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Biopesticides are gaining interests as an alternative to chemical-based pesticides for arthropod pest man-
agement. Among the widely-used biopesticides is the entomopathogenic fungi Beauveria bassiana due to
its efficacy and broad range of arthropod hosts. Although the general mechanisms of infection by B. bassi-
ana are known, the underlying complexity of molecular mechanisms at each infection stage is largely not
well-understood. Characterising the mechanisms of pathogenicity allows for a more effective pest control
by synergising between multiple pesticides or biopesticides without overlapping modes of action and by
characterising novel toxic molecules that can expand the biopesticide arsenal. Systems biology refers to a
large scale, high-throughput analysis of biological molecules at the systemic level. It incorporates the
‘omics’ methods, allowing identification of genes (genomics), along with their RNA (transcriptomics),
proteins (proteomics) and metabolites (metabolomics) expression levels. The high-throughput research
approach accelerates the process of characterising pathogenicity. The use of omics is a powerful tool
to drive the discovery of the complex process of B. bassiana infections. This review categorises infection
processes into distinct steps, and presents the overview of the genes, proteins and metabolite expressions
relevant for the B. bassiana pathogenicity.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Arthropod pests have been a significant threat to the agricul-
tural productivity and human health worldwide. Different arthro-
pod pests attack different types of crops, causing serious
damages to crop yield globally. Rice stem borers, being the most
significant pest to rice crops, inflicted between 5 and 10% yield loss
to all rice-producing regions worldwide (Savary et al., 2019). In
Southeast Asia, 54, 388 ha of paddy lands were decimated by
arthropod pest colonisation (AFSIS, 2018). Other insects like mos-
quitoes act as disease vectors, transmitting diseases including
lethal ones such as malaria and dengue. Malaria had the most sev-
ere mortality rate, with 435,000 deaths reported worldwide in
2017 (WHO, 2018). Meanwhile, dengue rapidly evolved and
became widespread over a few decades, with four serotypes
increasing to ten serotypes in 1990 and 2015, respectively (Guo
et al., 2017), and with approximately 390 million dengue infections
annually (Bhatt et al., 2013).

The conventional pest management strategy using broad-range
chemical pesticides looms with concerns. Most notably, the use of
excessive broad-range chemical pesticides to control brown plan-
thopper, Nilaparvata lugens in rice led to the decimation of its nat-
ural enemies, consequently causing an even greater surge of
outbreaks following the use of the pesticides (Way and Heong,
1994). Furthermore, certain chemical pesticides also pose danger-
ous risks to the ecosystem by disrupting food chains or being haz-
ardous to human health. An example is
dichlorodiphenyltrichloroethane (DDT). It persists for a long time
in the environment, accumulating in the food chain and tissues
of living organisms, and it has been found later to be carcinogenic
(Turusov et al., 2002).

Thus, with the rising concerns over the use of chemical-based
pesticides, the pest management research is diverting towards a
more sustainable and safer approach, such as biopesticides. Biopes-
ticides are biologically-based pesticides that can be either toxic
molecules harvested from entomopathogenic microbe cultures or
live entomopathogenic microbes (EPMs) included in the pesticide
formulations as mycoinsecticides (Senthin-Nathan, 2015). Various
biopesticides have been developed from various EPMs with vary-
ing degree of pathogenicity for targeted arthropod pests (Li et al.,
2010).

Beauveria bassiana is a well-established biological control agent
with a broad range of efficacy (Faria and Wraight, 2007). Further-
more, B. bassiana can colonise the soil or plants as a saprophyte
or an endophyte, respectively (Boomsma et al., 2014). Conse-
quently, B. bassiana is capable of long-term protection with mini-
mal applications, effectively reducing insecticide application
costs, and benefitting both farmers and consumers. However, to
assess whether B. bassiana can be an effective and sustainable
option for managing arthropod pests, it is crucial to understand
its mechanisms of pathogenicity at the molecular level.

