2)

The travelling wave variable (2) permits us to reduce Eq. (1) to
an ODE for u = u(&), namely

P(u,wi o i, v wu” i) = 0. (3)

step 2: Suppose that the solution of ODE (3) can be ex-
pressed by a polynomial in % as follows

N
@) =on () @
where G = G(¢) satisfies the second order LODE in the form
G '+ G +uG =0, (5)
O, ...,/ and p are constants to be determined later, o, # 0,

the unwritten part in (4) is also a polynomial in %, but the de-
gree of which is generally equal to or less than m — 1, the po-
sitive integer m can be determined by considering the
homogeneous balance between the highest order derivatives
and nonlinear terms appearing in ODE (3).

step 3: By substituting (4) into Eq. (3) and using the second
order linear ODE (5), collecting all terms with the same order
of % together, the left-hand side of Eq. (3) is converted into an-
other polynomial in % Equating each coefficient of this poly-
nomial to zero yields a set of algebraic equations for o,,,...,4
and pu.

step 4: Assuming that the constants ,,...,4 and u can be
obtained by solving the algebraic equations in step 3, since the
general solutions of the second order LODE (5) have been well
known for us, then substituting a,,, ..., w and the general solu-
tions of Eq. (5) into (4) we have more travelling wave solutions
of the nonlinear evolution Eq. (1).

3. (2 + 1)-Dimensional dispersive long wave equation

In this section, we study the following (2 + 1)-DDLW equa-
tion in the form

Uy + Vi + (uux)y =0, 6)
Ve 4ty + (uv) + Uy, = 0. (7)
The travelling wave variable below

u(x,y, 1) =u(é), &E=x+y+wt (8)

Permits us converting Egs. (6) and (7) into an O.D.E for
u=u(é),{=x+y+wt

VR (% (uZ)’)/ =0, ©)
wv + o+ (u) +u” = 0. (10)
Integrating twice of Eq. (9), we have

u—Q—v—l—%uz:c7 (11)

where ¢ is the integration constant, and the first integrating
constant is taken to zero. And integrating it with respect to ¢
of Eq. (10), once yields

wy+u+uv+u’ =0. (12)

Also first integrating constant of this equation is taken to zero.
On substituting (11) into (12) we obtain

1 3
u"—§u3—§wu2+(w2+c+1)u+wc:0. (13)
Suppose that the solution of O.D.E (13) can be expressed by a
polynomial in (£) as follows:

G/ m

— o= o 14
) = () + (14)
where G = G(¢) satisfies the second order LODE in the form
G+ 2G" + uG = 0, (15)

oy, %, A and u are to be determined later.

By using (14) and (15) and considering the homogeneous
balance between u” and u#® in Eq. (13) we required that
3m = m+ 2 then m = 1. So we can write (14) as

G/
u(é) =oy (E) + . (16)
And therefore
G 3 G 2 G
2 2 G ’ ¢ 2
u- = G + 200 G + . (18)

By using (15) and (16) it is derived that

. G 3 G 2 . G
u/ = 20{1 (6) + 30{1}.(6) + (O(]/Lz + 20(1#) (E)
+ oy A (19)

By substituting (16)—(19) into Eq. (13) and collecting all terms

with the same power of (£) together, the left-hand side of

Eq. (13) is converted into another polynomial in (&). Equating

each coefficient of this polynomial to zero, yields a set of simul-
taneous algebraic equations for ay, o, w, 4, it and ¢ as follows:

1
204 —EO(? =0,

3 3
30y — Eoﬁao - zwocf =0,

3
)’ +oc1,u—§otlocg —3woo + (W 4 ¢+ 1)y =0,

1 3
oy Ap — Eocg - Ewaé + (W4 ¢+ Do +we = 0. (20)
On solving the above algebraic equations above by using the
Maple package, we get
If oy = 2, then

o =2, og=—-AF\/3F P +4u+2c+2,
w=24/32 +4u+2c+2. (22)

By using (22), expression (16) can be written as

u() :2<%> — LT3 +4u+2c+2, (23)

where & = x +y — (22 £ /32" + 4u+ 2¢ + 2)1. Eq. (23) is the
formula of a solution of Eq. (13), and by substituting Eq. (22)
into Eq. (20) we obtain the integration constant c.

On solving the Eq. (15), we deduce after some reduction
that
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G 1 /5
GV
y Cisinh /727 — 4ué + Crcoshin/7> — 4pé\ 7
Cicoshi/ 22— 4ué + Casinhi/ 22— 4ué

2 b
where C; and C, are arbitrary constants. Substituting the gen-
eral solutions of Eq. (15) into (23) we have three types of trav-
elling wave solutions of the DDLW Egs. (6) and (7) as follows:

When 2> — 4u >0

u(@) = /2 —4p
y <C1sinl1% V2 —auE+ Cycosht 02— 4yg’>

Cicosh V2 —Aué + Casinh} 72— 4ué

3
—zii\/3iz+4u+2c+2, (24)

where & =x— (21 % 307 +4pu+2c+ 2)t. C; and C,, are
arbitrary constants. And by substituting (24), into (11) we have
solution of v.

In particular, if C; # 0,C, =0, > 0, u =0, u become

1 3
u(&) = 2,11g/1§z§ - 51 + /322 +4u+2¢+2.

When 2% —4u <0

u(@) =\ 4p -2
N —Csini\/4p — e+ Cacosi/4pu — e
Cicosi/4p— e+ Casin/4p — )3

f%/lj:\/3/12+4u+2c+2. (25)

Also in this case we obtain v by substituting (25), into (11).
When /2 — 4u =0

2C,
u(c) = C,+ G’

where C, and C, are arbitrary constants.
And for oy = —2 we have

dy = AF /3 +4u+2c+2,w
=20+ \/327 +4u+2c+2. (26)

By using (26) we obtain three types of travelling wave solutions
of the DDLW Egs. (6) and (7) as follows:
When 2* —4u >0

u(@) = —\/2* = 4u
" Clsinh% VAP —4uE+ Cgcosh% VAP —4ué
Cicoshin/7* — 4pé + Casinhi\/2* — 4pué

1
+§A"j:\/3/12+4u+2c+2, (27)

where £ =x — (=21 % V322 FAu+ 2+ 2)t. C, and Gy, are
arbitrary constants. And by substituting (24), into (11) we have
solution of v.

In particular, if C; # 0,C, = 0,4 > 0, u = 0, u become

1 1
u() = 20gh 38 + 3 & \/3A2 +4u+2c+2.

When 2> — 41 < 0

u(&) = —\/4u— 2’
—Csin\/4u — J2E+ Cacosi/4pu — )2
x
Cicosi/4u — e+ Casing /4 — e

1
+§ii\/3iz+4u+2c+2. (28)
Also in this case we obtain v by substituting (25), into (11).
When 2 —4u =0
26
G+ GE

u(€)

where C, and C, are arbitrary constants.

4. Conclusion

In this article we have seen that three types of explicit travel-
ling wave solutions of the (2 + 1)-dimensional dispersive long
wave equation are successfully found out by using the %—
expansion method. The solutions of these nonlinear evolution
equations have many potential applications in physics. These
equations are very difficult to be solved by traditional meth-
ods. The performance of this method is reliable, simple and

gives many new exact solutions.
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