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In this work, we apply a new method to construct the travelling wave solutions involving
parameters of the (2 + 1)-dimensional Kadomtsev—Petviashvili equation. When the parameters are
taken special values, the solitary waves are derived from the travelling waves. The travelling wave
solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational
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1. Introduction

The main idea of this method is that the travelling wave

solutions of nonlinear equations can be expressed by a polyno-
mial in (£) where G = G(¢) satisfies the second order linear

ordinary differential equation G” + 2 G’ + uG = 0 where
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¢ = sx + Iy — vt. In recent years, many powerful methods to
construct exact solutions of nonlinear evolution equations
have been established and developed such as the Jacobi
elliptic function expansion, the tanh-method, the truncated
Painleve expansion and the (%)-expansion method (Fan,
2000; Inc and Evans, 2004; Liu et al., 2001; Yan, 2003;
Yan and Zhang, 1999; Zayed et al., 2005; Zhang et al.,
2008; Abdou, 2007; Malfliet, 1992; Parkes and Dulffy,
1996; Wang and Li, 2005; Chow, 1995). The rest of the Let-
ter is organized as follows. In Section 2, we describe briefly
the (%)-expansion method is briefly described. In Section 3,
we apply the method to the (2 + 1)-dimensional Kadomt-
sev—Petviashvili equation is applied. In Section 4, some con-
clusions are given.

2. The (£)-expansion method

Now we describe the (%) expansion method for finding travel-
ling, say in three independent variables x, y and ¢, and is given by

)=0 (1)

P(M, u.\‘7 u_vv ul-, u[[) uxh u,\‘x7 ..
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In the following, we give the main steps of the ( e

method.

step 1:

Combining the independent variables x and ¢ into one variable
¢ = x — vt, we suppose that

u(x, 1) =u(f),

The travelling wave variable (2) permits us to reduce Eq. (1) to
an ODE for G = G(¢), namely

)-expansion

E=sx+1ly—vt (2)

P(u,su', 1, —vid v, —vid" i) =0 (3)
step 2.
Suppose that the solution of ODE (3) can be expressed by a

polynomial in (£) as follows

u(é) = Z % (%) (4)

=
where G = G(¢) satisfies the second order LODE in the form
G"+ G +uG =0 (5)

Oy,- - -4 and p are constants to be determined later o, # 0. The
positive integer “n”’ can be determined by considering the
homogeneous balance between the highest order derivatives

and nonlinear terms appearing in (3)

step 3.
By substituting (4) into Eq. (3) and using the second order lin-
G

ear ODE (5), collecting all terms with the same order (%)

together, the left-hand side of Eq. (3) is converted into another
polynomial in (%) Equating each coefficient of this polyno-
mial to zero yields a set of algebraic equations for a,,...,A
and u. By solving the algebraic equations above we obtain

Qg+ v s V.

3. (2 + 1)-Dimensional Kadomtsev—Petviashvili equation

We consider the (2 + 1)-dimensional Kadomtsev—Petviashvili
equation in the form

6_ax (O,u il cut 4 €0 ctt) + 00,,u =0 (6)

The travelling wave variable given below
u(x, 1) =u(f),

permits us to convert Eq. (7) into an ODE for u = u(¢) and
integrating twice, we have

E=sx+1ly—t (7)

126 1 2 2.3,
c+|—-v u+§su“+syu =0 (8)
s

where C is the integration constant, and the first integrating
constant is taken to zero. Suppose that the solution of ODE

(8) can be expressed by a polynomial in (%) as follow
Gl
=, | —= R 9
)=o) + ©)
where G = G(¢) satisfies the second order LODE in the form
G"+AG' +uG =0 (10)

oy, 00, v and p are to be determined later.

By using (9) and (10) and considering the homogeneous
balance between u”’ and u® in Eq. (8) we required that
2n = n + 2 then n = 2. So we can write (9) as

-2 (2) 10 (S) a

By using (10) and (11) it is derived that

G\* G\’
u" = 60, (E) + (201 + 100, 1) <E>

N 2
+ (80(2,u + 3o A+ 405222) (%)

U

G
+ (60(2)Lu + 2041+ alﬂ,z) (E) + 20002 + oy Au (12)

By substituting (11) and (12) into Eq. (8) and collecting all
terms with the same power of (%/) together, the left-hand side
of Eq. (8) is converted into another polynomial in (£). Equat-
ing each coefficient of this polynomial to zero yields a set of
simultaneous algebraic equations for oy, oy, %, v, 4, ¢t and ¢
as follows:

Ps 1
<T - v) ol +§sa5 +&258° (2002 + o Ap) —c =0

I
(T — v)ocl + sou o + 3253(6012/1;1 + 2041+ ocl/lz) =0

I} 1
(T — v) o + zs(ocf + 2005009 + €25° (8ot + 304+ 4oc2/12) =0
S0 oty + s2s3(2oc1 + 10a4) =0

1
Esag + 662570 =0

By solving the algebraic equations above yields
o = —126%5%, oy = —126%5%A

1
v=- (8625% + &25* 2% + s2ag + 120)

1 24,2 24,02 | 2 (13)
¢ = —55(488 STt 4 2467 A" + o)
1
— 55(16823‘20(0 + 209 + 82s2/12)
A, u and oy are arbitrary constants.
By using (13), expression (11) can be written as
G 2 G
u(é) = —126%° (E) — 126%5%2 (E) + o (14)

And
1
E=x— ; (8625% 4 &25* 2% + s2ag + 1201

Eq. (14) is the formula of a solution of Eq. (8). On solving the
Eq. (10), we deduce after some reduction that

u(@) = /2 —4p
y Cysinhd /2" — 4ué + C> coshi /2% — 4pé K
Cycoshi/2% — 4ué + Cosinh /27 — 4pé

2
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where C; and C, are arbitrary constants. Substituting the gen-
eral solutions of Eq. (10) into (14) we have three types of trav-
elling wave solutions of the (2 + 1)-dimensional Kadomtsev—
Petviashvili Eq. (6) as follows:

Case 1:
When 2> — 4u 0

u(é) = 7128252(/12 —4u)
e sinh}/2* — 4pué + Cy coshi/2* — 4pé
Cycoshin/2% — 4pé + Cysinhi /27 — 4pué

A
— 12825'2}. - 5 + o

where ¢ =x —1(8¢2 + &25* 02 + 200 + Pot. Cy, and C,, are
arbitrary constants.If C; and C, are taken as special values,
the various known results in the literature can be rediscovered,
for instance, if C; > 0, Cf - Cg, then u = u(¢) can be written
as

1/
u(&) = —126%5*(J> — 4p) x sech’ (Q \/szj:#f + 50)

—1288° 0 — % + o

Case 2:
When 2% — 4u <0

u(é) = —126%2 (3% — 4p)
= sind\/dp— 2*¢+ Cycosd/Au— 27¢
Cicosiv/4u — PE+ G sind /4 — 2°¢

J.
— 2‘2 —_—
12¢°5°2 5
Case 3:
When 22 —4u =0
— 12625 yl
u(é) = E5C et ya

(G + sz)z 2
where C; and C, are arbitrary constants.
4. Conclusions

The solutions of these nonlinear evolution equations have
many potential applications in physics. In this paper, we have

seen that three types of travelling solutions of (2 + 1)-dimen-
sional Kadomtsev—Petviashvili equation are successfully found
out by using the (£)-expansion method. The performance of
this method is reliable, simple and gives many new exact

solutions.
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