The advancement of molecular biology has led to a new
approach termed ‘‘systems biology” has been developed, with a
promising capacity to holistically understand an EPM’s mecha-
nisms of pathogenicity compared to the conventional reductionist
approach. Systems biology employs omics technologies at the level
of genes (genomics), RNA transcripts (transcriptomics), proteins
(proteomics), and metabolites (metabolomics), as well as bioinfor-
matics to produce a snapshot of the total expression of the mole-
cules from the samples and infer how these molecules interact
2

with one another to produce a phenotype (Tini et al., 2017).
Through omics, new models can be produced from the wealth of
data and thus, new hypotheses can be tested. This review aims
to discuss how the systems biology approach using omics tech-
niques can accelerate the characterisation of the mechanisms of
pathogenicity of EPMs. With B. bassiana as an example, this review
highlights how the key genes, proteins and metabolites relevant to
pathogenesis could be identified through high-throughput
analysis.
2. Infection process of B. bassiana

B. bassiana shares common mechanisms of pathogenicity with
other entomopathogenic fungi (EPF). The infection process of B.
bassiana can be broadly divided into three stages: (1) host arthro-
pod adhesion; (2) penetration of arthropod cuticle; and (3) arthro-
pod haemocoel colonisation (Fig. 1) (Hajek and St. Leger, 1994;
Wojda et al., 2009). At each stage of infection, B. bassiana adapts
by changing its structure to efficiently overcome the host’s
defences (Hajek and St. Leger, 1994). The overview of relevant
genes, proteins and metabolites for each stage is summarised in
Table 1.

Several literature reviews had discussed B. bassiana pathogenic-
ity; however, much of the knowledge of the genes were acquired
from gene-knockout studies and enzymatic assays performed with
low-throughput analyses (Butt et al., 2016; Valero-Jiménez et al.,
2016). The more recent studies that applied omics methods found
similar genes reported in the gene-knockout studies. Moreover,
these studies have reported an involvement of additional genes,
proteins, and metabolites prevalent at a particular stage of infec-
tion which were not previously reported (Fig. 2).
3. Host adhesion

The aerial conidia of B. bassiana facilitate adhesion to insect
cuticles through hydrophobic interactions (Boucias et al., 1988).
To facilitate adhesion, the aerial conidia are coated with hydropho-
bins which form a hydrophobic coating (Holder and Keyhani,
2005). B. bassiana expresses several genes that play a role in lipid
homeostasis which influences the hydrophobicity of its conidia.

Transcriptomics analyses of B. bassiana showed an up-
regulation of gene expressions for Metarhizium adhesin-like pro-
tein 1, 2 (MAD1, MAD2), and hydrophobins (Chen et al., 2018;
Lai et al., 2017; Zhou et al., 2018). Adhesins and hydrophobins
are vital for B. bassiana to attach itself to the insect’s cuticle via
hydrophobic interactions (Holder and Keyhani, 2005; Wang and
St. Leger, 2007a). Furthermore, the studies have also reported an
over-expression of mammalian-like perilipin 1 (MPL1) and
CFEM-domain containing genes (Chen et al., 2018; Wang et al.,
2017). MPL1 facilitates lipid transport and storage in the conidia
while maintaining the lipid homeostasis of fungus. The deletion
of the MPL1 gene leads to reduced appressoria turgor pressure
which impairs the adhesiveness of B. bassiana on hydrophobic sur-
faces (Wang and St. Leger, 2007b). CFEM-domain genes are unique
to fungi, sharing a commonly conserved eight-cysteine residue
(Kulkarni et al., 2003). CFEM domain-containing proteins have
roles in the surface sensing and signalling for fungal biological pro-
cesses associated with pathogenesis, including conidial germina-
tion and appressorium formation (Sabnam and Roy Barman,



Fig. 1. Overview of the mechanism of Beauveria bassiana pathogenicity. (A) B. bassiana attaches itself to insect host via hydrophobic interactions. (B) B. bassiana modifies its
structure for forming appresorium that secretes of chitin degrading enzymes and exerting mechanical pressure to breach the cuticle. (C) Host cuticle penetration and
germination of B. bassiana inside insect procuticle. (D) Formation of blastospores, invasion of haemocoel and secretion of toxic molecules.
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2017). However, further characterisation of each of the CFEM
domain-containing genes is necessary to elucidate the specific
roles of each genes with regards to host adhesion.

Proteomic studies have reported secretion of proteins related to
insect host adhesion. B. bassiana secretes sphingomyelin phospho-
diesterase and fasciclin domain-containing proteins upon contact
with insect’s cuticles (Dionisio et al., 2016; Santi et al., 2018). Sph-
ingomyelin phosphodiesterase is a lipase that has a role in sphin-
golipid metabolism on the cell membranes (Feng et al., 2011). In
fungi, sphingomyelin phosphodiesterase shares a homology with
acid sphingomyelinases which can affect the composition of sphin-
golipids on biological membranes (de Bekker et al., 2015). The
extracellular secretion of sphingomyelin phosphodiesterase by B.
bassiana suggests its role in disrupting the biological membrane
of the insect host. Fasciclin domain-containing proteins are present
across different species, mediating cellular adhesion (Miyazaki
et al., 2007). In phytopathogenic fungi, Magnaporthe oryzae, fasci-
clin plays a role in the conidial adhesion to a plant’s cell wall
(Liu et al., 2009). The over-expression of this protein in B. bassiana
suggests a similar role of adhesion onto insect hosts.

4. Germination and cell body differentiation

Upon adhesion, the conidia of B. bassiana begin to germinate
and develop appressoria for cuticular penetration (Hajek and St.
Leger, 1994). The appressorium structure enables mechanical pres-
sure and enzymatic digestion to function synergistically on a much
smaller surface area, thus increasing penetration efficiency
(Chandler, 2017; Singh et al., 2017). As the penetration progresses,
B. bassiana germinates its hyphae through the cracks inside the
insect’s exoskeleton and produces secondary hyphal bodies inside
the cuticular layer of the insect host. In the haemocoel, B. bassiana
is exposed to a hyperosmotic environment. Therefore, it switches
from hyphae to blastospores which are more hydrophilic, motile
and better adapted for host immune evasion (Holder et al., 2007;
Ortiz-Urquiza and Keyhani, 2016).

Several genes related to cell wall remodelling and signalling
were over-expressed throughout B. bassiana infection. Notably,
3

several cell wall protein-conferring genes, chitin synthase and b-
1,3-glucanase were up-regulated in previous transcriptomic stud-
ies (Chen et al., 2018; Chu et al., 2016; Lai et al., 2017). Cell wall
protein-conferring genes are responsible for the building blocks
of B. bassiana cell wall. Chitin synthases are involved in producing
chitin which is a vital component of the cell wall (Tartar et al.,
2005) whereas b-1,3-glucanases are involved in cell wall softening,
hence allowing germination (Mouyna et al., 2013). The B. bassiana
signalling-related genes, mitogen-activated-protein kinases
(MAPKs) and osmosensor Mos1 are vital for the cell body differen-
tiation in fungi (Chen et al., 2018; Lai et al., 2017; Zhou et al., 2018).
Two MAPK genes vital for B. bassianawere identified from previous
omics studies: protein kinase A (PKA) and Metarhizium anisopliae
HOG1 (MaHOG1) genes. The expression of PKA, MaHOG1 and
Mos1 have been found to be vital for appressorium and blastospore
formation, and the disruption of these genes has been linked with
the delayed cell body differentiation and reduced pathogenicity
(Jin et al., 2012; Luo et al., 2012).

5. Cuticle penetration

Insect cuticles consist of non-polar hydrocarbons and numerous
components of cuticular proteins that act as a physical barrier
against microbial infection. The outermost layer, the epicuticle, is
rich in lipids and the procuticle layer is rich in chitin and sclero-
tised proteins (Ortiz-Urquiza and Keyhani, 2013). An appressorium
serves as the site at which B. bassiana unleashes its arsenal of
hydrolytic enzymes to degrade and penetrate the insect’s cuticle
(Samuels et al., 2016). Once the epicuticle layer is breached, B.
bassiana germinates hyphae which penetrate through the cracks
and into the procuticle layer (Hajek and St. Leger, 1994). The pen-
etrating hyphae not only continue to secrete hydrolytic enzymes,
but also begin to release defensive molecules against the insect
host’s immune responses (Butt et al., 2016). The digested proteins
and hydrocarbons from the cuticle serve as a nutrient source for
further hyphal growth (Pedrini et al., 2013). Moreover, these
hydrolytic enzymes are also necessary for detoxifying antimicro-
bial compounds from quinones, alkanes, lipids, and free fatty acids



Table 1
Overview of genes, proteins and metabolites conferring Beauveria bassiana pathogenesis.

Gene/protein/metabolite Role Reported In References

CFEM domain-containing protein Cuticle adhesion Transcriptomics Chen et al. (2018), Wang et al. (2017)
Fasciclin domain-containing protein Cuticle adhesion Proteomics Santi et al. (2018)
Hydrophobin Cuticle adhesion Transcriptomics Chu et al. (2016), Wang et al. (2017)
Mammalian-like perilipin 1 (MPL1) Cuticle adhesion Transcriptomics Lai et al. (2017)
Metarhizium anisopliae adhesin-like protein (MAD1) Cuticle adhesion Transcriptomics (Chen et al., 2018), Chu et al. (2016), Lai et al. (2017), Wang

et al. (2017)
Metarhizium anisopliae adhesin-like protein (MAD2) Cuticle adhesion Transcriptomics Wang et al. (2017)
Cell wall proteins Cell wall remodelling Transcriptomics Chu et al. (2016), Lai et al. (2017), Wang et al. (2017)
Chitin synthase Cell wall remodelling Transcriptomics Lai et al. (2017)
b-1,3-glucanase Cell wall remodelling Transcriptomics Lai et al. (2017)
Metarhizium anisopliae HOG 1 (MaHOG1) Signalling Transcriptomics (Chen et al., 2018)
Osmosensor protein MOS1 (Mos1) Signalling Transcriptomics (Chen et al., 2018), Lai et al. (2017)
Oxylipin Signalling; Stress

tolerance
Metabolomics (Zhang et al., 2016)

Protein Kinase A Signalling Transcriptomics (Chen et al., 2018), Lai et al. (2017)
Carboxypeptidase Cuticle penetration Transcriptomics Lai et al. (2017)
Cytochrome P450 (CYP) Cuticle penetration; Host

immune defence
Transcriptomics;
Proteomics

Lai et al. (2017)

GH18 Chitinase Cuticle penetration Transcriptomics;
Proteomics

Chu et al. (2016), (Chen et al., 2018), Dionisio et al. (2016),
Lai et al. (2017), Santi et al. (2018),

Subtilisin-like Pr1A Cuticle penetration Transcriptomics;
Proteomics

Chu et al. (2016), Dionisio et al. (2016), (Zhou et al., 2018)

Subtilisin-like Pr1B Cuticle penetration Transcriptomics;
Proteomics

Chu et al. (2016), Dionisio et al. (2016), (Zhou et al., 2018)

Subtilisin-like Spm1 Cuticle penetration Proteomics Dionisio et al. (2016)
Catalase Antioxidative enzymes;

Stress tolerance
Transcriptomics;
Proteomics

(Chen et al., 2018), Chu et al. (2016), Santi et al. (2018)

Flavin adenine dinucleotide-dependent
oxidoreductase (FOXRED1)

Antioxidative enzymes;
Stress tolerance

Proteomics Santi et al. (2018)

Glutathione S-transferase (GST) Antioxidative enzymes;
Stress tolerance

Transcriptomics Lai et al. (2017)

Peroxidases (POX) Antioxidative enzymes;
Stress tolerance

Proteomics Dionisio et al. (2016)

Superoxide dismutase (SOD) Antioxidative enzymes;
Stress tolerance

Transcriptomics Lai et al. (2017)

Thioredoxin Antioxidative enzymes;
Stress tolerance

Transcriptomics (Chen et al., 2018), Lai et al. (2017)

Thioredoxin reductase Antioxidative enzymes;
Stress tolerance

Proteomics Dionisio et al. (2016)

Heat shock protein 30 (HSP30) Stress tolerance Transcriptomics Chu et al. (2016)
Heat shock protein 40 (HSP40) Stress tolerance Transcriptomics Chu et al. (2016)
Heat shock protein 70 (HSP70) Stress tolerance Transcriptomics;

Proteomics
Chu et al. (2016)

ATP binding casette (ABC) transporter Host immune defence Transcriptomics Lai et al. (2017)
Polyketide synthase (PKS) Host immune defence Transcriptomics Lai et al. (2017)
Small secreted cysteine-rich proteins with LysM

binding domain (SSCP-LysM)
Host immune defence Transcriptomics;

Proteomics
Dionisio et al. (2016), Lai et al. (2017)

Beauvericin Toxin Metabolomics de Bekker et al. (2013), (Zhang et al., 2016)
Beauverolide Toxin Metabolomics de Bekker et al. (2013), (Zhang et al., 2016)
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commonly present in the epicuticle layer (Wang and Wang, 2017).
These antimicrobial compounds could inhibit spore germination
and fungal growth, thus preventing successful infection.

Several proteases, chitinases, carboxypeptidases, and lipases
have been reported from both transcriptomics and proteomics
analyses pertinent to cuticle penetration. Among the more notable
ones are the expression of subtilisin-like protease (Pr) isoform 1A
(Pr1A) and 1B (Pr1B), GH18 family chitinases, and cytochrome
P450s (CYPs) which have been consistently found in proteomic
and transcriptomic studies. Pr1 family proteins are extracellular
cuticle degrading enzymes that are vital to penetrate the insect’s
exoskeleton (Wang and Wang, 2017). Expectedly, the over-
expression of Pr1A and Pr1B genes were correlated with the
increased insect killing ability of M. anisopliae and B. bassiana
(Fang et al., 2009; St. Leger et al., 1996). GH18 chitinases serve to
degrade and derive nutrient from chitin while also vital for facili-
tating the growth of an entomopathogenic fungi (Hartl et al.,
2012; Mondal et al., 2016). The analysis of B. bassiana genome
has shown high abundance of GH18 chitinase genes (Xiao et al.,
2012) which correlate to the abundance of different types of
4

GH18 chitinases in the transcriptomic and proteomic studies
(Chen et al., 2018; Dionisio et al., 2016; Lai et al., 2017; Santi
et al., 2018). CYPs are a superfamily of monooxygenases that
hydroxylate xenobiotic compounds, including alkanes and fatty
acids (Lin et al., 2011). Their expression has been found to be
induced by the presence of insect lipids, such as the cuticles (Lin
et al., 2011; Zhang et al., 2012) and demonstrated to have
a role in detoxifying the insect host’s toxic molecules (Xing et al.,
2017).
6. Stress response and immune evasion

Successful cuticle penetration allows B. bassiana an access to the
host’s haemocoel. To prevent colonisation inside the haemolymph,
the insect host responds to the breach in the haemocoel by activat-
ing melanisation, and releasing protease inhibitors, antimicrobial
peptides (AMPs), and reactive oxygen species (ROS) (Butt et al.,
2016; Ortiz-Urquiza and Keyhani, 2016; Valero-Jiménez et al.,
2016).



Fig. 2. Mechanism of B. bassiana pathogenicity as elucidated from transcriptomics, proteomics and metabolomic studies. ABC, ATP-binding cassette; CYP, cytochrome P450;
DLD, dihyrolipoly dehydrogenase; FOXRED1, flavin adenine dinucleotide-dependent oxidoreductase; GST, glutathione S-transferase; HSP, heat shock protein; MAD1,
Metarhizium anisopliae adhesin-like protein 1; MAD2, Metarhizium anisopliae adhesin-like protein 2; MaHOG1, Metarhizium anisopliae HOG1; MOS1, Metarhizium anisopliae
osmosensor; MPL1, mammalian-like perilipin; PKA, protein kinase A; Pr1A, pathogenesis-related protein Pr1A; Pr1B, pathogenesis-related protein Pr1B; SSCP-LysM, small
secreted cysteine-rich proteins.
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B. bassiana overcomes the host insect defences by expressing
genes related to stress management. These are produced as early
as the cuticle penetration stage. Furthermore, genes related to
immune evasion are also upregulated upon breaching into the host
insect’s haemocoel. During the cuticle penetration and haemocoel
colonisation stage, several anti-oxidative enzyme-conferring
genes, including glutathione S-transferases (GSTs), superoxide dis-
mutase (SODs), thioredoxins, catalases, oxidoreductases, and per-
oxidases are over-expressed (Chen et al., 2018; Chu et al., 2016;
Lai et al., 2017; Santi et al., 2018). Additionally, the expression of
several types of heat shock proteins (HSPs) are also significantly
increased. The anti-oxidative enzymes protect the fungi against
the oxidative stress from the increased ROS as a result of the insect
host’s defence response (Ortiz-Urquiza and Keyhani, 2016). HSPs
serve as protein chaperones that protect the integrity of the inter-
nal cellular structure against various forms of stress. Moreover, the
over-expression of signalling genes from the aforementioned
MaHOG1, PKA, and MOS1 is vital for the B. bassiana survivability
inside the haemocoel. Besides regulating the formation of blas-
tospores, the increased expression of these signalling genes is also
linked with the increased tolerance to osmotic shock to survive
under high osmotic pressure (Jin et al., 2012; Wang et al., 2008).

Furthermore, there is an up-regulation of polyketide synthase
(PKS), small secreted cysteine rich proteins (SSCPs) with LysM
domain, and ATP binding cassette (ABC) transporters at the cutic-
ular and haemocoel stages (Lai et al., 2017). PKS synthesises oos-
porein that inhibits polyphenol oxidase (PPO) activity, which in
turn, suppresses anti-fungal peptide expression (Feng et al.,
2015). In addition to the defence against host immune response,
PKS is involved in the synthesis of toxic metabolites secreted by
5

B. bassiana (Chandler, 2017). SSCPs with LysM domain have yet
reported any established role in the B. bassiana pathogenicity.
However, the expression of these SSCPs has been found to be cor-
related with the suppression of chitin-triggered immunity by the
host plants against phytopathogenic fungi (Mentlak et al., 2012).
The ABC transporters are multidrug efflux pumps which protect
the fungi against a range of toxic compounds (Morschhäuser,
2010). Thus, the increased expression of ABC transporter genes
may serve to protect the fungi against harmful host’s molecules.
The cell wall remodelling genes discussed previously also play
important roles in host immune evasion. The increased activities
of b-1,3-glucanase but lowered expression of chitin synthase genes
inside the haemocoel (Lai et al., 2017) may be associated with
removing all presence of antigenic compounds, such as galac-
tomannan and chitin, thus allowing the evasion of host insect
defences.

7. Toxin production

B. bassiana also produces toxic secondary metabolites, including
beauverolides, bassianolide, beauvericin, oosporeins, tenellins, and
isarolides which are responsible for insect cell cytotoxicity
(Chandler, 2017). Each of these metabolites has different degrees
of toxicity that depends on the insect host. For example, bassiano-
lide contributes significantly to the pathogenicity of the greater
wax moth (Galleria mellonella), beet armyworm (Spodoptera exi-
gua), and corn earworm (Helicoverpa zea), but tenellin and beau-
vericin do not (Butt et al., 2016).

The over-expression of PKS gene in the haemocoel as men-
tioned previously is involved in oosporein biosynthesis (Lai et al.,
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2017). However, it was noted that the expression of genes related
to beauvericin, bassianolide, and tenellin biosynthesis was not sig-
nificantly increased in the transcriptomic studies although the
genes were already characterised and annotated in the B. bassiana
genome (Xiao et al., 2012). In contrast, the metabolomic studies on
B. bassiana have confirmed the expression of toxic secondary
metabolites. Interestingly, B. bassiana seems to be able to distin-
guish between living and dead hosts. It secretes a significantly
higher amount of beauverolides in the presence of live insect tis-
sues compared to dead tissues (de Bekker et al., 2013). Besides
that, the presence of pupae extract yielded no significant difference
for the beauvericin and beauverolide secretion compared to the
minimal media control (Luo et al., 2015). The lack of toxins pro-
duced by B. bassiana in the presence of the cuticular extract is
expected as these toxins are released by the fungus inside an
insect’s haemocoel (Lacey et al., 2015; Singh et al., 2017).
8. Conclusion

The application of omics in B. bassiana illustrates the big picture
of the plethora of biological processes at work during pathogenesis
and the modulated expressions at each stage of the attack (Table 1).
Overall, a single omics approach is insufficient to capture the com-
plexity of B. bassiana’s mechanism of pathogenesis. An integrated
omics approach is necessary to elucidate an in-depth and broad
view of the complete expressions of genes, proteins, and secondary
metabolites throughout each stage of infection.

It must be noted that some gene expressions do not correlate
well with their corresponding protein and metabolite expressions.
For example, the majority of the toxic secondary metabolite
biosynthesis related genes were not significantly overexpressed
(Chen et al., 2018; Lai et al., 2017; Zhou et al., 2018) but the corre-
sponding metabolites were found in abundance in metabolomic
studies (de Bekker et al., 2013; Luo et al., 2015). This contradiction
can be attributed to the difference in samplings, and the host dif-
ferences that could impact the expression patterns for genes, pro-
teins, and metabolites reported in the omics studies. Therefore, to
acquire a more precise, systemic overview of the modulation of the
genes, proteins, and metabolites of B. bassiana during an infection
process, it is imperative that the experimental designs to closely
match each other studies in terms of the insect host species, the
developmental stage during experiments, and the timing of sam-
pling. Ideally, the transcriptomics, proteomics, metabolomics, and
any additional omics of interests should be conducted on the same
experimental sample. However, carrying out different omics stud-
ies on the same B. bassiana infection experiment is a monumental
challenge for a research group. Therefore, different research groups
that use different omics approaches need to collaborate in design-
ing the omics experiments to investigate B. bassiana pathogenicity,
subsequently running different omics studies from the same bio-
logical sample. Perhaps, we can expect more research consortiums
being formed with each contributing omics method that cumula-
tively provides comprehensive systemic insights into the complex-
ity of EPF pathogenesis.

Future research could be conducted based on the knowledge of
genes, proteins and metabolites relevant to B. bassiana pathogenic-
ity. They include a genetic manipulation to produce transgenic B.
bassiana that yields greater insect-killing potency or to produce
transgenic crops expressing B. bassiana pathogenicity-related
genes. For the former, the research efforts have been ongoing. For
example, transgenic strains of B. bassiana have been developed to
produce heterologous toxins from scorpions (Lu et al., 2008) or
insect host’s hormones that result in endocrinal imbalance,
increasing the host’s susceptibility (Fan et al., 2012). Ultimately,
these researches will collectively improve the potential of B. bassi-
6

ana as an alternative to the conventional insecticides, augmenting
the arsenal of the insect pest control.
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